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Changes over the scale of decades in oceanic environments present a range of challenges for
management and utilisation of ocean resources. Here we investigate sources of global temporal
variation in Sea Surface Temperature (SST) and Ocean Colour (Chl-a) and their co-variation, over a
14 year period using statistical methodologies that partition sources of variation into inter-annval
and annual components and explicitly account for daily auto-correlation. The variation in SST shows
bands of increasing variability with increasing latitude, while the analysis of annual variability in Chl-a
shows mostly mid-latitude high variability bands. Covariation patterns of SST and Chl-a suggests
several different mechanisms impacting Chl-a change and variance. Our high spatial resolution analysis
indicates these are likely to be operating at relatively small spatial scales. There are large regions
showing warming and rising of Chl-a, contrasting with regions that show warming and decreasing Chl-a.
The covariation pattern in annual variation in SST and Chl-a reveals broad latitudinal bands. On smaller
scales there are significant regional anomalies where upwellings are known to occur. Over decadal time
scales both trend and variation in SST, Chl-a and their covariance is highly spatially heterogeneous,
indicating that monitoring and resource management must be regionally appropriate.

Understanding the spatial and temporal patterns of change in oceans is important for managing oceans by ensur-
ing sustainable development and conservation"* Patterns of human use are modified by changes in weather and
climate, which are occurring across scales of days to millennia. While changing climate is important over long
time scales, most human activity and planning is confined to shorter time scales, typically less than a decade.
Patterns of change and variability over years to decades will have a direct impact on the sustainability and live-
lihoods of all ocean-based activities (e.g.>~*). Understanding the observed spatial patterns, trends and variance
of ocean states over these shorter time scales is important to complement other management, monitoring and
planning efforts’.

Changes in ocean surface temperature are associated with changes in other variables, including biological
variables such as Chl-a, primary productivity, species physiological responses and species distributions*®’. The
patterns of temporal and spatial variability in Chl-a, and how it relates to temperature, directly link changes in
climate with the dynamics of ocean ecosystems'*. While the global average temperature is increasing’, there is
variability around this average with different regions and locations experiencing different responses, both in
terms of the trend and variance on different time scales>®°. The same will hold for changes in primary produc-
tivity and other ocean variables®!°. Understanding the pattern of variation at decadal time scales in important
ocean variables, and how they covary, is a key component of our ability to adapt to variation in ocean state. While
changes in long-term average conditions have received most attention, without assessment of decadal variability
around these averages it is unlikely that we will be able to successfully respond to observed and predicted climate
effects®. Short-term variation can overwhelm mean changes in many regions, leading to short term events such
as marine heatwaves, changes in local productivity and ecosystem structure and changing the direction of the
long-term trend®.

Sea surface temperature (SST) and chlorophyll a (Chl-a) are often linked®”!"12, Warming of the surface ocean
increases temperature stratification in the upper ocean and can be associated with a reduction in surface mix-
ing depth. Warmer temperatures tend to increase cellular Chl-a while increased irradiance or decreased nutri-
ent availability tend to reduce cellular Chl-a'*-°. Depending upon the magnitude of each factor phytoplankton
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cellular Chl-a will change (a response termed ‘photoacclimation’) (c.f.71112). These changes in cellular Chl-a
may not be related to a change in primary production. In some cases, a deepening of the mixed layer depth may
increase the vertical transport of nutrients to the mixed layer potentially leading to increased Chl-a associated
with an increase in phytoplankton division rates. There is growing evidence that in some locations increasing
wind speeds overcome any potential increase in stratification due to warming and produce increased Chl-a!®!7.
These processes in the oceans are, however, variable on multiple spatial and temporal scales with significant
impacts on ecosystem dynamics'®. Understanding the patterns of annual variation (in SST and Chl-a, both indi-
vidually and jointly) complements our understanding of change in SST and Chl-a across years.

In this work, we focus on analysis of daily global satellite observations from December 2002 to January 2015, for
both SST and Chl-a. In particular, we seek to understand (1) seasonal patterns of variation, (2) the long term trend,
and (3) the covariation between SST and Chl-a. We identify where inter-annual change is occurring and the extent
of annual variation for both SST and Chl-a. The annual variation we estimate is a de-trended estimate of variation
for each cell, which is in contrast to previous analyses (e.g.!*-?"). Those analyses quantify the variation within binned
regions of the oceans and assume that there is no temporal change within each bin. In this work, we avoid this con-
founding by explicitly partitioning these sources of variation. We then contrast patterns of variation between SST
and Chl-a and show that the observed patterns of covariation between SST and Chl-a demonstrate both positive
and negative relationships suggesting SST alone may not be a good predictor of changes in Chl-a at global scales.

Results

We analyse individual high resolution time series of SST and Chl-a (globally at 4 km? grid cell resolution totaling
21024324 and 21024580 cells and models respectively) separately over the global ocean. We include only high
quality data (i.e. where there is no cloud or solar reflectance) from the MODIS/aqua satellite sensor for the long-
est interval available. We do not rely on spatial interpolation, which avoids assumptions of spatial interpolation
methods?*?’. We only consider time series for cells that have more than 25 observations over the study period,
for each of SST and Chl-a, and we assume that missing data are randomly distributed in time. Cells with less data
than this tended to not have sufficient information to support estimation of all the model’s parameters (at any
level of uncertainty). Note that cells with fewer observations will have greater uncertainty and may produce spa-
tial regions where the signal is highly variable. The filtered data were quality controlled by searching for outliers,
using a simplified yet robust version of the model. The model fitted, to each time-series, is a generalised additive
mixed model (GAMM)* with components for long-term trend, for seasonal patterns and for residual correlation
between daily observations. For each cell and for SST and Chl-a, we produce summary metrics of the components
of temporal variation in the time-series model, which are collated to produce maps®?>%. See the Methods Section
for more details and the Supplemental Material for an illustrated description of the process.

Model Summaries. ALT. Average linear trend. This is the average rate of change throughout the study
period after adjusting for potential non-linear relationships®. Positive values indicate a rise in SST (or Chl-a),
negative values indicate a decline and values close to zero indicate no change on average.

Trend RMSE. A measure of the level of non-linearity of the inter-annual temporal effect. Values close to zero
indicate that there is no non-linearity and larger values indicate increasingly non-linear responses.

Annual RMSE. A measure of the amount of seasonal variation. Small values (close to zero) indicate low season-
ality and larger values indicate increasingly large seasonality.

GoF RMSE. A measure of goodness of fit (GoF) of the decomposition into an inter-annual trend and a seasonal
trend. Large values of this statistic indicate that the decomposition is not supportable, and the seasonal pattern is
not regularly repeating, and small values indicate the opposite.

Variationin SST.  The analysis of SST ALT (Fig. 1a) shows the warming of the Gulf Stream, and cooling of the
North Atlantic, intense warming across the north Pacific consistent with the observed signal of the Interdecadal
Pacific Oscillation (IPO), and warming patterns in the south-east Indian Ocean and Tasman Sea (off south-east
Australia) over the time frame of the observations?”. The SST Trend RMSE (Fig. 1b) highlights the IPO and El
Nino Southern Oscillation (ENSO) signals within the observed time frame® and the eddy fields in mid southern
latitudes in the Indian, Pacific and Atlantic Oceans. However, it is likely that only a single phase of major climate
drivers such as the IPO and IOD occur in the 14 year time series and the patterns may change when the IPO or
IOD phases change. Annual RMSE (Fig. 1c) shows little annual variation in the central Pacific as all the variance
in the central Pacific occurs in time scales longer than years. In contrast, there is intense annual variation in the
north-west Pacific and north-west Atlantic. Of note are the eddy patterns derived from the Malvinas Current (east
of Argentina; Location shown in Fig. $3, N), the areas of high variation associated with the Far East Pacific Fresh
Pool?*%, and the Gulfs of Tehuantepec and Papagayo®® on the west coast of central America (Location shown in
Fig. S3, J,K,L respectively). Annual variation is driven by rain and wind patterns?®® in the Far East Pacific Fresh
Pool and gap winds off the central American coastline®’. The GoF RMSE (Fig. 1d) shows the spatial influence of
non-seasonal signals, such as ENSO.

Variationin Chl-a. Patterns for Chl-a (Fig. 2) show substantially different patterns from SST. The linear trend
(ALT; Fig. 2(a)) shows localised patterns of increases and decreases in Chl-a, within the time frame of observations.
There are substantial decreases in Chl-a north west of the United Kingdom, surrounded by an area of increasing
Chl-a. There is a strong increase in Chl-a along the southern boundary of the South Pacific Convergence Zone
(SPCZ), a band with precipitation of ~2 metres per year stretching from Papua New Guinea east and south towards
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Figure 1. (a) ALT SST, the average linear trend over the study period (°C/decade). (b) Trend RMSE of SST, the
measure of the magnitude of the non-linear component of the trend (higher values are more non-linear).

(c) Annual RMSE for SST, the measure of the strength of the seasonal cycle (Annual RMSE, higher values
indicate more seasonal variation). (d) GoF RMSE, the measure of how repeatable the seasonal cycle is from year
to year (high values indicate more departures from a regular seasonal cycle).

(b) Trend RMSE
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Figure 2. (a) ALT Chl-a, the average linear trend over the study period log(mg/m?/decade). (b) Trend RMSE,
the measure of the magnitude of the non-linear component of the trend (higher values are more non-linear).
(c) Annual RMSE, the measure of the strength of the seasonal cycle (higher values indicate more seasonal
variation). (d) GoF RMSE, the measure of how repeatable the seasonal cycle is from year to year (high values
indicate more departures from a regular seasonal cycle).

~20°S and ~150°W suggesting a southward movement of Chl-a possibly associated with photo-physiology associ-
ated with shoaling of the mixed layer or more nutrients in the euphotic zone in this generally nutrient-limited area.
Other notable features include the standing eddy fields south of Africa (Aghulus retroflection, Location shown in
Fig. 3B) and the Malvinas Current, both of which are also visible in SST ALT (Fig. 1(a)). The Trend RMSE (Fig. 2b)
has very little signal, with exception of the Pacific Warm pool which intensifies with ENSO La Nina events.

Areas of strong annual RMSE for Chl-a (Fig. 2¢) appear as bands in the transition zones between the subtrop-
ical gyres and the subpolar gyres (e.g. the Southern Hemisphere along the northern boundary of the subtropical
front). Irregular seasonal variation in the location of these fronts appears to have a significant impact on Chl-a
over a substantial portion of the oceans. When a positive Southern Annular Mode (SAM) aligns with La Nina
events eddy kinetic energy increases significantly along the subtropical front*! potentially stimulating blooms of
coccolithophores®? during austral summer (December-January). At a smaller scale the variable seasonality in the
Gulfs of Tehuantepec and Papagayo, the Far Eastern Pacific Fresh Pool and Malvinas Current are apparent and
consistent with anomalous seasonal warming (Fig. 2(c)). There are significant responses in Chl-a found in associ-
ation with the Canary Current, the Arabian and Red Sea, Barents Sea, the southern Java Upwelling® and the Sea
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Colour Linear Trend (log)

SST Linear Trend.

Figure 3. Magnitude and direction of the linear trend (ALT) in SST and Chl-a (units are °C/decade for SST and
log(mg/m?®/decade) for Chl-a).

of Japan and Okhotsk (Location shown in Fig. S3, O,B,C,A,EG,I respectively). The Arabian Sea and the coasts of
Oman and Yemen showed a declining trend in Chl-a (Fig. 2a), despite very strong annual variation (Fig. 2(c)) in
an area where seasonal upwelling is associated with strong winds during the southern summer monsoon season.
These regions of upwelling are known to be susceptible to the frequency, intensity and timing of the Indian Ocean
Dipole (I0D) and ENSO events* which will contribute to the large variability observed in the Annual RMSE over
the analysis period (Fig. 2¢). Relative to SST a greater proportion of the temporal variability in Chl-a is described
by the long term trend and seasonal variability possibly reflecting the fact that there are other important drivers of
Chl-a such as insolation. Unlike SST, most of the variability in Chl-a can be captured in long term variability and
annual variability (Fig. 2d) suggesting that Chl-a is more predictable between years than SST®.

Relationships between SST and Chl-a. The correlations between SST and Chl-a trend and variabil-
ity have rarely been explored on a global scale. Previous analyses (e.g®”!°-21.) have used linear regressions and
standard deviations on binned areas which will not explicitly partition the inter-annual, seasonal, and daily
components of temporal variance at a cell level. At worst, this approach may generate biased estimates due to
confounding of the components of variance. We compare the global spatial distribution of the ALT and Annual
RMSE summary statistics for each 4 km? cell for both SST and Chl-a (Figs 3 and 4). The long term trend over
12y can, potentially, reflect a mix of localized processes and the slow advection of water masses. This analysis
does not consider the instantaneous covariance between SST and Chl-a. Rather, it considers the relationships
between trends and patterns of annual variance. The implication of this is that the model does not explicitly
allow for advective processes that could introduce lagged dependencies between SST and Chl-a. This could only
be overcome in future applications by proposing a full bivariate statistical spatio-temporal model with complex
covariance structure defined by coupling through advection and other processes.

There are areas of intense warming combined with decreasing or stable Chl-a in the central and north Pacific,
the Sargasso Sea (Fig. S3, M) and Gulf Stream and across most of the Indian Ocean (Fig. 3). The most likely mech-
anism for this combination of changes (increasing SST and decreasing Chl-a) is more intense stratification and a
deepening of the thermocline resulting in reduced nutrient input into the euphotic zone*. This interpretation is
consistent with the observations and modelling of the northern Indian Ocean indicating an increased depth of
the 20°C isotherm? for (increasing SST and decreasing Chl-a) portions of the Indian Ocean. South of the area of
warming associated with ENSO in the Pacific Ocean is an extensive area extending from South America toward
Papua New Guinea where SST is decreasing and Chl-a is increasing, suggesting a southward movement of water
masses®®. The North Atlantic is generally cooling and increasing in Chl-a, with the exception of the west coast
of Ireland and the UK, where the ocean is both cooling and decreasing in Chl-a. The downturn in temperature
is considered to be a fluctuation in the Atlantic Meridional Overturning Circulation (AMOC) driven by broad
scale natural climate cycles®. There are also significant areas where warming is apparent and Chl-a is increas-
ing, which are often adjacent to the areas influenced by the IPO, ENSO and IOD. Also apparent are the eddy
fields in the Aghulus Current, which show alternating patterns of warming and decreasing Chl-a and cooling
and increasing Chl-a as seen in previously observed coarser global patterns’. Such patterns of covariation are
consistent with greater nutrient delivery to the surface in cooler waters or a gradual change in location. While
there are some patterns that are similar to previous studies (e.g. Sargasso Sea, parts of the central Indian Ocean,
central Atlantic®”1°-21), there are significant differences in every other region of the ocean (e.g., central Pacific,
north Pacific, western Indian Ocean, Bay of Bengal (Fig. S3, E), north Atlantic, Southern Ocean). Similar negative
correlations between increasing SST and decreasing Chl-a trends in the north west Indian Ocean have been previ-
ously observed®. While there are some similarities in the trends, our analysis shows areas where Chl-a is trending
up and where SST is decreasing and Chl-a is trending down and SST is increasing. These differences are due to
differences in both duration of time series data (our period is twice as long), potentially different mode of ocean
states, use of a different statistical model (ours allows an estimation of variance) and a different satellite platform.

Discussion

The interaction between annual variation in SST and Chl-a provides insights into how and where linkages occur
on annual time scales. Our analysis shows strong latitudinal bands associated with variation in seasonal warming
(Fig. 4a). The equatorial Pacific, Indian and Atlantic Oceans are all characterised by very low annual RMSE for
both SST and Chl-a. The mid latitudes of each ocean basin have higher variance in SST and/or Chl-a. However,
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Figure 4. (a) Annual variation (Annual RMSE) of SST and Chl-a globally (units are °C/decade for SST
and log(mg/m?®/decade) for Chl-a). (b) The pattern of annual variation in the Bonney Upwelling, Southern
Australia. (c) The pattern of annual variation in the the Florida Current, South East USA.

the Southern Ocean shows more complex patterns, with areas of very low variance adjacent to areas of much
higher variance in SST and/or Chl-a, reflecting the close proximity to each other of the various polar fronts. While
the ocean basins show very large scale patterns, areas adjacent to the coasts in all the basins show a more complex
pattern. This is most clearly shown by the areas of high variance in the Far East Pacific Fresh Pool, and the Gulfs of
Tehuantepec and Papagayo where the link between Ekman pumping on the margin of the Eastern Tropical Pacific
and seasonal variation in Chl-a and SST is notable and the western boundary of the Indian Ocean. These areas
are surrounded by larger regions of low variance in low latitudes. Examining the outputs in fine detail can show
patterns such as the Bonney Upwelling (Figs 4b and S3, H) on the southern coast of Australia, and the Florida
Current (Fig. 4c), the expression of the Gulf Stream visible around Florida.

The patterns revealed here provide both a snapshot and evidence for change and variation over the 14 year
period. Numerous studies have shown that changes in ocean temperature are already affecting the distribution
of marine life (e.g.**~*?) while changes in chlorophyll standing stocks and ocean productivity also have dramatic
impacts*®. Our analysis shows that both SST and Chl-a are changing globally and the covariance depends on
location. It is likely that additional change, coupled to variation around that trend, will occur, and continue to
affect fisheries*, the health of ecosystems (e.g. coral bleaching frequency and severity*®), the dynamics of eco-
systems* and extreme weather events (e.g. marine heatwaves**). These patterns can inform understanding of
the observed and projected changes in marine ecosystems around the world, and improve understanding of the
likely responses to climate change at the spatial and temporal scales governing human interactions with marine
resources. Identification of these patterns can guide management responses such as harvesting levels for fish,
monitoring and data collection, inform landscape level planning activities such as marine spatial planning and
bioregionalisation and additional process studies that can compare biological responses to change in different
regions over different time scales.

Methods

The SST data were derived using the longwave SST algorithm NASA Goddard Space Flight Center (2014) from
brightness temperature data recorded by the MODIS/Aqua satellite sensor, and obtained from the NASA Ocean
Biology Processing Group (http://oceandata.sci.gsfc.nasa.gov). The advantage of using MODIS/Aqua as the sen-
sor for the SST is that the observations are exactly simultaneous with the Chlorophyll-a measurements and have
the same field of view and cloud masking, enabling a more straightforward comparison than if the two data sets
had been recorded at different times by different sensors. Level 3 daily netcdf-format files with global coverage
mapped at 4km spatial resolution (https://doi.org/10.5067/AQUA/MODIS_OC.2014.) were downloaded for the
period 2002-07-04 through 2016-01-15. The daily data were concatenated to create a third dimension (time), and
then internally re-ordered to provide efficient access along the time dimension to facilitate the time series analysis.
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The Chlorophyll a observations were also derived from radiances measured by the MODIS/Aqua sensor and
the data were obtained from the same source and in the same format as the SST data. The product used was
derived using the OCI algorithm® and subject to the same reorganisation as the SST data.

Which Cells to Analyse?.  For all satellite-derived variables, we analyse only those cells with more than 25
observations. We note that cells with few observations may produce highly variable models, parameter estimates and
ultimately inferences. The number of observations per cell required here is less than that required in Foster et al. 8.
This is because Foster et al.® considered only a mid-latitude region which coincidentally avoided areas of high
solar reflectance (low latitudes) and oblique observing angles (high latitudes). If any information is to be provided
for very low and very high latitudes, then the less stringent criterion must be used (at the expense of increased
uncertainty even though it is quantified here). Gross inadequacies in this criterion may be evident in the model
output as highly spatially variable regions.

Model. The temporal data from each cell are analysed as a time-series. The resulting models are then summa-
rised and collated over all cells to produce maps of meaningful data-driven quantities.

Identifying Outliers. ~ All data are susceptible to contamination by artefacts and remotely sensed data is no excep-
tion. Here, like in Foster et al.® and elsewhere, we take a pragmatic approach and remove potential outliers prior
to performing the formal analysis.

Due to global scope of the analyses, the method used to detect outliers described in Foster et al.® was slightly
modified. We assess each datum’s chance of being an outlier by inspecting it in relation to a trimmed mean (for
example, see™). The trimmed mean is a robust estimator of the mean of the central (in distribution) 90% of the
nearest observations in time. We use the nearest 25 (12 on each side in addition to the current observation) for
SST and Chl-a. This method of generating a robust expectation is not dependent on a common seasonal cycle,
unlike that used in Foster et al.8, and will naturally adjust itself when the seasonal cycle varies depending on other
pressures (e.g. an ENSO cycle). It will also naturally adjust the smoothing window depending on data density -
those cells with few data will be more heavily smoothed than those cells with more data, but only for detection
of outliers.

The task remaining is to define a rule for determining how removed from the running trimmed mean an
observation actually is. For data that is usefully considered Gaussian (SST) we consider that any datum, y,, that
lies outside y, +3.89 X 0, is an outlier. This interval is the central 99.99% interval of a Gaussian distribution
defined by the running trimmed mean at time t, y;, and (robust) standard deviation o,,. The robust standard devi-
ation is calculated using the method of mean absolute deviations (see®). For data that can be usefully considered
to be gamma distributed (Chl-a) we take the central 99.99% interval again, with the gamma distributions scale
parameter estimated from the data, given the running trimmed mean (see*’). Note that this is not a robust esti-
mate of scale and so the outliers will cause slightly inflated dispersion estimates. The effect of not having a robust
measure is that the outlier detection method may be slightly more tolerant of outliers.

Time-series Models. 'The time-series model attempts to decompose the data into a small number of components
of variation. It is applied to the data from each cell and to each measurement variable. The model is useful, as the
components can be made to mirror common temporal sources: notably day-to-day variation, seasonal variation
and longer-term variation. The model is based on that presented in Wood?* (Section 6.7) with only minor alter-
ations, and is similar to models used previously for other environmental monitoring applications (for example
see®=5%). The components of variation considered are:

Inter-annual: This includes all variation, which is smooth through time, which occurs on a time scale greater
than one year. This is modelled through a smoothing spline term (a smoothing spline) f(t) where ¢ is the number
of days since the time-series began. The smoothing spline is partially defined through its knot points (defined
prior to analysis) and its smoothing parameter (defining the ‘wiggliness’ in the smooth). Unlike Foster et al.?,
we fit two models that have different wiggliness in their inter-annual spline. The first, f,(¢), with a knot point for
each year, is not flexible enough to change substantially within a year. Thus, this spline can only detect changes
that are smooth in multiple years. This spline mirrors that presented in Foster ef al.8. The second, f,(#), has many
more knot points and is capable of detecting within year smooth departures that are not common to all years. The
maximal number of knot points considered is min(101,n;) where #, is the number of available observations for
the cell under consideration. The function f,(t) will be flexible enough to model inter-annual and within-year
patterns that are not attributable to seasonal variation (see below). Thus, inspecting the difference (across time) of
f1(t) and f,(¢) provides a check on how ‘seasonal’ the time series actually is (does the same seasonal pattern repeat
year after year).

Seasonal: This is a periodic function that captures the annually repeating pattern in the time series. Its value
on the 31* of December matches that on the 1% of January (along with its first and second derivatives). We label
this function g(d), where d is the day of the year (ranging from 1 to 366), and model it using a cyclic spline**. We
specify 9 knot points, which is large enough to provide considerable flexibility but also small enough to reduce
unnecessary computational burden.

Day-to-day (residual): All departures of the observed data from the functions defined by the inter-annual sig-
nal (f|(#) or f5(#)) and the seasonal signal (g(d)). It includes: randomness in the day-to-day measurements (includ-
ing measurement error), known sources of variation that have not been included in the model (such as diurnal
patterns), and non-smooth sources of variation. We assume that these terms follow a Gaussian distribution for
SST and a gamma distribution for Chl-a. These choices were made after inspecting the time-series for some exam-
ple locations. In addition, we assume that the departures from expectation are correlated and are described using
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a first order autoregressive process. To ease computational burden, we make the assumption that correlation only
exists within a year and that correlation between days in different years is zero®*.
Formally, these three components of variation can be incorporated into the model

h(EQ( ) = f,(t) + g(d)

where f(?) is either f(¢) or f,(¢) and is the inter-annual trend, g(d) is the seasonal cycle, E(-) is the expectation
operator and A(-) is a link function. For Gaussian data we specify h(-) to be the identity link and for gamma data,
we specify hi(-) to be the log link. The log link function ensures that the expectation for the data is kept positive.
The observed data are distributed around this expectation.

For Gaussian data, we estimate the model parameters using restricted maximum likelihood****. For Gamma
data, the likelihood is not well defined (as correlated gamma variables cannot be defined as above) and penalised
quasi-likelihood (PQL) is used®**>. The PQL method uses a working likelihood in estimation, which is Gaussian
and so can be specified with the correlation parameter.

Further Detail of Model Summaries.  ALT: Average linear trend. This is the average rate of change throughout the
study period after adjusting for potential non-linear relationships®, by exploiting the representation of a spline as
a straight line plus smooth deviations from it***®. The ALT summary is the slope of the straight line component.

Trend RMSE: A measure of the level of non-linearity of the inter-annual smoothing spline, the measure of
inter-annual variation. Calculated as the root mean square error (RMSE) between the inter-annual smooth and
the ALT, that is Trend RMSE = \/% NIf(t) = ALT()] where N is the number of days in the study and
ALT(¢) is the average linear trend calculated at time ¢.

Annual RMSE: A measure of the amount of seasonal variation, as encapsulated in the estimated function g(d).
Calculated as the RMSE between the cyclic seasonal function and zero, that is annual RMSE = | %236:61 [ g(d)]2 .
Annual RMSE is a de-trended estimate that removes the influence of the inter-annual trend (f,(£)).

GoF RMSE: A measure of goodnes of fit (GoF) of the decomposition into smooth inter-annual trend and
seasonal trend is. Put another way: how much evidence is there that there the seasonal cycle is dependent on less
predictable pressures? It is calculated as the RMSE between the inter-annual smooth f,(#) and its more flexible

(allowing for intra-annual variation) counterpart f,(¢). That is, GoOF RMSE = \/ %Zfi NAGESA (1)]? , where £, (t)
and f,(¢) are defined as the less flexible smooth and the more flexible smooth respectively.

Assumptions and Model Limitations. Missing data are assumed to be missing at random throughout the study
period. If not then there could be bias in results. For example, if winter measurements are more likely to be miss-
ing then the average temperature will be biased upwards and the amount of seasonal variation likely to be biased
downwards. Similar arguments can be made for: 1) changing raw data (satellite) processing algorithms so that
later measurements are different to earlier ones, or 2) changing atmospheric conditions that made the measure-
ment (but not the true state) appear different.

The ALT and other summaries based on f;(f) may be unreliable in those locations where the seasonal pattern
does not regularly repeat. In these locations, the GoF RMSE will be inflated and can be used as a reasonable
diagnostic.

Data Sets
The datasets generated during the current study are available in the Marlin repository at http://www.marlin.csiro.
au/geonetwork/srv/eng/search?uuid=c685a21e-8770-4b3b-ac3c-2c4f815f7176.
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