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Abstract
Conventional influenza vaccines are based on predicting the circulating viruses year by year, conferring limited effec-

tiveness since the antigenicity of vaccine strains does not always match the circulating viruses. This necessitates devel-

opment of universal influenza vaccines that provide broader and lasting protection against pan-influenza viruses. The

discovery of the highly conserved immunogens (epitopes) of influenza viruses provides attractive targets for universal

vaccine design. Here we review the current understanding with broadly protective immunogens (epitopes) and discuss

several important considerations to achieve the goal of universal influenza vaccines.
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Introduction

More than 100 years past the catastrophic 1918 Spanish

influenza pandemic, influenza viruses remain a constant

global health threat. Three types of influenza viruses infect

humans: type A (influenza A virus, IAV), type B (IBV) and

type C (ICV). Two IAV subtypes (H3N2 and H1N1pdm09)

and two IBV lineages (Yamagata and Victoria) co-circulate

annually, causing seasonal epidemics and up to 650,000

respiratory deaths globally, while ICV is detected less

frequently and usually causes mild infections (Krammer

et al. 2018; WHO 2018). In addition, antigenically novel

IAVs generated by reassortment of the segmented genome

can occasionally infect humans with high rates of

morbidity and mortality, as well as potential pandemic risk

(Krammer et al. 2018; WHO 2018).

Vaccines provide cost-effective protection against

influenza. Currently, seasonal influenza virus vaccines

predominantly induce antibody responses against the

hemagglutinin (HA), one of the two major surface glyco-

proteins of the virus (Krammer 2019). However, the

majority of vaccine-induced antibodies are directed against

the highly plastic head region of HA and are strain-specific

(Caton et al. 1982; Heaton et al. 2013). Amino acid resi-

dues on the surface of this immunodominant head region

vary substantially among different strains and change

continuously (referred to as antigenic drift), leading to new

circulating virus strains (Wang and Palese 2011). There-

fore, current influenza vaccines have to be reformulated

each year based on surveillance and prediction, which is

cumbersome, and their effectiveness is highly variable

depending on the accurate forecasts of the circulating

strains in each year (de Jong et al. 2000; Gerdil 2003).

Moreover, the protection conferred by seasonal influenza

vaccines does not cover emerging pandemic influenza virus

strains.

These limitations of current vaccines emphasize the

need to develop novel ‘‘universal’’ or ‘‘broadly protective’’

influenza vaccines. An ideal universal vaccine should cover

all influenza A and influenza B viruses independent of

antigenic drift or HA/neuraminidase (NA) subtype. In

contrast, a broadly protective vaccine would cover a large

subset of influenza viruses, for example, all human
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seasonal influenza virus strains. These two types of vac-

cines are generally referred to as ‘‘universal vaccines’’

(Memoli et al. 2019).

Most universal vaccines in development aim at inducing

broadly protective antibody responses, while some others

focus on inducing T cell responses alternatively (Nachba-

gauer and Krammer 2017). In either case, the conserved

immunogens of the virus need to be targeted, and the

mechanism of protection mainly depends on the immuno-

gens of choice (Nachbagauer and Krammer 2017; Asthagiri

Arunkumar et al. 2019). This review will discuss the

conserved antigenic regions/epitopes of influenza viruses

that can facilitate immunogen design and contribute to the

development of universal influenza vaccines.

Surface Proteins and Antibody Responses

Induction of protective antibody responses against influ-

enza viruses requires host recognition of the viral surface

proteins, including HA, NA and matrix protein 2 (M2)

(Fig. 1A). Thus the discovery of new broadly protective

antibodies and related conserved epitopes can greatly

accelerate design and implementation of universal vaccines

(Deng and Wang 2018).

Hemagglutinin

HA is assembled as homotrimers consisting of two

domains, the membrane-distal globular head domain and

the membrane-proximal helix-rich stalk domain (Fig. 1B).

Based on the antigenicity, HA can be divided into 18

subtypes, which fall into 2 groups, including group 1 (H1,

H2, H5, H6, H8, H9, H11, H12, H13, H16, H17, H18) and

group 2 (H3, H4, H7, H10, H14, H15) (Du et al. 2019). As

mentioned above, HA head domain is the major target of

the antibody response following vaccination with seasonal

influenza vaccines, however its high plasticity makes it

easy for the virus to escape immune pressure (Heaton et al.

2013). Despite of this, monoclonal antibodies (mAbs) that

cross-react between the head domains of different HA

subtypes have been reported (Ekiert et al. 2012; Krause

et al. 2012; Lee et al. 2012; Boonsathorn et al. 2014; Lee

et al. 2014). These cross-reactive head antibodies seem

rare, but they are interesting since they suggest the exis-

tence of cross-reactive epitopes in the head domains.

In contrast, HA stalk is the least variable region of HA,

and great efforts have been focused on the development of

universal influenza vaccines that depend on protective

epitopes in this domain (Krammer and Palese 2015; Wu

and Wilson 2018). Monoclonal antibodies against this

domain can broadly neutralize different subtypes of group

1 (Okuno et al. 1993; Ekiert et al. 2009; Sui et al. 2009) or

group 2 viruses (Ekiert et al. 2011) or even both (Corti

et al. 2011). Interestingly, although some stalk-antibodies

show lower or even none neutralizing potency in vitro, they

can render robust protection against challenges with diver-

gent influenza viruses in vivo (Dreyfus et al. 2012; DiLillo

et al. 2014; He et al. 2015), most likely by Fc-mediated

mechanisms like antibody dependent cell-mediated cyto-

toxicity (ADCC) and complement-dependent cytotoxicity

(CDC) (Terajima et al. 2011; Jegaskanda et al. 2013a, b;

Miller et al. 2013; DiLillo et al. 2014; Florek et al. 2014;

Jegaskanda et al. 2014).

Glycosylation and conformational mobility (shape-

shifting) of surface glycoproteins can help viruses to mask

sensitive epitopes and evade the immune system. Inter-

estingly, two latest studies revealed that glycan reposi-

tioning within either head or stem domains of HA can

facilitate the elicitation of protective cross-reactive anti-

body responses. Huang et al. reported that removing gly-

cosylation at residue 144 and deletion of lysine at position

147 can synergize to elicit broadly-reactive H1N1 influ-

enza antibodies (Huang et al. 2019). A study by Boyoglu-

Barnum et al. showed that introduction of the group 2

glycan at Asn38HA1 to a group 1 stem-nanoparticle can

Fig. 1 Influenza virus surface

proteins. A A model of

influenza viral particle with

surface proteins. B Structures of

the surface proteins. HA,

Hemagglutinin; NA,

neuraminidase; M2, matrix

protein 2; M2e, extracellular

region of M2.
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broaden antibody responses to cross-react with group 2

HAs (Boyoglu-Barnum et al. 2020). Although the precise

sites that are vulnerable by glycan repositioning are not

identified yet, they may provide novel target epitopes to

achieve universal protection.

More recently, a novel conserved epitope at the HA

head domain trimer interface was reported (Bajic et al.

2019; Bangaru et al. 2019; Watanabe et al. 2019). Pri-

marily, the epitope is occluded at the contact surface

between HA head domains, while the reversible HA

‘‘breathing’’ conformational dynamics can cause exposure

of the interface. Antibodies targeting this cryptic epitope

were shown to be protective against broad-spectrum sub-

types of IAVs, suggesting the HA head interface is a new

potential immunogen component for influenza universal

vaccine design (Bajic et al. 2019; Bangaru et al. 2019;

Watanabe et al. 2019; Wu and Gao 2019).

Neuraminidase

NA is the second most abundant glycoprotein on the sur-

face of influenza A and B viruses, and plays an essential

role during virus replication by facilitating release of pro-

geny virions (Fig. 1B) (Du et al. 2019). It is well known

that NA antibodies can protect against infection of influ-

enza viruses (Schulman et al. 1968; Murphy et al. 1972;

Monto and Kendal 1973; Doyle et al. 2013; Wan et al.

2013; Wilson et al. 2016; Wohlbold et al. 2017), by pre-

venting virus budding and egress from infected cells, as

well as ADCC and CDC (Wan et al. 2013; Krammer and

Palese 2015; Wohlbold et al. 2017). NA consists of 11

subtypes (N1 to N11), and a series of ‘‘broadly’’ cross-

reactive mAbs of NA have been isolated (Wan et al. 2013;

Wilson et al. 2016; Wohlbold et al. 2017; Chen et al.

2018). Of note, most of these cross-reactive NA mAbs are

limited to recognize heterologous virus strains of the same

NA subtype, suggesting existence of conserved subtype-

specific NA epitopes (Wan et al. 2013; Wilson et al. 2016;

Wohlbold et al. 2017; Chen et al. 2018).

Interestingly, Doyle et al. reported a unique universally

conserved sequence (amino acids 222–230, located in the

vicinity of enzymatic active site) amongst all IAV NA

subtypes, and a mAb targeting this specific epitope was

demonstrated to inhibit all NA subtypes and protect mice

from lethal doses of mouse-adapted H1N1 and H3N2

(Doyle et al. 2013). More recently, Stadlbauer et al.

identified three broadly-protective mAbs targeting the NA

active site that is highly conserved among all NA subtypes

(Stadlbauer et al. 2019). These conserved NA epitopes,

either subtype specific or universal, may be attractive

immunological target for universal influenza vaccine

design.

Matrix Protein 2

M2 of IAV (AM2) is a type III integral membrane protein,

consisting of an N-terminal extracellular region (M2e),

transmembrane region, and C-terminal cytoplasmic tail

region (Fig. 1B) (Tobler et al. 1999). The M2e is a

24-residue peptide and is highly conserved among different

IAV subtypes (Deng et al. 2015). Although the natural M2e

has low immunogenicity and abundance, a M2e-specific

and protective monoclonal antibody 14C2 has been iso-

lated early (Zebedee and Lamb 1989; Treanor et al. 1990).

Therefore this region has since been extensively evaluated

as a promising immunogen for universal influenza vaccines

(Farahmand et al. 2019; Yao et al. 2019).

BM2 of IBV is a functional homolog of AM2 but shares

little sequence identity (Wanitchang et al. 2016; Mandala

et al. 2019), and most mAbs targeting M2e are IAV-wide.

Despite a mAb AS2 that recognizes the conservative

N-terminus of M2 (amino acids 2–10) has been identified

to possess neutralizing activity against both IAV and IBV

in vitro (Liu et al. 2003), no evidence showed that

immunity with current universal influenza vaccine candi-

dates based on M2e of IAV can suppress IBV replication

(Mezhenskaya et al. 2019).

Internal Proteins and T-cell Responses

CD8? T cells can detect and kill virus-infected cells by

recognizing viral protein-derived peptides (epitopes) pre-

sented by major histocompatibility complex class I (MHC-I)

on the cell surface (Fig. 2A). While CD8? T cell-based

immunity does not prevent infection, it can facilitate viral

clearance and reduce the severity of disease (McMichael

et al. 1983; Sridhar et al. 2013).

The current inactivated influenza vaccine formulation

does not boost T cell response (Koutsakos et al. 2018).

Nevertheless cytotoxic CD8? T cells specific to the con-

served viral epitopes have been evidenced to provide cross-

protection across IAV, IBV and ICV (McMichael et al.

1983; Greenbaum et al. 2009; Gras et al. 2010; Sridhar

et al. 2013; Quinones-Parra et al. 2014; Hayward et al.

2015; Wang et al. 2015, 2018; Koutsakos et al. 2019).

Moreover, pre-existing T cell responses have been

demonstrated to correlate with protection from influenza

disease in humans by epidemiological studies (Epstein

2006; Hayward et al. 2015). The antigenic origin of these

broadly cross-reactive epitopes is therefore of great interest

in the development of CD8? T cell-based universal influenza

vaccines. It is believed that CD8? T cell cross-reactivity is

provided by the peptides derived from internal influenza
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proteins, mainly but not limited to nucleoprotein (NP) and

matrix protein 1 (M1) (Fig. 2B) (Koutsakos et al. 2019).

In contrast to HA and NA, the internal influenza virus

proteins are relatively well conserved and display limited

antigenic diversity (Bui et al. 2007). A number of vaccine

candidates have been developed to induce T cell responses,

by intracellularly expressing NP and M1 using replication

deficient viral vectors like Chimpanzee Adenovirus Oxford

1 (ChAdOx1) or Modified Vaccinia Ankara (MVA)

(Berthoud et al. 2011; Lillie et al. 2012; Lambe et al. 2013;

Antrobus et al. 2014a, b).

Interestingly, a recent study identified a universal PB1

epitope (PB1413), which is derived from a core motif

(residues 406–422 of IAV-PB1 protein) present in the viral

RNA-dependent polymerases (Koutsakos et al. 2019). PB1

is the most conserved protein across IAV and IBV, with

about 60% amino acid identity. Vaccinating against the T

cell epitope PB1413 might provide universal protection in

humans. Besides, CD8? T cell targets from IBV HA and

NS1 proteins also have been identified and shown IBV-

specific protection in mice, suggesting them as ideal targets

for IBV-wide influenza vaccines (Koutsakos et al. 2019).

CD4? T cell responses to influenza virus and their role

for host protection against influenza infection have

received increasing attention (Wilkinson et al. 2012). It has

been well demonstrated that CD4? memory T cells can

help in directing a faster antibody response via cytokine

secretion in response to mutated or immunologically novel

viral antigens, leading to limited virus shedding and disease

severity, possibly due to the direct lysis of infected

epithelial cells (Poon et al. 2009; Wilkinson et al. 2012;

Valkenburg et al. 2018). A vaccine that can induce CD8?

or CD4? T responses against highly conserved regions of

the influenza proteins may overcome the limitations of

current season influenza vaccines (Sheikh et al. 2016).

More importantly, universal T cell-inducing vaccines in

combination with universal antibodies can confer increased

protection against influenza (Asthagiri Arunkumar et al.

2019).

Obstacles and Strategies

In theory, a universal influenza vaccine would work well if

it contains a conserved epitope that remains the same from

year to year and does not vary between strains. However,

no such viral epitope capable of stimulating an immune

response that stops most influenza viruses afflicting

humans has been reported yet (Cohen 2018). Certainly

there are main obstacles on the way to developing universal

influenza vaccines, but different strategies can be used to

overcome them.

Low Immunogenicity and Immunofocusing

Specific induction of broadly neutralizing antibodies can be

achieved by targeting B cell recognition to conserved

epitopes. However, the low immunogenicity of the con-

served HA stalk and M2e makes antibody responses tar-

geting these antigens constitute only a small fraction of the

total anti-virus antibodies in nature infections (Sui et al.

2011). Various immunofocusing approaches have been

therefore developed to overcome this problem.

The M2e is small in size and has low abundance in its

native state, but its immunogenicity can be improved using

tandem repeats and fusing them to highly immunogenic

carriers (Neirynck et al. 1999; De Filette et al. 2008;

Eliasson et al. 2008; Turley et al. 2011; Kim et al. 2013).

Strategies directing the antibody response to HA stalk were

also evaluated, such as shielding of the HA head epitopes

Fig. 2 T-cell response and influenza viral internal proteins. A CD8?

T cell response. Virus-derived peptide antigens presented by major

histocompatibility complex-I (MHC-1) at surface of virus infected

cells can be recognized by CD8? T cells through specific T cell

receptors (TCRs), resulting in lysis of target cells. B A model of

influenza viral particle with internal proteins. M1, Matrix protein 1;

NP, nucleoprotein; PB1, polymerase basic-1. *, CD8? T cell targets

from IBV HA and NS (nonstructural protein 1) proteins also have

been reported.
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by hyperglycosylation (Fig. 3A) (Lin et al. 2012; Eggink

et al. 2014), and constructing headless mini-HA as pro-

tective immunogen by removing the head domain com-

pletely (Fig. 3B) (Steel et al. 2010). Notably, the latter

strategy requires maintaining the conformation of the stalk

domain in absence of the head domain, which is chal-

lenging. Nevertheless promise progress has been made to

achieve the stable native structure of trimeric HA stalk,

either in soluble form or presented on nanoparticles (Lu

et al. 2014; Mallajosyula et al. 2014; Impagliazzo et al.

2015; Yassine et al. 2015).

More recently, Weidenbacher and Kim developed a

novel method, called protect, modify, deprotect (PMD), for

creating immunogens aimed to elicit antibodies targeting a

specific epitope (Weidenbacher and Kim 2019). A mono-

clonal antibody that recognizes the specific epitope is used

to protect the target epitope on the protein, followed by

modifications of the remaining exposed surfaces of the

protein to render them nonimmunogenic. After removal of

the monoclonal antibody, the epitope is deprotected and the

resultant protein is modified at the surface other than the

target epitope (Fig. 3C). The increasing numbers of

broadly-neutralizing mAbs and corresponding conserved

epitopes may provide attractive targets for the application

of PMD in universal influenza vaccine design.

Immunodominance and Immunosubversion

The success of mini-HA in inducing robust stalk-specific

antibodies strongly implies that the HA stalk is not

intrinsically poorly immunogenic, but is the victim of

immunodominance, where the immune system tends to

respond to complex antigens in a reproducibly hierarchical

manner, that is, higher-ranking antigens sometimes sup-

press responses to lower ranking antigens (Angeletti and

Yewdell 2018). In the case of IAV HA, there is clear head

immunodomination over stalk.

However, immunodominance can be subverted by var-

ious strategies. For example, an ‘‘antigen imprinting’’

strategy was inspired by the phenomenon that natural

infection and vaccination with pandemic H1N1 in 2009

preferentially boosted broadly binding antibodies in

humans including antibodies targeting the stalk domain

(Wrammert et al. 2011; Li et al. 2012; Pica et al. 2012).

Fig. 3 Immunofocusing approaches for a universal flu vaccine.

A Head masking. The ‘‘Head’’ region of trimeric HA was hypergly-

cosylated, leaving only the HA stalk immunogenic. B Mini-HA. The

‘‘Head’’ region of trimeric HA was removed completely, while the

conformation of the stalk domain maintains well. C Schematic of the

PMD strategy. First, the epitope of interest is protected by binding of

specific mAb. Then the surface of the protein�mAb complex is

modified and rendered nonimmunogenic (shown as grey). By removal

of the mAb, the epitope is deprotected and exposed as PMD antigen.
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Generally, immune response against newly emerging

strains of influenza virus would be affected by immune

memory acquired by past influenza exposure; memory B

cells that are cross-reactive with newly emerging strains is

activated, while induction of strain-specific antibodies is

prevented (Henry et al. 2018). In this strategy, chimeric

HAs that share the same stalk domain but express different

head domains were constructed and used for vaccination

sequentially, allowing repeated exposure of the same stalk

in the context of an irrelevant globular head domain

(Fig. 4A) (Hai et al. 2012; Krammer et al. 2013; Margine

et al. 2013; Ermler et al. 2017). The first immunization

with a chimeric HA construct leads to a primary response

against the globular head domain and, though much less

efficiently, against the stalk domain. Upon subsequent

booster vaccinations, a recall response against the stalk is

anticipated, but immune response against the immun-

odominant head domain is restricted.

To further include head-specific cross-reactive epitopes

into consideration for universal vaccine design, Krammer

and Palese proposed a novel concept of mosaic HAs, which

were constructed by replacing the immunodominant anti-

genic sites in the head with sequences from exotic, avian

HA subtypes, instead of changing the whole head domain

(Fig. 4B) (Broecker et al. 2018; Liu et al. 2018; Krammer

and Palese 2019). Such a vaccination regimen can induce

antibodies targeting both conserved HA stalk and con-

served epitopes in the head domain, possessing improved

potential as universal vaccines (Sun et al. 2019).

Recently, Kanekiyo et al. developed a novel immuno-

subversion strategy by enhancing the avidity of immuno-

gens to cross-reactive B cells (Fig. 4C) (Kanekiyo et al.

2019). Heterotypic influenza hemagglutinin antigens were

Fig. 4 immunosubversion strategies for a universal flu vaccine.

A Chimeric hemagglutinin (cHA) constructs and vaccination strategy.

The cHAs consist of a conserved stalk domain in combination with

‘‘heads’’ from different avian influenza virus HA subtypes. Vaccina-

tion with the first cHA leads to primary antibody responses mainly

targeting the immunodominant head domain and low-level priming

against the stalk domain. Upon boosting with a second cHA that has

the same stalk domain but a completely different head domain, the

immune system induces a primary response against the novel head

domain and a strong memory response against the stalk domain.

B Mosaic hemagglutinin (mHA) constructs and vaccination strategy.

Only the variable immunodominant antigenic sites in mHAs are

replaced with antigenic site equivalents from different influenza virus

HA subtypes, and the resulting mHA displays conserved epitopes in

both the stalk and head domains. Vaccination with the first mHA

likely induces a strong primary response against the grafted antigenic

sites and low-level priming for conserved epitopes in the stalk and

head domains. Revaccination with a second mHA with antigenic sites

that have been grafted from a different subtype might result in a

primary response against the antigenic sites and a strong recall

response against conserved epitopes in both the head and stalk

domains. C Model of immunosubversion approach with mosaic

antigen array. Colored and black simbols indicates strain specific and

conserved antigens respectivley. B cells possessing BCRs specific to

multiple antigenic variants are colored accordingly. The avidity

advantage of the mosaic antigen to cross-reactive B cells over mono-

specific B cells is anticipated, promoting proliferation of cross-

reactive B cells.
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co-localized on a single nanoparticle, generating a mosaic

array. After vaccination, the avidity advantage of conserved

epitopes to B cells can be achieved over strain-specific B

cells, i.e., the B cell responses can adaptively target con-

served antigenic surfaces, promoting cross-reactive antibody

secretion. This heterotypic mosaic nanoparticle immunogen

provides a new tool to combat viral genetic plasticity and

antigenic variation.

Of note, a latest study using an African green monkey

IAV model revealed that although mismatched prime-boost

generated a pool of stem-specific memory B cells, head-

specific B cells and serum Abs still substantially dominated

the immune response (Jegaskanda et al. 2019). Moreover,

it’s theoretically proven that, at least in prime-boost model

of mice, memory B cell (MBC) clones seldom reenter

secondary germinal centers upon boosting (Mesin et al.

2020). The rearrangement of MBC clones were therefore

blocked, and the diversity and specificity were limited,

restricting the breadth and effectiveness of the ensuing

antibody response (Mesin et al. 2020). If this clonality

bottleneck is also the case of humans, our ability to elicit

antibodies to non-immunodominant epitopes may be fur-

ther improved once the bottleneck is solved in future.

Original Antigenic Sin Versus Additive Approach

‘‘Original Antigenic Sin (OAS)’’ refers to the phenomenon

that the antibody response to the first influenza virus

variant one encounters dominates the anti-influenza virus

antibody response lifelong (reviewed in (Henry et al.

2018)). To date, the knowledge of how past influenza

exposure shapes the response to subsequent antigenically

distinct influenza strains remains obscure. Although

‘‘antigen imprinting’’ strategy has shown positive impact in

the context of the development of a ‘‘stalk-based’’ uni-

versal influenza virus vaccine, the complex immune

response underlying OAS more or less stymies the devel-

opment of universal influenza vaccines (Cohen 2018).

Additive approach by either serial vaccination or com-

bined vaccination with multiple antigenic types has been

successfully employed to produce pneumococcal conjugate

vaccines (13 different antigens) and human papillomavirus

vaccines (up to nine different antigens), which can elicit

accumulated responses with non-overlapping specificities.

For influenza vaccines, admixture of multivalent influenza

vaccines may result in antigenic competition and eventu-

ally lead to loss of efficacy for one or more components

(Kanekiyo et al. 2019). Moreover, broad immunity has not

been achieved by serial immunization with conventional

flu vaccines (Belongia et al. 2017).

It is argued by Worobey et al. that the propensity of

initial influenza virus exposure to establish a lifelong

immunological imprint also presents a remarkable

opportunity: immunization of infants prior to their initial,

natural virus exposure with multiple versions of common

human subtypes simultaneously may promise extended

immunological imprinting across all currently circulating

strains and against potential pandemic strains of IAV. This

approach might be a possible step toward a universal

vaccine (Cohen 2018; Worobey et al. 2020).

Future Prospects

Decades have been spent to concoct universal influenza

vaccines, and some solid progress has been achieved.

Currently, several vaccine candidates are in early human

clinical trials, with each vaccine candidate exploiting

conserved regions of the virus to maximize breadth [re-

viewed in (Nachbagauer and Krammer, 2017)]. Although

some vaccine candidates such as those featured HA stalk

have underwhelmed vaccine developers due to their poor

effectiveness (Cohen 2018), increasing numbers of new

effective broad-protective immunogens (epitopes) have

been discovered, providing attractive targets that should be

explored in the development of novel universal influenza

vaccines (Bajic et al. 2019; Bangaru et al. 2019; Stadlbauer

et al. 2019; Watanabe et al. 2019).

Of particularly note, some of the novel conserved epi-

topes are discontinuous (Stadlbauer et al. 2019) or even

occluded in their native state (Bajic et al. 2019; Bangaru

et al. 2019; Watanabe et al. 2019). How one can obtain and

immunize against these epitopes remains a big issue. The

advantage of synthetic epitope mimetics and de novo

protein design may facilitate immunogens design for uni-

versal influenza vaccines in the future (Zerbe et al. 2017;

Grayson and Anderson 2018).

Synthetic Epitope Mimetics

The huge growth in high-resolution 3D structures of pro-

teins promotes the emergence of a novel paradigm in the

study of biomolecular recognition, the design and synthesis

of protein epitope mimetics. Based on the natural structure

of interested epitope, the mimetics (synthetic peptides) can

be designed and synthesized, with diverse chemistries and

cross-links (e.g., helix-stabilizing staples) harnessed to

achieve desired folding (Zerbe et al. 2017).

Recent technological advances have suggested the

promising potential of synthetic peptides as antigens to

generate focused immune responses. By coupling a

mimetic of the V3 loop from HIV-1 GP120 to synthetic

virus-like nanoparticles, Riedel et al. successfully designed

a candidate HIV-1 vaccine which can elicit antibodies in

rabbits that recognized recombinant gp120 (Riedel et al.

2011). Moreover, both folded B- and linear T- epitopes can
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be displayed on the engineered nanoparticles, inducing

antibody response and T-cell response respectively (Zerbe

et al. 2017).

De Novo Immunogen Design

The computational design of new proteins sparks hopes in

the field of rational vaccinology, particularly to elicit tar-

geted neutralizing antibody responses (Correia et al. 2014;

Sesterhenn et al. 2019). While most de novo proteins

designed so far are either functionless or present functions

that are encoded by regular, continuous secondary struc-

tures. Interestingly, a great progress has been made

recently by Sesterhenn et al., who developed a novel

computational design strategy to build de novo proteins

presenting complex structural motifs (Sesterhenn et al.

2020). By using this strategy, the authors further engi-

neered epitope-focused immunogens mimicking irregular

and discontinuous RSV neutralization epitopes. And

excitingly, the de novo–designed immunogens can induce

robust neutralizing responses against the respiratory syn-

cytial virus in both mice and nonhuman primates

(Sesterhenn et al. 2020).

Conclusions

The ever-changing influenza surface proteins, HA and NA,

arouse the desire of a universal flu vaccine. By offering

life-long protection against all influenza strains, an uni-

versal vaccine can greatly reduce the need for yearly

vaccine reformulations and vaccination. So far, many

universal influenza vaccine candidates that are in clinical

trials focus on targeting conserved epitopes of influenza,

including either surface proteins or highly conserved

internal proteins. Moreover, the new identified highly

conserved epitopes and advanced techniques will lead to

the fast development of next-generation universal flu

vaccines.
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