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Abstract

Background: Many open problems in bioinformatics involve elucidating underlying functional signals in biological
sequences. DNA sequences, in particular, are characterized by rich architectures in which functional signals are increasingly
found to combine local and distal interactions at the nucleotide level. Problems of interest include detection of regulatory
regions, splice sites, exons, hypersensitive sites, and more. These problems naturally lend themselves to formulation as
classification problems in machine learning. When classification is based on features extracted from the sequences under
investigation, success is critically dependent on the chosen set of features.

Methodology: We present an algorithmic framework (EFFECT) for automated detection of functional signals in biological
sequences. We focus here on classification problems involving DNA sequences which state-of-the-art work in machine
learning shows to be challenging and involve complex combinations of local and distal features. EFFECT uses a two-stage
process to first construct a set of candidate sequence-based features and then select a most effective subset for the
classification task at hand. Both stages make heavy use of evolutionary algorithms to efficiently guide the search towards
informative features capable of discriminating between sequences that contain a particular functional signal and those that
do not.

Results: To demonstrate its generality, EFFECT is applied to three separate problems of importance in DNA research: the
recognition of hypersensitive sites, splice sites, and ALU sites. Comparisons with state-of-the-art algorithms show that the
framework is both general and powerful. In addition, a detailed analysis of the constructed features shows that they contain
valuable biological information about DNA architecture, allowing biologists and other researchers to directly inspect the
features and potentially use the insights obtained to assist wet-laboratory studies on retainment or modification of a
specific signal. Code, documentation, and all data for the applications presented here are provided for the community at
http://www.cs.gmu.edu/ ashehu/?q = OurTools.
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Introduction

The wealth of biological sequences made possible by high-

throughput sequencing technologies is in turn increasing the need

for computational techniques to automate sequence analysis. In

particular, as the community at large is focusing on elucidating the

sequence-function relationship in biological macromolecules, a

primary sequence analysis problem involves unraveling the rich

architecture of DNA and mapping underlying functional compo-

nents in a DNA sequence [1]. A combination of valuable

biological insight gathered from wet-laboratory experiments and

increasingly powerful computational tools has resulted in signif-

icant progress being made in important sequence analysis tasks,

such as gene finding [2,3]. Despite this progress, challenges remain

[4,5]. For instance, accuracy in gene finding ultimately depends on

addressing various subproblems, one of which is the correct

detection of splice sites that mark the beginning and end of a gene.

The splice site prediction problem is now considered a primary

subtask in gene finding and is thus the subject of many machine

learning methods [6–16]. Other prominent DNA analysis

problems involve the identification of regulatory regions [17,18]

through detection of binding sites of transcription factors [19–21]

or detection of hypersensitive sites as reliable markers of regulatory

regions [15,22–28], identification of ALU sites [29–33] to

understand human evolution and inherited disease [34,35], and

more.

From a computational point of view, detecting specific

functional regions in a DNA sequence poses the interesting and

challenging task of searching for signals hidden in sequence data.

Detecting a signal in a given sequence or whether a sequence

contains a particular signal is a difficult computational task,

particularly in the ab initio setting, for which little or no a priori

information is available on what local or distal interactions among

the building blocks of investigated sequences constitute the sought

signal. Yet, automating this process is central to our quest to
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understand the biology of organisms and characterize the role of

macromolecules in the inner workings of a healthy and diseased

cell. This quest is not limited to nucleic acids. Important sequence

analysis problems include predicting protein solubility, crystal-

lizability, subcellular localization, detecting enzymatic activity,

antimicrobial activity, secondary structure folding, and more [36–

46]. The focus in this paper on DNA is due to a growing body of

work in machine learning pointing to the fact that many important

functional signals consist of a complex combination of local and

distal information at the nuucleotide level.

Sequence analysis problems in which the objective is to find

what constitutes a functional signal or property at the sequence

level naturally lend themselves to formulation as classification

problems in machine learning. The effectiveness of these

algorithms largely depends on the feature sets used. In some

settings, the construction of effective features can be facilitated by a

priori insight from biologists or other domain experts. For instance,

biophysical insights have been instrumental in developing effective

features for predicting protein subcellular localization and folding

rates, CG islands in DNA sequences, and more [37,38,42,43,47].

However, it is becoming increasingly clear that there are

problems for which domain-specific insight is either incomplete or

hard to translate into effective features. As a consequence, there is

considerable interest in automating the process of constructing

effective features. A prominent example is the automated detection

of splice sites in DNA sequences [12–16]. The key issue here is

how to define a space of potential features that is sufficiently rich to

allow the generation of effective features while maintaining

computational feasibility.

In recent work, we have indicated how one can explore large

spaces of potential features in a computationally-viable manner by

employing evolutionary algorithms (EAs) [15,16]. The success of

this "proof of principle" effort has prompted us to propose and

investigate a more general EA-based framework (EFFECT) for

efficient automated feature construction for classification of

biological sequences. In this paper we describe the generalizations

and then demonstrate the broad applicability of the framework on

three DNA sequences analysis problems on the detection of splice

sites, HS sites, and ALU sites in DNA sequences. The algorithmic

realizations of EFFECT for each of the selected problems in this

paper are sufficiently detailed to allow one to adapt the framework

for other sequence classification problems of interest. Indeed, one

of the contributions of this work is in providing a roadmap as to

how one can do so in different application settings. To further

facilitate this, the entire data, code, and documentation are

provided to the community at http://www.cs.gmu.edu/ ashehu/

?q = OurTools.

The rest of this article is organized as follows. We first provide a

brief review of related research that includes machine learning

methods for classification of biological sequences and EAs for

feature construction in the context of classification. The EFFECT

framework is detailed in Methodology. A comprehensive analysis

of results from application of this framework on the three chosen

problems is presented in Results. The paper concludes in

Discussion, where we provide a short summary of the main

features of EFFECT, its availability to the research community,

and its use for other classification problem of interest.

Related Work
Methods for Classification of Sequence Data. We focus

here on supervised learning methods for classification of sequenc-

es. In this scenario, a model is trained to find features that separate

labeled training sequence data. Typically, these are binary classifi-

cation problems in which a positive label is assigned to sequences

known to contain a particular functional signal or property, and a

negative label to sequences that do not. The learned model is then

applied to novel sequences to make label predictions and thus detect

or recognize the presence of the sought functional signal.

Our review below categorizes classification methods into

statistical-based and feature-based, though many methods are a

combination of the two approaches. Typically, the process involves

first transforming sequence data into vectors over which an

underlying classifier operates. In statistical-based approaches, the

focus is on the underlying statistical model for the classification. In

feature-based approaches, the primary focus is on constructing

effective features that allow transforming sequence data into

(feature) vectors for standard classifiers. What follows below is not

a comprehensive review of literature on each of these two

approaches, but rather a summary of representative methods in

each category to facilitate the discussion of results in the

comparison of our framework to state-of-the-art methods.

Statistical Learning Methods. Statistical learning methods

can be broadly classified by the models that they employ, which

can be generative or discriminative. Generative models learn the

joint probability P(x, y) of inputs x [ X with labels y [ Y . Bayes

rule is used to then calculate the posterior p(y D x) and predict the

most likely label for an unlabeled input. Discriminative models

learn the posterior directly, but this also limits them to a supervised

setting that demands labeled training data (as opposed to the

ability of generative models to additionally exploit unlabeled data).

Nonetheless, discriminative models are preferred in many

classification settings, as they provide a more direct way at

modeling the posterior without first addressing a more general

setting (as demanded by modeling the joint probability) [48]. The

transformation of input sequence data into numeric data for these

models is conducted a priori through a kernel function or a feature-

based method explicitly extracting features of relevance for the

transformation.

Heuristic procedures have been proposed to combine discrim-

inative and generative models [49] as a way to address the issue

that generative methods lose their ability to exploit unlabeled data

when trained discriminatively [50]. The resulting hybrid methods

have been shown to result in superior performance on recognition

of transcription factor-binding sites on DNA [51]. Representative

methods include the position-specific scoring matrix (PSSM) – also

known as the position-weight matrix (PWM) - a method that

assumes nucleotides at all positions are drawn independently

[52,53], the weight array model (WAM) which relaxes assump-

tions of independence by additionally modeling dependencies on a

previous position [54], higher-order Markov models which model

more dependencies and outperform PSSMs [55,56], and even

more complex models like Bayesian networks [57,58] and Markov

Random Fields (MRFs) [59,60]. A mixture of Bayesian trees and

PSSMs in [61], smooth interpolations of PSSMs, and empirical

distributions [62] have also been proposed to model arbitrary

dependencies.

Kernel-based Methods. SVMs are probably the most

widespread discriminative learning method in bioinformatics due

to their ease of implementation and solid grounding in statistical

theory [63,64]. They have been applied to many sequence

classification problems, including prediction of transcription start

sites on DNA [65], translation initiation sites [66], gene finding

[67], transcription factor-binding sites [68], and DNA regulatory

regions [69]. The predictive power of SVMs greatly depends on

the chosen kernel function. This function maps input (sequence,

here) data onto a usually higher-dimensional feature space where

provided samples of the two classes can be linearly separated by a

hyper-plane. Many kernels are designed for sequence classifica-
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tion, of which the most relevant and state-of-the-art are weighted

position and weighted position with shift kernels devised for

recognition of DNA splice sites [12]. In these kernels, limited-

range dependencies between neighboring nucleotides are consid-

ered to encode features for the SVM. Concepts from evolutionary

computation have been lately proposed to learn effective, possibly

more complex, kernels for a particular sequence classification

problem at hand [27,28].

Feature-based Methods. Feature-based methods make the

process of feature construction transparent and so can offer

constructed features for inspection and further analysis to

biologists. Constructing effective features, however, is non-trivial.

The straightforward approach is to use enumeration to list all

considered features. When no domain-specific expertise is

available to guide feature construction towards certain feature

types, the predominant approach has been to limit the focus to

features that are strings of k symbols over the alphabet of building

blocks in considered biological sequences (nucleotides in DNA/

RNA and amino acids in proteins). These k-mers are also known

as spectrum features [70].

The essential idea is to transform given sequences into numeric

vectors recording frequency or occurrence of k-mers and then

employ supervised learning techniques, such as SVMs, to separate

training data in the resulting vector space [25]. Spectrum features

have been shown useful in various classification problems, such as

prediction of DNA promoter regions, cis sites, HS sites, splice sites,

and more [70–73]. However, work has shown that the majority of

spectrum features are seldom useful and can be removed by

effective feature selection algorithms [74].

In many classification problems on biological sequences,

research has shown that simple spectrum (compositional-based)

features are not sufficient. Problems, such as predicting protein

enzymatic activity, DNA hypersensitive sites, or RNA/DNA splice

sites seem to necessitate complex local and distal features

[11,13,14,25–28,38]. In particular, taking into account dependen-

cies through features that encode correlations or simultaneous

occurrences of particular k-mers at different positions in a

biological sequence is shown to be important for accurate

detection of splice sites [14–16]. Work in [8,14] introduced the

idea of explicitly considering various feature types in the context of

splice site detection but limited the number of types and number of

enumerated features per type to control the size of the feature

space and the computational cost demanded by enumeration. The

feature types considered were position-based, region-based, and

composition-based [14].

In general, enumeration-based approaches introduce artificial

limits on the length and the complexity of features in order to

achieve reasonable computation times. Moreover, insight in a

particular problem domain is difficult to translate into meaningful

features when a combination of local and distal features are

needed. Ideally, a general feature construction approach would be

able to operate ab initio; that is, explore the space of possible local

and distal features and guide itself towards discriminating features.

When the types or number of features are not limited, one is

invariably confronted with a feature construction problem that is

NP-hard problem due to the combinatorial explosion in the size of

the feature space [75]. Yet, a variety of general purpose search

techniques have been shown effective for NP-hard problems. In

particular, EAs, which we summarize next, provide a viable

alternative for exploration of complex feature spaces in automated

feature construction and are the backbone of the framework

proposed here for automatic feature construction for classification

of biological sequences.

EAs for Exploration of Feature Spaces
The ability of EAs to efficiently explore large search spaces with

complex fitness landscapes makes them appealing for feature

construction [76]. EAs mimic biological evolution in their search

for solutions to a given optimization problem. Typically, a

population of candidate solutions, also referred to as individuals,

is evolved towards the true ones through a process that generates

candidate solutions and retains only a population deemed

promising according to some fitness function.

Recognized early for their promise in addressing difficult

optimization problems [77], EAs have gained popularity for

feature construction in different application settings [16,28,38,78–

83]. In particular, recent work has shown improved classification

accuracies when using genetic algorithms (GAs), a class of EAs, to

replace feature enumeration techniques in predicting promoter

regions, HS sites, and splice sites in DNA, and even enzymatic

activity in proteins [15,16,26–28,38].

In standard GAs, individuals are fixed-length strings of symbols.

In another class of EAs, genetic programming (GP) algorithms, an

individual is a variable-length tree composed of functions and

variables. The functions are represented as non-terminal nodes,

and the variables represented as terminal (leaf) nodes. GPs were

originally introduced to evolve computer programs and complex

functions [84–87]. Today, GP-based algorithms are being used for

a variety of applications, including feature construction in the

context of classification of biological sequences [38,88–92]. Our

recent work introduced a GP-based method for feature construc-

tion in the context of DNA splice site recognition [16]. In this

paper, we present a more general EA-based approach that makes

use of a GP algorithm to explore complex feature spaces and

generate predictive features from sequence data.

Methods for Feature Selection
EAs can be used to construct a large set of discriminating

features, but selecting a non-redundant subset that retains its

predictive power remains a difficult and open problem, particu-

larly when the set of features is large [93]. Finding an optimal set

of features is generally intractable [94] and is shown to be NP-hard

in various settings [95,96]. This is due in part to the fact that a

feature by itself may not be predictive of a particular class but may

be informative in combination with other features. Additionally,

features which are informative by themselves may be redundant

when grouped with others. In general, even finding a small subset

of discriminating features is a challenging search problem

[93,97,98].

Feature selection methods generally follow one of two

approaches, subset search and subset evaluation [99]. Univariate

feature selection like Information Gain or Chi-square are not very

useful when applied on a set of features that already have high

discriminatory power, as is the case with features found by the GP

algorithm employed in the first stage of our EFFECT framework.

In cases of already discriminating features, a more relevant

criterion for feature selection is to reduce redundancy while

retaining predictive power in the selected subset. In this paper we

present an EA-based approach to feature selection that achieves

that goal.

Methodology

The proposed EFFECT framework consists of two stages, each

comprised of an EA. In the first stage, the Evolutionary Feature

Construction (EFC) algorithm is used to search a given space of

complex features and identify a set of features estimated to be

effective in the context of a given classification problem. These

Sequence-Based Feature Construction and Selection
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features are then fed to the second stage, where a second

algorithm, Evolutionary Feature Selection (EFS), reduces the set of

constructed features by selecting a subset deemed most informative

without sacrificing performance. A schematic of the framework

showing the interplay between these two algorithms, is shown in

Figure 1.

Constructing Complex Features with EFC
Since EFC is a generalization of the feature generation

algorithm presented in [16], our description here focuses primarily

on the novel components, providing a brief summary of the

common elements where needed and directing the reader to Text

S1 for further details.

Central to the power of EFC is its generalized representation of

sequence-based features as GP trees. These feature "trees" are

maintained in a population that evolves over generations using

standard GP reproductive mechanisms of mutation and crossover.

Mimicking the process of natural selection, features that are

deemed more discriminative for classification have a higher

probability of surviving into the next generation, steering the

probabilistic search in EFC towards more effective features. The

discriminative power of a feature is estimated through an empirical

or surrogate fitness function. The best features (those with highest

fitness) found by EFC are collected in a set referred to as a hall of

fame. It is this set that is fed to the subsequent EFS algorithm for

feature subset selection.

Feature Representation in EFC. As standard in GP, the

individuals (features) evolved by the EFC algorithm are repre-

sented as parse trees [87]. In EFC, the leaf nodes of a feature
tree are known building blocks of given biological sequences. In

the case of DNA sequences, for instance, these blocks are the four

nucleotides in the DNA alphabet. To improve on generality and

effectiveness, EFC supports additional building blocks that

represent groups of nucleotides based on similar chemical properties.

In this paper, this capability is illustrated by the use of the IUPAC

code [100], resulting in 15 symbols listed in Table 1. If the

sequences of interest are proteins, the building blocks can either be

amino-acid identities, types, or other categorizations based on

physico-chemical properties.

Alternatively, building blocks can be short subsequences or

motifs of k symbols. Information may be available from domain

experts to determine the length of these motifs. For instance, work

in splice sites shows that motifs of length kw8 are not useful

[13,14]. In other applications, there may be lower bounds on the

length of effective motifs. Such bounds may be available and

specified a priori to EFC or tuned interactively after analysis of

constructed features. In the selected applications of the EFFECT

framework in this paper, the leaf nodes of feature trees are motifs,

and we limited the length of these motifs between 1 and 8.

As illustrated in Figure 2 and Figure 3. EFC uses the standard

boolean operators (and, or, not) to combine basic building blocks

into more complex features. In addition to boolean operators, the

EFC algorithm uses application-specific functional nodes to assist

in the construct meaningful features for biological sequences.

These are listed in Table 2. An important functional generalization in

EFC is the ability to specify the matching of a motif in some region

(up or down) or matching it around some expected position. This

allows for the construction of features that are more robust to

possible sequence variations. In Text S1 we provide more detail

regarding the types of features that one can construct with these

operators and provide illustrations for them.

Population and Generation Mechanism. As detailed in

Text S1, the initial population of N features is carefully

constructed to contain a variety of tree shapes with maximum

depth D. In contrast to EAs with fixed population sizes, EFC

employs an implosion mechanism that reduces the size of the

population by r% over the previous one, in order to avoid known

convergence pitfalls of GPs. The population of features evolves for

a pre-specified number of generations G. Each population

contributes its top ‘ features to a hall of fame. In turn, the hall of

fame is used to provide a randomly selected initial set of m features

for the next generation, with the rest of the features in the next

generation obtained through reproductive operators.

In the experiments reported in this paper, N~5000, D~5,

r~10, G~25, ‘~100, and m~100.

Reproductive Operators. Based on studies that show robust

EAs incorporate both asexual (mutation) and sexual (crossover)

breeding operators [101], EFC employs both operators. These

operators are executed until the goal population size for the next

generation is reached. Each of the operators has a certain

probability with which it is performed. Given the additional

functional nodes in EFC over our prior work in [16], four new

mutation operators are employed depending on the type of tree

node being modified. Each of the variants has equal probability of

being performed once the mutation operator is selected.

Additional details and illustrations on the mutation and crossover

operators are provided in Text S1.

Bloat Control. A common problem with tree-based individ-

uals in EAs is that, as generations progress, individuals become

more complex without any improvement in fitness. This is known

as bloat. It is important to control bloat, particularly when the goal

is to have features that are easily interpretable by humans. As such,

bloat control is an important element in EFC, the details of which

are given in Text S1.

Fitness Function. EFC employs a surrogate fitness function

or a "filter" approach, which is considered to be more effective

than wrapper approaches for feature evaluation [102]. Since most

sequence classification datasets are imbalanced in the sense of

having very few positives as compared to a large number of

negatives, the objective of a filter approach is to improve precision

while managing the discriminative power of features. For this

purpose, we use the following fitness function: Fitness(f )~
Cz,f

Cz

� DCz,f {C{,f D. In this equation, f refers to a particular

feature, Cz,f and C{,f are the number of positive and negative

training sequences that contain feature f , respectively, and Cz is

the total number of positive training sequences. This fitness

function tracks the occurrence of a feature in positive sequences, as

negative sequences may not have any common features or signals.

The fitness function additionally penalizes non-discriminating

Figure 1. The EFFECT framework consists of two algorithms,
EFC and EFS, as detailed in the Methods section. While EFC
conducts a biased exploration of a vast space of potentially complex
features to find a set of top features, EFS reduces this set to a subset of
informative yet low redundancy features. The remaining features are
used to transform sequence data into vector data that can be separated
by any classifier.
doi:10.1371/journal.pone.0099982.g001
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features; that is, features that are equally found in positive and

negative training sequences.

Hall of Fame. Previous research on EAs has noted that if

parents die after producing offspring, there can be genetic drift or

convergence to some local optimum [76]. This can result in the

loss of some of the best individuals. The EFC algorithm addresses

this issue by using an external storage of features known as a hall of

fame. As noted above, the ‘ best individuals in every generation are

added to the hall of fame, and the hall of fame in return helps seed

the population in each generation with m randomly selected

features. It should be noted that the parameter values for m and ‘
should depend on the problem at hand. In general, keeping the

fittest individuals in a hall of fame improves overall performance

[103]. After execution of the EFC, the features in the hall of fame

are those submitted to the ensuing EFS algorithm.

Effective Feature Selection with EFS
The hall of fame features generated by EFC were selected on

the basis of their individual performance. What is required for

effective and efficient classification is to identify a relevant and

non-redundant subset of features. EFS, a novel GA-based

algorithm, is employed for this purpose and described below.

Feature Subset Representation in EFS. EFS evolves

feature subsets by having individuals in the population correspond

to feature subsets represented as binary strings. The length of each

string is equal to the number of individuals in the hall of fame. A

string of all ’1’s would correspond to the maximum subset, the hall

of fame itself, and a string of all ’0’s would correspond to the empty

subset. In addition to being a suitable representation for our

purposes, binary representations in GAs are the standard ones and

include a well-studied set of mutation and crossover operators.

Population and Generation Mechanism. The initial pop-

ulation contains M individuals of length ‘ which are created using

randomly generated binary strings and represent M subsets of

selected features from the hall of fame. The GA implementation in

EFS is generational; that is, after the offsprings are created using

mutation and crossover, the parents die. The population size of M
remains constant throughout the generations in EFS. The number

of generations is set to K~M by default. The best individual

(feature subset) is tracked over the generations and constitutes the

feature subset presented to a classifier for labeling new unlabeled

(testing) sequences. For the experiments reported in this paper,

M~20.

Reproductive Operators. EFS uses a standard bit-flip

mutation operator with mutation rate of 1=‘. Additionally,

standard uniform crossover is used, in which each bit is considered

a crossover point with a probability of 0:5. It has been shown that

employing uniform crossover along with bit-flip mutation is

effective at balancing exploration and exploitation of search

landscapes [101]. Parent(s) for the reproductive operators are

selected using standard fitness-proportional selection. Details are

provided in Text S1.

Table 1. IUPAC code is adapted from [100].

Symbol Meaning Description Origin

G G Guanine

A A Adenine

T T Thymine

C C Cytosine

R G or A puRine

Y T or C pYrimidine

M A or C aMino

K G or T Ketone

S G or C Strong interaction

W A or T Weak interaction

H A or C or T H follows G in alphabet

B G or T or C B follows A in alphabet

V G or C or A V follows U in alphabet

D G or A or T D follows C in alphabet

N G or A or T or C aNy

doi:10.1371/journal.pone.0099982.t001

Figure 2. Conjunction Features combining one positional and
one compositional feature.
doi:10.1371/journal.pone.0099982.g002

Figure 3. Disjunction Features combining one positional and
one negation of compositional feature.
doi:10.1371/journal.pone.0099982.g003
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Fitness Function. Recall that the objective of EFS is to find a

subset of features with high feature-class correlation to retain

discriminating power but low feature-feature correlation to reduce

redundancy. EFS achieves this by employing a correlation-based

fitness function [104]. Using a measure of feature correlation r
based on Pearsons correlation, a set of features A, a feature subset

F [ A, and a to-be-predicted class C6 [A, let the average feature-

class correlation be

rCf ~
1

DF D

X

fi[ F

rCfi
ð1Þ

Feature-feature correlation is given by

rff ~
1

DF D:DF{1D

X

fi[ F

X

gi[(F{fi)

rfigi
ð2Þ

Combining the two for maximizing class-feature correlation

while minimizing feature-feature correlation and weighing with

the number of features nf , results in the following fitness function:

Fitness~
nf
:rCfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nf znf
:(nf {1)

p
rff

ð3Þ

Classifiers
The best (highest fitness) individual obtained from EFS defines

the feature subset to be used by a machine learning classifier.

Generally, any classifier can be used, and our experimentation

shows there are no significant differences among standard ones.

Since the Naive Bayes (NB) classifier is the simplest, fastest, and

most effective when features have low correlation among them but

high correlation with class [105,106], we employ NB as our

classifier of choice. We used the kernel density estimator with NB

using Weka, which is the default estimation method.

Experimental Setting, Implementation Details, and
Performance Measurements for Analysis

Experimental Setting. The experimental setting has been

designed to support two forms of analysis. First, the features

generated by EFFECT are made available for visual inspection

and detailed analysis. Second, the experimental setting allows for a

detailed analysis of the classification performance of a Naive Bayes

classifier using EFFECT-generated features in comparison to a

representative set of alternative machine learning approaches (as

described in the Related Work section). First, a baseline feature-

based method is defined that uses spectrum (compositional)

features and over-represented motifs as reported from alignments

using Gibbs sampling. The features are fed to the same Naive

Bayes classifier used to evaluate EFFECT-obtained features for a

direct comparison of features in the context of classification. A

comprehensive comparison is also conducted with state-of-the-art

statistical methods, PSSM, WAM, Bayes Tree Network with

PWM, Markov Chain (MC), and Maximum Supervised Posterior

(MSP). Their implementation is made possible through the Jstacs

software package [107]. MSP is configured with PWM and

Homogenous HMM classifiers as generative mixture classifier.

EFFECT is also compared to kernel methods. We focus on the

latest two most successful kernel methods (shown so on the splice

site prediction problem [12]), the weighted degree positional

kernel (WD) and the weighted degree positional kernel with shift

(WDS) method (the underlying classifier is an SVM).

To the extent possible, the methods selected for comparison

have been tuned in order to obtain their best performance on each

of the data sets considered in this paper, often in communication

with the original developers. Details on our tuning protocols and

resulting parameter values are posted on the http://www.cs.gmu.

edu/ ashehu/?q = OurTools site we provide that lists the EFFECT

Implementation Details. All experiments are performed on

an INTEL 2X 4core machine with 3.2 Ghz and 8GB of RAM.

The code for the EFC algorithm in EFFECT is written in Java,

using the publicly-available ECJ toolkit [108] and BioJava [109]

software packages. The code for the EFS algorithm in EFFECT is

also in Java, using the GeneticSearch and CFSSubset techniques

Table 2. A table of non-terminals and terminals employed in feature construction.

Name Args Return Type

AND 2 non-terminal boolean Boolean

OR 2 non-terminal boolean Boolean

NOT 2 non-terminal boolean Boolean

Correlational 2 non-terminal boolean, Shift Boolean

Matches Motif Boolean

MatchesAtPosition Matches, Position Boolean

MatchesAtPositionWithShift Motif, Position,Shift Boolean

MatchesAtRegion Matches, Region Boolean

Motif-* ERC-chars Motif

Shift ERC-int Integer

Region ERC-int Integer

Length ERC-int Integer

ERC-char fSymbolsg Character

ERC-int f1, . . .g Integer

doi:10.1371/journal.pone.0099982.t002
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of the publicly-available WEKA package for machine learning.

The implementation of the statistical methods employed for

comparison is in Java, based on the publicly-available Jstacs

package [107]. The kernel-based methods are implemented using

the publicly-available Shogun toolkit [110] with the standard

SVM implementation provided in the publicly-available LibSVM

package [111]. The feature-based methods employed for a

baseline validation are implemented in Java. The resulting open

source software that we provide to the community for academic

purpose includes not only the EFFECT framework, but also our

implementations of all the methods employed for comparison,

tuned parameters, along with datasets, features, and complete

models.

Performance Measurements. Standard datasets used by

other researchers are used in each of the three application settings

showing the generality and power of the EFFECT framework.

Since most of these datasets have an imbalance between the size of

the positive and negative classes, classification accuracy is a

meaningless performance measurement. For this reason, the

analysis in this paper employs other evaluation criteria, such as

area under the Receiver Operating Characteristic Curve (auROC)

and area under the Precision Recall Curve (auPRC). All these are

based on the basic notions of TP, FP, TN, and FN, which

correspond to number of true positives, false positives, true

negatives, and false negatives. Details on common performance

measurements for classification can be found in [112]. To briefly

summarize what these measures capture, consider that predicted

instances (sequences assigned a label by the classification model)

can be ordered from most to least confident. Given a particular

confidence threshold, the data above the threshold can be

considered correctly labeled. The true positive rate and false

negative rate can then be computed as one varies this threshold

from 0:0 to 1:0. In an ROC, one typically plots the true positive

rate (TPR = TP/(TP+FN)) as a function of the false negative rate

(FNR = FN/(FN +TN)). The auROC is a summary measure that

indicates whether prediction performance is close to random (0:5)

or perfect (1:0). Further details can be found in [112].

For unbalanced datasets, the auROC can be a wrong indicator

of prediction, since this measure is independent of class size ratios;

large auROC values may not necessarily indicate good perfor-

mance. The auPRC is a better measure for performance when the

class distribution is heavily unbalanced [113]. The PRC measures

the fraction of negatives misclassified as positives and so plots the

precision (TP/(TP+FP)) vs. the recall ratio (this is TPR, sometimes

referred to as sensitivity). Again, as one varies the threshold,

precision can be calculated at the threshold that achieves that

recall ratio. auPRC is a less forgiving measure, and a high value

indicates that a classification model makes very few mistakes.

Thus, the higher the auPRC value, the better.

Performance is measured and compared to all methods used for

comparison both on training and testing datasets. When testing

datasets are not available for a particular application, 10-fold

cross-validation is conducted instead. We used 1% of training data

with equal mix of both classes as the evaluation set for tuning every

employed for comparison, reserving the rest 99% of training data

for cross-validation. The idea is to train on a randomly-selected

9=10ths of the data and then test on the rest. This is repeated 10
times, and an average performance is reported in terms of the

evaluation criteria described above. Moreover, since the EFFECT

framework employs stochastic search algorithms (EFC and EFS), it

is run 30 times, thus resulting in 30 sets of features. Each set is

evaluated in the context of classification performance (using NB).

The reported performance measurements are averages over 30
values obtained (over each set of features from a run of EFFECT).

Paired t-tests are used to measure statistical significance at 95%

confidence intervals.

It should be noted that many of the statistical learning (and

kernel) methods used for comparison in this paper have a

limitation of demanding that all input sequences be of fixed

length. On the other hand, some of the datasets available consist of

sequences of variable length. Typically, in such a setting, one can

either use a random alphabet to ‘‘fill’’ smaller sequences and

achieve a maximum fixed length or throw away shorter sequences.

Since shorter sequences make up only 2{5% of the datasets

under each application in this paper, we decide to discard shorter

sequences (additionally, our analysis indicates that doing so results

in better performance than filling sequences with random

alphabets). We also point out that the parameters of each of the

methods used for comparison have been tuned to achieve a

maximum performance for each method. Various classifier

parameters (e.g., the cost parameter C in SVM) have also been

tuned for this purpose. All tuned parameters are listed at http://

www.cs.gmu.edu/ ashehu/?q = OurTools.

Results

We summarize the performance of EFFECT on each of the

three selected applications on DNA sequence analysis, recognition

of HS, splice, and ALU sites. The training (and testing, where

available) datasets employed are detailed first, followed by an

empirical analysis of the results on each application.

Datasets
Benchmark data sets are selected for each of the three

application settings in order to allow comparison with as many

methods as possible.

Datasets for Recognition of HS sites. The dataset

employed for evaluating the features constructed in EFC and for

training the NB classifier is the one provided at noble.gs.wa-

shington.edu/proj/hs. This dataset consists of experimentally-

determined sequences (each 242 nucleotides long) extracted from

the human genome and consists of 280 HS and 737 non-HS ones.

THe HS sequences were identified employing cloning and in-vivo

activity of K562 erythroid cells [114], whereas the non-HS

sequences were sequences collected and distributed proportionally

throughout the human genome but found not to be hypersensitive

when tested in the same cell type.

Datasets for Recognition of Splice Sites. A distinction is

made between acceptor and donor splices sites. An acceptor splice

site marks the start of an exon, whereas a donor splice site marks

the end. These sites have different consensus sequences, and

machine learning research has additionally shown they have

different features of relevance for classification [13,16]. For the

purpose of feature construction and classification performance,

splice site datasets are split into a donor subset and an acceptor

subset, and evaluation is done separately on each subset.

The splice site recognition problem is well-studied in machine

learning, and so many datasets have been accumulated over the

years. We report performance on three datasets used as

benchmarks in recent literature. The first dataset is known as

NN269 to indicate that it is extracted from 269 human genes

[115]. It consists of 1,324 confirmed acceptor sequences, 1,324
confirmed donor sequences, 5,552 false acceptor sequences, and

4,922 false sequences (length of acceptor sequences is 90

nucleotides, whereas that of donor sequences is 15 nucleotides).

Further details on these sequences can be found in [115]. We split

this dataset into a training and testing dataset. The training dataset

has 1,116 true acceptor, 1,116 true donor, 4,672 false acceptor,
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and 4,140 false donor sequences. The testing dataset has 208 true

acceptor, 208 true donor, 881 false acceptor, and 782 false donor

sequences.

Performance is reported on another dataset extracted from the

C_Elegans (worm) genome, prepared as in [12], on which

statistically-significant differences are observed in the comparative

analysis between EFFECT and other methods. Briefly, the

genome is aligned through blat with all known cDNA sequences

available at http://www.wormbase.org and all known EST

sequences in [116] to reveal splicing sites. 64,844 donor and

64,838 acceptor sequences, each 142 nucleotides long are then

extracted from the alignment, centered at the identified splicing

sites. Equal-length negative training sequences are centered

around non-splice sites (selected in intronic regions). In [12],

1,777,912 negative acceptor and 2,846,598 negative donor

sequences are constructed. This dataset is too big to feasibly

conduct a thorough comparative analysis with other methods and

gather summary statistics over many runs. For this reason, we

sample a smaller training set of 40,000 sequences from the entire

(positive and negative) dataset, preserving the ratio of positive to

negative sequences as in the original dataset.

Datasets for Recognition of ALU Sites. 319 known ALU

sequences were obtained from NCBI website. This small set of

sequences is considered to be representative of 99% of all ALU

sequences in GenBank [117]. The average length is approximately

300 nucleotides. A negative training dataset of 319 sequences was

constructed at random, sampling similar-length sequences with

similar nucleotide distribution as that found over ALU sequences.

Comparative Analysis
Empirical Analysis on Recognition of HS Sites. Given the

availability of only a training set in this setting, 10-fold validation is

used to measure the classification performance of the NB classifier

on features obtained through EFFECT and compare it to the

other methods summarized above. We recall that EFFECT is run

30 independent times, and the auROC and auPRC measurements

reported are averages over these runs, as well. Table 3 compares

EFFECT to all the methods employed for comparison in terms of

auROC and auPRC values. As Table 3 shows, EFFECT achieves

the highest performance both in terms of auROC (89.7%) and

auPRC (89.2%). For comparison, MSP achieves the second

highest auROC (85.5%), and K-mer (feature-based with spectrum

features in SVM) achieves the second highest auPRC (82.6%).

Paired t-tests at 95% confidence intervals indicate that the

reported values for EFFECT are statistically significant (data not

shown). Taken together, this comparative analysis demonstrates

that the quality of the features found by EFFECT is such that even

a simple classifier, such as NB, achieves comparable classification

performance with sophisticated methods for HSS recognition.

Empirical Analysis on Recognition of Splice Sites. Our

analysis first proceeds on the NN269 dataset. We recall that the

analysis (as well as construction and selection of features and

training of classifiers) is conducted separately for the acceptor and

donor datasets. Table 4 compares auROC and auPRC values

obtained on the testing sequences in each dataset. While EFFECT

and the kernel-based methods have the highest performance

(EFFECT is second best) in both auROC and auPRC on the

acceptor dataset, and all methods are comparable on the donor

dataset (with the exception of inhomogeneous HMM and K-mer,

which perform worst), the t-test analysis indicates none of the

methods’ performance is statistically significant on the NN269

splice site dataset.

In a second analysis, the C_Elegans splice site dataset is

employed as a training dataset. 10-fold validation on highly

unbalanced positive over negative datasets (the positive dataset in

both the donor and acceptor setting is about 5% of the entire

dataset) clearly separates performance among the different

methods. Table 5 shows that EFFECT and kernel-based methods

achieve the highest performance in terms of auROC on the

acceptor dataset (around 99% for kernel-based and 98% for

EFFECT). The two are top performers in terms of auROC on the

donor dataset, as well (close to 100% for kernel-based and 97% for

EFFECT). However, the unbalancing of the positive and negative

datasets in each setting results in EFFECT obtaining a higher

auPRC value on both the acceptor and donor dataset. On the

acceptor dataset, EFFECT obtains an auPRC of 90.2%, followed

by kernel-based methods with a value of 89.1% (6 of the 9

methods used for comparison obtain auPRCs less than 16%). On

the donor dataset, EFFECT obtains an auPRC of 91:3%, followed

by kernel-based methods with a value of 90:1% (5 of the 9

methods used for comparison obtain auPRCs less than 14%). The

robust performance of EFFECT even on a highly unbalanced

dataset suggests that the bias introduced in the fitness function in

the EFC algorithm to improve precision while managing the

discriminative power of features gives the algorithm an edge in

terms of auPRC.

Empirical Analysis on Recognition of ALU Sites. As in

the HSS setting, the availability of only a training dataset for the

ALU recognition problem limits us to a 10-fold validation. As

above, the comparative analysis is conducted only in terms of

auROCs, as the ALU training dataset has balanced positive and

negative subsets. Table 6 shows that EFFECT achieves the highest

performance over the other methods with a mean auROC of

98:9%. For comparison, the second-best value is obtained by one

of the kernel-based methods (auROC of 97.8%). Again, values

reported by EFFECT are statistically significant, as indicated by a

t-test at a 95% confidence interval. It is worth noting, additionally,

that in the strict context of feature-based methods, EFFECT does

not risk overfitting for the NB classifier. Recall that the dataset for

ALU sites is small, consisting of 319 sequences. The number of

features should not exceed the size of the dataset. Yet, the number

of spectrum features used by a k-mer-based method (with SVM) is

65,536, and limiting the number of features with Gibbs sampling

still results in 1,213 motifs as features.

Detailed Analysis of Features Obtained By the EFFECT
Framework

We now further analyze features found by EFFECT on each of

the three application settings. While ambiguous symbols were used

in the alphabet for feature construction in the HS and ALU Site

Detection problems, the basic set of {A, C, G, T} was used for the

splice site recognition problem. During evaluation on 1% of

training data, on which we tuned the methods employed for

comparison to EFFECT in this paper, we found that symbol

ambiguity was not useful for splice site recognition due to the

presence of decoys.

HS Site Features. The entire HS dataset described above is

used to obtain features through the EFFECT framework. Features

reported are found to contain many compositional motifs, such as

CGCG, CGCGAGA, and (A/G)GG(T/G). Positional features

with slight shifts recorded the presence of short 2-mers, such as

CG, and long 8-mers, such as CTTCCGCC. Correlational

features recorded the simultaneous presence of GAT and ATCT,

and that of CATTT and (G/T)GGC. Interestingly, these last two

features have been reported by other researchers as having

important biological significance for maturation, silencer, and

enhancer effects [118,119]. Lastly, various features recorded the

presence of CG patterns, such as CGMS, CGMSN, and
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CGSBN, which confirms current knowledge that HS sites are rich

in CG nucleotides [25].

Splice Site Features. On the NN269 dataset, EFFECT

reported many positional features, such as (C/A)AGGTAAG and

(T/C)(T/C)CCAGGT. Note that these features match the

donor and acceptor consensus sequences exactly. An interesting

complex conjunction feature was reported, containing three

positional features, CG, GA, and AG, around position 10 to 17

nt in the acceptor region. This is in good agreement with known

acceptor region signals reported by other studies [120]. On the

C_Elegans dataset, EFFECT reported many regional features,

such as the 7-mer motifs GGTAAGT, AGGTAAG, and

GGTAGGT around position -43 nt, matching the donor

consensus sequence AGGTAAGT. Another important positional

feature in the region -18 to-14 nt containing the TAAT motif was

reported. We note that this motif s a well-known branch site signal

[120]. Shift-Positional features around position -3 nt recorded the

presence of motifs, such as TTTCAGG and TTTCAGA,

matching the known acceptor consensus TTTCAG(A/G)
sequence exactly.

ALU Site Features. On the ALU dataset, EFFECT reported

many compositional features, such as motifs AAAAAA, AAAAT,

AGCCT, CCCAG, and CCTGT. These are well known signals

in ALU repeats [121]. An interesting disjunctive features was also

reported, consisting of two correlational sub-features CCTR,
AAT, shift 3 and CA, GY, shift 3 and a compositional feature

TGG. This feature is shown in Figure 4. We additionally

performed a clustal alignment on the whole ALU dataset, shown

in Figure 5 and found the three sub-features of the disjunctive

feature found by EFFECT and shown in Figure 4 to be indeed

over-represented in the ALU dataset. This finding further

highlights the importance of using ambiguous symbols in the

representation for matching pyridines. Finally, additional disjunc-

tive features recorded the presence of motifs, such as CCTGG,

Table 3. auROC and auPRC comparison analysis for Recognition of HSS Sites.

Algorithm auROC auPRC

Feature-based

K-mer 82.20 82.6

Gibbs Sampling 79.3 50.3

EFFECT 89.7 89.2

Statistical-based

PWM-HMM 70.8 47.8

BayesNetwork 72.5 49.5

HomogenousHMM 82.02 71.5

WAM-HMM 80.05 70.0

MSP 85.5 72.9

Kernel-based

WeightedPosition 80.01 62.3

WeightedPositionShift 80.93 64.9

doi:10.1371/journal.pone.0099982.t003

Table 4. auROC and auPRC comparison analysis for recognition of splice sites on NN269 dataset.

ACCEPTOR DONOR

Algorithm auROC auPRC auROC AuPRC

Feature

K-mer 63.3 75.5 90.8 90.1

Gibbs Sampling 62.8 72.4 88.8 90.5

EFFECT 97.7 94.3 98.2 92.81

Statistical

PWM 97.1 90.6 97.7 91.9

BayesNetwork 97.25 90.6 97.7 90.9

HomogenousHMM 59.2 26.3 86.3 71.5

InHomogenousHMM 96.78 88.41 98.18 92.42

MSP

Kernel

WeightedDegreePosition 98.16 92.53 98.5 92.86

WeightedDegreePositionShift 98.65 94.36 98.13 92.47

doi:10.1371/journal.pone.0099982.t004
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CTGGGG, and GAGGC, further showcasing the ability of

EFFECT to combine the presence of lower-level signals in

interesting higher-order features.

Statistical Analysis of Obtained Features
Our detailed feature analysis concludes with measuring the

information gain (IG) from each feature in the set reported by

EFFECT. For a dataset D, with classes ranging from i~1 to k, the

information theory metric for entropy, I , is given by:

I(D)~{
Xk

i~1

P(Ci,D)| log (P(Ci,D)) ð4Þ

For a feature F taking on values(F) different values in D, the

weighted sum of its expected information (over splits of the dataset

D according to the different values of F into Dv subsets, with v

ranging from 1 to values(F)) is given by:

InfoF (D)~{
Xvalues(F)

v~1

DDvD
DDD

|I(Dv) ð5Þ

The information gain IG for a feature F over a dataset D is then

given by:

IG(D,F )~I(D){InfoF (D) ð6Þ

Figure 6 shows the mean information gain for EFFECT features

is 0:017, which is almost 3 and 9 times more than that of the Gibbs

sampling and k-mer methods, respectively, for HS sequences. We

note that the number of features reported by EFFECT is 45,

which is much smaller than the 1030 Gibbs sampling and 65,536
k-mer features.

Figure 7 shows the mean information gain for EFFECT is

0:155, which is approximately 10,000 and 1,000,000 times more

than that of the Gibbs sampling and k-mer methods, respectively,

Table 5. auROC and auPRC comparison analysis for recognition of splice sites on C. elegans dataset.

ACCEPTOR DONOR

Algorithm auROC auPRC auROC auPRC

Feature

K-mer 88.2 15.8 83.1 6.2

Gibbs Sampling 84.2 80.4 79.1 80.3

EFFECT 97.9 90.2 96.7 91.3

Statistical

PWM 63.6 7.02 62.5 4.8

BayesNetwork 64.2 6.9

HomogenousHMM 75.03 12.62 78.3 13.9

InHomogenousHMM 75.71 11.3 77.9 12.3

MSP 76.8 13.9 78.21 13.5

Kernel

WeightedDegreePosition 99.36 86.7 99.5 88.2

WeightedDegreePositionShift 99.2 89.1 99.8 90.1

doi:10.1371/journal.pone.0099982.t005

Table 6. auROC and auPRC comparison analysis for
Recognition of ALU Sites.

Algorithm auROC

Feature

K-mer 94.20

Gibbs Sampling 95.2

EFFECT 98.9

Statistical

PWM-HMM 77.45

BayesNetwork 86.82

HomogenousHMM 93.6

WAM-HMM 94.59

MSP 93.54

Kernel

WeightedPosition 96.9

WeightedPositionShift 97.8

doi:10.1371/journal.pone.0099982.t006

Figure 4. A complex disjunctive feature is obtained by the
EFFECT framework for the ALU sequence classification prob-
lem. The feature is shown in the tree representation employed for
features in this work.
doi:10.1371/journal.pone.0099982.g004
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for acceptor splice sites. The number of features generated by

EFFECT is only 45, which is smaller than the 2,424 Gibbs

sampling and 65,536 k-mer features. Figure 8 shows the mean

information gain for EFFECT is 0:131, which is approximately 40
and 5,000 times more than that of the Gibbs sampling and K-mer

methods, respectively, for donor splice sites. The number of

features generated by EFFECT is only 27, which is smaller than

the 751 Gibbs sampling and 65,536 k-mer features.

Figure 9 shows the mean information gain for EFFECT is

0:115, which is again approximately 3 and 1,000 times more than

that of the Gibbs sampling and k-mer methods, respectively, for

ALU sequences. Also, the number of features generated by

EFFECT is only 103, which is smaller than the 170 Gibbs

sampling and 65,536 k-mer features.

Taken together, this analysis demonstrates that the EFFECT

framework generates fewer but statistically more discriminating

features, which is one of the most desired qualities required of

feature construction algorithms.

Discussion

In this paper we describe and evaluate EFFECT, a computa-

tional framework to automate the process of extracting discrim-

inatory features for determining functional properties of biological

sequences. Using basic domain knowledge to identify the

fundamental building blocks of potential features, EFFECT

constructs complex discriminatory features from these building

blocks in a two-stage process. First, an evolutionary algorithm,

EFC, constructs a set of potentially useful complex features. A

second evolutionary algorithm, EFS, reduces the size of this

feature set to a collectively effective subset.

Figure 5. A clustal alignment of sequences shows the same
overrepresented signals also combined as lower-level features
in the disjunctive higher-level one found by the EFFECT
framework.
doi:10.1371/journal.pone.0099982.g005

Figure 6. Information gain for features obtained by EFFECT on
the HS site dataset is compared to that obtained by feature-
based methods used for comparison in this work.
doi:10.1371/journal.pone.0099982.g006

Figure 7. Information gain for features obtained by EFFECT on
the NN269 Acceptor dataset is compared to that obtained by
feature-based methods used for comparison in this work.
doi:10.1371/journal.pone.0099982.g007

Figure 8. Information gain for features obtained by EFFECT on
the NN269 Donor dataset is compared to that obtained by
feature-based methods used for comparison in this work.
doi:10.1371/journal.pone.0099982.g008
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The key to this approach is the use of a GP-based EA capable of

efficiently constructing complex features from an appropriate set

of basic building blocks. The generality of the approach is

obtained by allowing more general building blocks than the basic

sequence elements and by providing a flexible way of describing

positional information. The effectiveness of the approach is

enhanced by a novel feature selection phase. The power and the

versatility of this approach is demonstrated by its application to

three important problem areas: the recognition of hypersensitive,

splice, and ALU sites in DNA sequences.

An important observation is the preciseness with which the

constructed features characterize complex discriminatory patterns.

Figure 5 illustrates some of the sequence patterns matched by the

feature shown in Figure 4. If we imagine using basic spectrum K-

mers for the same dataset, it would have taken a significant

number of K-mers to capture the information. More importantly,

the positional, correlational and compositional context would not

have been captured. This would not only result in lower

information gain at the cost of a higher number of features as

clearly seen in the earlier analysis on information gain, but would

also generate a large number false positives. Markov models and

positional matrix-based algorithms would have captured more of

the patterns outlined in the example, but not the complex

combinations that EFC does.

In addition, the complex features constructed by EFFECT can

frequently be interpreted in meaningful ways by the domain

experts, providing additional insights into the determination of

functional properties. Our web site describes the top constructed

features obtained by EFFECT on the three application settings

presented in this paper. We encourage interested researchers to

study them directly for further insights.

Finally, we hope that the provided source code will provide the

research community with a powerful tool to support further

investigations in other application settings. For example, we note

that interesting problems involving amino-acid sequences can be

pursued with the EFFECT framework. In such settings, simple

approaches involving enumeration of features is impractical, unless

the amino-acid alphabet is drastically simplified. The proposed

framework allows the exploring of large feature spaces while

retaining more of the characteristics of amino acids. While further

problem-specific details can be explored, the investigation can

begin by simply replacing the DNA alphabet employed in this

paper.
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