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INTRODUCTION

COVID-19 is a rapid onset, highly transmissible and lethal viral pneumonia caused by the novel
severe acute respiratory syndrome coronavirus SARS-CoV-2. SARS-CoV2 is currently responsible
for a serious global pandemic in which about ∼520 million people have been infected and
∼6.5 million have died (https://www.worldometers.info/coronavirus/coronavirus-death-toll/; last
accessed 27 May 2022). As a member of the Betacoronavirus genus in the family of enveloped,
single-stranded RNA (ssRNA) viruses Coronaviridae, SARS-CoV-2 invasion of susceptible human
hosts is a complex epidemiological, microbiological, immunological and neurological process.
SARS-CoV-2 infection initially requires the interaction of a highly antigenic SARS-CoV-2 viral
surface spike (‘S1’) glycoprotein with the naturally occurring angiotensin-converting enzyme-2
cell surface receptor (ACE2R) of the human host. While ACE2R densities appear to be highest
in cholesterol- and sphingolipid-enriched lipid raft domains of multiple epithelial and endothelial
cells of the human respiratory tract, this type 1 dipeptidyl carboxydipeptidase trans-membrane
protein has been identified on every human host cell type so far analyzed except for erythrocytes
(Hill et al., 2021; Palacios-Rápalo et al., 2021; Zhao et al., 2021; Kirtipal et al., 2022; Lukiw
et al., 2022). SARS-CoV-2 virus therefore has potential to damage almost every tissue and organ
system within the body and to induce a serious multi-organ system failure involving pulmonary,
cardiovascular, endocrine, hematologic, renal, gastrointestinal, dermatologic, immunological,
psychiatric and/or neurological manifestations. Cholesterol, sphingolipid and other lipid levels
in the blood serum and cell membrane appear to modulate viral infectivity, and persons with
underlying chronic lipid-associated diseases including cardiovascular disorders, cancer, obesity,
chronic lung disease, diabetes or neurological disease have the worst prognosis for COVID-19,
and are the most likely to develop acute respiratory distress syndrome and lethal pneumonia
(Palacios-Rápalo et al., 2021; Chidambaram et al., 2022; Chiner-Vives et al., 2022). The remarkable
and extraordinary capacity of SAR-CoV-2 to attack many different kinds of human host cells
simultaneously may help explain the variability in symptoms and overall general feeling of malaise
reported by COVID-19 infected patients.

ACE2R presence is also easily and abundantly detected in the majority of cell types of the brain,
CNS, neurovasculature, choroid plexus and tracts involving the brain’s visual processing systems
(Hill et al., 2021; Hixon et al., 2021; Zhao et al., 2021; Lukiw, 2022a; Piras et al., 2022). The highest
ACE2R expression found to date in the human CNS has been localized to the neurons of the
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medulla oblongata and pons in the brainstem, containing the
brain’s medullary respiratory center. This may in part explain
the vulnerability of SARS-CoV-2 infected patients to serious
respiratory distress (Zhao et al., 2021; Lukiw et al., 2022;
Molina-Molina and Hernández-Argudo, 2022). The normal
physiological role of the ACE2R is in the binding and maturation
of angiotensin, a circulating peptide hormone derived from
its precursor angiotensinogen. Angiotensin functions as a
vasoconstrictor and regulates blood flow and blood pressure in
the systemic- and neuro-vasculature, the latter an area of the
human vascular neurobiology that, besides the limbic system,
is targeted in Alzheimer’s disease (Carlson and Prusiner, 2021;
Xia et al., 2021; Zhao et al., 2021; Lukiw et al., 2022; Sirin et al.,
2022; Villa et al., 2022; AD). This ‘Opinion paper’ will briefly
review and comment on our current understanding of SARS-
CoV-2 infection of the human CNS and the complex, immediate
and long-term contributions of this lethal Betacoronavirus to the
altered molecular-genetic and pathophysiological mechanisms
that characterizes AD-affected brain.

SARS-CoV-2 VIRUS—THE CAUSATIVE
AGENT OF COVID-19 AND
INFLAMMATORY NEURODEGENERATION

Firstly, it is important to overview the major points of the
structure of SARS-CoV-2 and the mechanism of its infectivity.
The SARS-CoV-2 virus possesses an extraordinarily large,
positive-sense ssRNA genome of about ∼29,903 nucleotides
[nt; SARS-CoV-2 isolate Wuhan-Hu-1, National Center
for Biological Information (NCBI) GenBank Accession No.
NC_045512.2; last accessed 27 May 2022; Ke et al., 2020; Sah
et al., 2020; Wu et al., 2020; Mousavizadeh and Ghasemi, 2021].
As a Betacoronavirus, SARS-CoV-2 is in the same family of other
pathogenic human influenza-causing ssvRNA Coronaviruses
such as hCoV-OC43, HKU1, 229E, severe acute respiratory
syndrome (SARS) and Middle East respiratory syndrome
coronavirus (MERS-CoV; Sah et al., 2020; Mousavizadeh and
Ghasemi, 2021; Raghuvamsi et al., 2021). SARS-CoV-2 consists
of a ∼100 nm diameter spherical virion particle containing a
nucleocapsid core enclosing its ssRNA genome within a compact
lipoprotein envelope (Ke et al., 2020). The ssRNA genome of
SARS-CoV-2 structurally resembles a “typical” messenger RNA
(mRNA) possessing a 5

′

methyl cap structure, a 3
′

poly(A)
tail and ∼10–14 overlapping open reading frames (ORFs)
with minimal spacer regions, encoding about ∼30 proteins,
not all of which have been fully characterized (Ke et al., 2020;
Sah et al., 2020; Raghuvamsi et al., 2021). SARS-CoV-2 is
highly neurotropic toward cells and tissues of the brain, visual
system and CNS (Song et al., 2020; Hill et al., 2021; Zhao et al.,
2021; Lukiw, 2022a) and orchestrates a highly coordinated
and multipronged strategy to impede host protein synthesis
including the accelerated degradation of host cytosolic cellular
mRNAs, thus facilitating viral takeover of the host mRNA pool in
infected cells (Hosseini et al., 2021; Hill and Lukiw, 2022; Lukiw
et al., 2022). As a ssRNA virus SARS-CoV-2 is representative of
the most common type of emerging viral disease in humans (due

to the high mutation rate in RNA compared to DNA viruses)
that possess extremely high mutation rates of up to 106 times
higher than that of their host cells (Pachetti et al., 2020; Finkel
et al., 2021). The major structural features of the SARS-CoV-2
virion particle include the envelope (‘E’), membrane (“M”),
nucleocapsid (‘N’), replicase (‘R’; an RNA-dependent RNA
polymerase) and a surface spike (‘S1’) protein in addition to
several accessory viral-encoded proteins (Ke et al., 2020; Finkel
et al., 2021; Siniscalchi et al., 2021). Interestingly the SARS-CoV-
2 viral lipoprotein envelope is decorated with ‘E’, ‘M’, and/or
‘S1’ proteins. This ‘S1’ protein is a class 1 homo-trimeric viral
fusion protein possessing distinctive ‘head’ and ‘stalk’ domains
essential for host cell entry via the ACE2R (see below; Ke et al.,
2020; Lukiw, 2021; Raghuvamsi et al., 2021). Interestingly
SARS-CoV-2 possesses one of the largest genomes of all known
ssRNA neurotropic viruses and a correspondingly large target for
potential interaction with natural cellular sncRNA and miRNA
(Finkel et al., 2021; Mousavizadeh and Ghasemi, 2021; Hill and
Lukiw, 2022).

VIRAL AND MICROBIAL INFECTION OF
THE BRAIN AND CNS

Viral and other microbial infections of the brain and CNS have
long been known to contribute, amplify or propagate many of the
same neuropathological, inflammatory and neurodegenerative
changes as is observed over the entire AD continuum (see below;
Lingor et al., 2022; Lukiw et al., 2022; Piekut et al., 2022; Sirin
et al., 2022; Szabo et al., 2022). Emerging evidence indicates that
both DNA and RNA viruses, such as the human double-stranded
DNA (dsDNA) Herpes simplex type 1 and 2 (HSV-1, HSV-2), the
human cytomegalovirus (HMCV), the Epstein-Barr virus (EBV),
and the ssRNA viruses hepatitis C virus (HCV; Herpesviridae),
human influenza A viruses (H1N1/H3N2; Orthomyxoviridae),
Zika virus (ZIKVs; Flaviviridae), MERS-CoV (Coronaviridae),
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2;
Coronaviridae) and a remarkably large number of bacteria
of the genus Bacteroides, Borrelia, Chlamydia, Treponema,
Porphyromonas, Prevotella, Tannerella, Fusobacterium,
Aggregatibacter, Eikenella and Helicobacter, as well as several
other eukaryotic parasites (e.g., Toxicara; Toxoplasma) or
fungi (Aspergillus; Candida) and others have been implicated
in the etiopathology of inflammatory neurodegenerative
diseases including AD. There is also evidence that a syntrophic
consortium of complex microorganisms together, known as
biofilms, may be involved and additionally contribute to the
neuropathology of AD, however the combination of SARS-
CoV-2 invasion with other microbes has not been well studied
(Chakravarthi and Joshi, 2021; Piekut et al., 2022; Protto et al.,
2022). Importantly, all microbial infections of nervous tissues as
described above contribute to the development of a microbial-
or viral-induced cytokine storm, a smoldering and progressive
inflammatory neurodegeneration and the appearance of
neurofibrillary tangles (NFT), amyloid aggregation and related
amyloidogenic processes as are observed during the course of
AD (Ball et al., 2013; Hosseini et al., 2021; Pogue and Lukiw,
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FIGURE 1 | COVID-19 infections may have long-term effects termed “Long

COVID’ or “post-COVID-19 syndrome”, especially in the elderly and persons

with pre-existing disease. It is also evident that persons with underlying

chronic disease have the worst prognosis for COVID-19 infection and are the

most likely to develop acute respiratory distress syndrome,

post-COVID-19-syndrome, a chronic or lethal pneumonia and/or neurological

complications (see manuscript text; Palacios-Rápalo et al., 2021;

Chidambaram et al., 2022; Chiner-Vives et al., 2022; Visco et al., 2022).

Interestingly, a pre-existing diagnosis of AD predicts the highest risk for

COVID-19 yet found, driving the highest mortality rate amongst any

classification of aged individuals (Nagu et al., 2020; Yu et al., 2021). Recent

epidemiological and neurological studies also suggests that persons with

COVID-19, and especially severely affected COVID-19 patients, may be

predisposed to the development of neurodegenerative disorders that include

AD due to latent viral effects on CNS structure, function and homeostasis

(Mao et al., 2020; Pacheco-Herrero et al., 2021; Chung et al., 2022; Piekut

et al., 2022; Piras et al., 2022; Radhakrishnan and Kandasamy, 2022;

Stefanou et al., 2022).

2021; Vigasova et al., 2021; Choe et al., 2022; Lee et al., 2022;
Lingor et al., 2022; Piekut et al., 2022; Protto et al., 2022; Sirin
et al., 2022; Figure 1). These neuropathological features become
more pronounced over the progression of the AD continuum.
Importantly strikingly similar neuropathology and biomarkers
for amyloidogenesis and inflammatory neurodegeneration have
also been observed in stressed human neuronal-glial cells in
primary culture and in transgenic murine models of AD (TgAD;
Hill et al., 2009; Ball et al., 2013; Vigasova et al., 2021; Choe et al.,
2022; Lee et al., 2022; Lingor et al., 2022).

ALZHEIMER’S DISEASE (AD), MICROBIAL
INVASION AND INFLAMMATORY
NEURODEGENERATION

We next briefly review AD in the context of microbial invasion.
AD represents a slowly developing, irreversible, progressive,

age-related pro-inflammatory neurodegenerative disorder of
the human limbic system specifically targeting the human brain
neocortex, hippocampal formation and related neuroanatomical
regions including the neurovasculature of the CNS (Alzheimer
et al., 1995; Lane et al., 2018; Trejo-Lopez et al., 2021). Due in part
to the aging population and demographics the global incidence
and prevalence of AD is sharply increasing and currently
represents the largest cause of behavioral and age-related
memory impairment and cognitive decline in industrialized
societies (Tahami Monfared et al., 2022; https://alz-journals.
onlinelibrary.wiley.com/doi/full/10.1002/alz.12638; https://
www.alz.org/media/documents/alzheimers-facts-and-figures.
pdf; last accessed 27 May 2022). Three broad phases of AD have
been described—sometimes referred to as the AD continuum—
categorized from pre-clinical AD (also known as “the prodromal
period”) to mild cognitive impairment (MCI) to mild, moderate
and severe AD. This AD continuum is further characterized
neuropathologically by 7 major changes within the brain: (i) by
the appearance of hyperphosphorylated tau proteins organized
into twisted neurofilament bundles that appear as NFT; (ii) by
the accumulation of amyloid-beta (Aβ) peptides that aggregate
as dense, insoluble lipoprotein deposits called ‘amyloid’ or ‘senile’
plaques (SP); (iii) by astrogliosis and glial cell proliferation;
(iv) by alterations in the innate-immune response, increases
in inflammatory signaling and the up-regulation of pro-
inflammatory cytokine and other biomarkers; (v) by progressive
cytoskeletal and synaptic disorganization culminating in brain
cell atrophy, synaptic signaling disruption, neuronal cell death
and progressive neurodegeneration (Alzheimer et al., 1995;
Lane et al., 2018; Trejo-Lopez et al., 2021; Zhou et al., 2021;
Bethlehem et al., 2022); (vi) by weakened gastro-intestinal (GI)
tract, neurovascular and blood-brain barriers allowing the influx
of viral, microbial and other neurotoxins into brain and CNS
compartments; and (vii) by deficits in the innate-immune system
(see below; Moir et al., 2018; Li et al., 2021; Vigasova et al.,
2021; Piekut et al., 2022). The appearance or onset of these 7
major changes typically begins many years prior to when clinical
cognitive and behavioral symptoms emerge over a typical AD
time course of several decades, and is conducive to an elevated
risk of both chronic inflammatory neurodegeneration and
opportunistic microbial infection (Lane et al., 2018; Trejo-Lopez
et al., 2021; Vigasova et al., 2021; Bethlehem et al., 2022; Choe
et al., 2022). The relatively recent discovery that 39-43 amino
acid Aβ peptide species have antimicrobial properties further
supports the possibility of a contribution of microbial—and
in particular a viral-involvement to AD, an infectious etiology
to AD, and suggests that the up-regulation of Aβ peptide
abundance and SP formation may represent in part a cellular
innate-immune response to both viral and/or other microbial
infection (Moir et al., 2018; Li et al., 2021; Vigasova et al., 2021).

SARS-CoV-2, AD AND INCREASED
SUSCEPTIBILITY TO COVID-19

Multiple epidemiological studies indicate that about ∼35%
of all COVID-19 patients experience neurological and
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neuropsychiatric symptoms, and a pre-existing diagnosis
of AD predicts the highest risk of COVID-19 infection yet
identified, with the highest mortality among elderly AD patients
(Song et al., 2020; Zhao et al., 2021; Choe et al., 2022; Chung
et al., 2022). Very recent evidence indicates that up to ∼45% of
all COVID-19 patients develop a mild-to-severe encephalopathy
and encephalitis due to complications arising from viral-induced
cytokine storm, elevated inflammatory signaling and/or anti-
neural autoimmunity, sometimes referred to as a “cytokine
storm syndrome” (Mao et al., 2020; Vigasova et al., 2021;
Piekut et al., 2022). Just as is consistently observed in AD, the
pro-inflammatory cytokines interleukin-1beta (IL-1β), IL-8,
IL-1RA and IL-18 and serum neurofilament light (NF-L) chain
protein in patient CSF and blood serum, biomarkers for all-cause
inflammatory neurodegeneration are significantly associated
with COVID-19 severity, and patients with AD appear to
be associated with more severe complications of COVID-19
including increased morbidity and mortality (Mao et al., 2020;
Krey et al., 2021; Chung et al., 2022; Guasp et al., 2022; Zetterberg
and Schott, 2022).

Here we cite 7 recent, highly relevant and independently
confirmed examples of clinical, experimental and post-mortem
studies: (i) SARS-CoV-2 mRNA and multiple SARS-CoV-2
proteins such as the ‘S1’ spike protein are readily detected in
the post-mortem brains of COVID-19 patients, in the brains
of experimental COVID-19 murine models, in human brain
organoid systems and in cultured neuronal cells infected with
SAR S-CoV-2, and their abundance exhibits a positive correlation
with ACE2 mRNA levels (Song et al., 2020; Xia et al., 2021;
Lingor et al., 2022; Petrovszki et al., 2022; Villa et al., 2022); (ii)
persons with a diagnosis of AD represent an extremely vulnerable
group at high risk of contracting COVID-19 with a tendency to
develop more severe symptoms with a more dismal prognosis
and higher morbidity, in part because of overlapping risk factors
and common pathological and/or pathogenetic mechanisms
(Krey et al., 2021; Villa et al., 2022); (iii) analysis of primary
health records of over 13,300 individuals in the UK that tested
positive for COVID-19 indicated that a pre-existing diagnosis of
AD predicted the highest risk for COVID-19 yet found, driving
the highest mortality rate among any classification of aged
individuals (Nagu et al., 2020; Yu et al., 2021); (iv) that COVID-
19 morbidity and mortality are elevated in AD due to multiple
pathological changes in AD patients such as the overexpression
of the ACE2R, the cytokine/chemokine storm associated
with each disorder, and various ancillary complications of
AD including cardiovascular/neurovascular disease, diabetes,
delirium, inadequate hygiene and/or other environmental,
hormonal and/or lifestyle alterations associated with AD (Hill
et al., 2021; Ramos et al., 2021; Xia et al., 2021; Zhao et al., 2021);
(v) SARS-CoV-2 infection significantly increases neurological,
physiological and psychological stress, thus aggravating pre-
existing pro-inflammatory reactions such as the viral-induced
cytokine storm while supporting the progressive deterioration
of neuronal form and function and accelerating the progression
of AD (Hu et al., 2021; Pacheco-Herrero et al., 2021); (vi) the
occurrence of long-lasting neurological symptoms after SARS-
CoV-2 infection indicates a prolonged impact on the brain

and CNS affecting the same neuroanatomical regions known
to be involved in neurodegenerative events as is observed
in AD (Song et al., 2020; Krey et al., 2021; Lingor et al.,
2022); and (vii) importantly, persons infected with COVID-19
exhibit a significant disruption in the abundance, speciation and
complexity of host cell microRNA (miRNA) populations and
transcriptomic alterations known to be similarly altered in AD
brain—some specific examples of which are briefly discussed
below (Gordon et al., 2021; Li et al., 2021; Pogue and Lukiw,
2021; Azhar et al., 2022; Kucher et al., 2022; Maranini et al.,
2022).

SARS-CoV-2 INFECTION AND NATURAL
HOST microRNAs

Small non-coding RNAs (sncRNAs) known as microRNAs
(miRNAs) have emerged as extremely informative diagnostic,
prognostic and therapeutic biomarkers in inflammatory and
infectious disease including incapacitating viral infections of
the brain and AD. For example, increases in the pro-
inflammatory NF-kB (p50/p65)-inducible miRNA-146a and
miRNA-155, significantly up-regulated in AD- and prion-
affected brain and CNS and implicated in pathological disruption
of the innate-immune system, alteredmicroglial-regulated waste-
product clearance and complement factor H (CFH)-mediated
complement activation, most often accompanies the viral-,
bacterial- and other microbial-mediated infections of all brain
cells and tissues examined to date (Slota and Booth, 2019;
Li et al., 2021; Pogue and Lukiw, 2021; Azhar et al., 2022;
Choe et al., 2022; Kucher et al., 2022; Maranini et al., 2022;
Pogue et al., 2022). Importantly, the abundance, speciation and
complexity of miRNA populations varies considerably in the
individual human host and because miRNAs can target and
inactivate ssRNA viruses such as H1N1/H3N2, Zika virus and
SARS-CoV-2 may help to explain individual heterogeneity in the
susceptibility to systemic attack and infection by human ssRNA
viruses (Azhar et al., 2022; Hill and Lukiw, 2022; Kucher et al.,
2022).

It is noteworthy that a broad, non-random spectrum of
miRNAs are significantly disrupted in abundance in AD brain
and that the SARS-CoV-2 ssRNA genome can specifically
recognize and ‘sponge’ between 857 and 2,654 miRNA-SARS-
CoV-2 pairings (there are about 2,654 human miRNAs so
far identified; Pierce et al., 2020; Siniscalchi et al., 2021).
These actions alone may modulate both natural miRNA
abundance, function and the invasiveness potential of SARS-
CoV-2 in neural tissues in the brain, visual system and
CNS in AD-affected brain. Often overlooked is that the large
size of the SARS-CoV-2 ssRNA genome at 29,903 nt, the
enormous number of SARS-CoV-2 particles involved in a
typical infection and large number of miRNA binding sites
within its sequence may also act as a “sponge” to bind specific
free miRNAs. These intrinsic SARCoV-2 parameters would
therefore down-regulate, deplete and disrupt the abundance
and natural levels of free miRNAs within the cell creating
metabolic and signaling instability in brain cells while supporting
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neuro-inflammation and AD-type change (SARS-CoV-2 isolate
Wuhan-Hu-1, National Center for Biological Information
(NCBI) GenBank Accession No. NC_045512.2; last accessed
27 May 2022; Ke et al., 2020; Sah et al., 2020; Wu et al.,
2020; Mousavizadeh and Ghasemi, 2021; Hill and Lukiw,
2022).

SARS-CoV-2 - THE SHORT- AND
LONG-TERM NEUROLOGICAL SEQUELAE

Hours-to-days after SARS-CoV-2 infection into susceptible
Homo sapiens there typically results in a persistent cough,
shortness of breath, fever, viral sepsis, hypoxemic respiratory
failure and rapid onset viral pneumonia. SARS-CoV-2 invasion
also causes overall worsening of underlying and existing chronic
cardiac, respiratory and other pathological disorders that
include atrial fibrillation, asthma, bronchitis, chronic obstructive
pulmonary disease (COPD), cystic fibrosis/bronchiectasis,
emphysema, interstitial lung disease, pleural effusion, pulmonary
fibrosis, lung cancer, pre-existing pneumonia, metabolic
syndrome and venous thromboembolic diseases (alphabetically
ordered; https://www.unitypoint.org/homecare/article.aspx?
id=2448b930-1451-43e4-8634-c0c16707c749; last accessed 27
May 2022; Kallet et al., 2019; Lee et al., 2021; Zuin et al., 2021;
Stefanou et al., 2022; Visco et al., 2022). It has been observed
that about ∼75% of hospitalized COVID-19 patients have at
least one COVID-19-associated comorbidity and COVID-19
patients with underlying chronic illnesses are more likely
be affected with a more adverse and unfavorable prognosis
(Chiner-Vives et al., 2022; Crivelli et al., 2022; Kirtipal et al.,
2022).

Early in the COVID-19 pandemic it was also noted that
many patients, during or after COVID-19 infection over the
“short term” complain of a general malaise and extra-respiratory
neurological symptoms including confusion, delirium, headache,
mental and psychiatric disorders, disorders in mood (depression
and dysthymic disorder), disturbances in sleep (insomnia),
cognitive and memory impairment, “brain fog”, deficiency in
smell (anosmia) or taste (ageusia), muscle weakness and myalgia,
sensorimotor deficits, dysautonomia as well as convulsions
and/or peripheral neuropathies that include Bell’s palsy and
peripheral neuropathies with pain (Gupta and Jawanda, 2022;
Lingor et al., 2022; Stefanou et al., 2022). COVID-19 associated
ocular manifestations have been also documented to include
a wide range of ophthalmic symptoms associated with eye
irritation (chemosis), conjunctivitis, conjunctival hyperemia,
anterior uveitis, retinitis, and optic neuritis and in advanced
COVID-19 infection with visual and perception disturbances
including visual disorientation and hallucinations, especially
in elderly COVID-19 patients (Hill et al., 2021; Hixon et al.,
2021; Lin et al., 2021; Reinhold et al., 2021; Al-Namaeh,
2022; Lukiw, 2022a,b). Accumulating evidence indicates an
especially high prevalence of prolonged neurological symptoms
among COVID-19 survivors and most of these afflictions and
neurological disruptions persist as the long-term neurological
sequelae of COVID-19 also known as “long COVID” or

“post-COVID-19 syndrome” (Nepal et al., 2020; Song et al., 2020;
Ahmed et al., 2022; Sanyaolu et al., 2022; Visco et al., 2022;
Figure 1).

DISCUSSION AND SUMMARY

Since the first cases of SARS-CoV-2 infection and COVID-19
disease were reported in December 2019 (2019-nCoV; Chen
and Yu, 2020) the full spectrum of neurological sequelae to
SARS-CoV-2 viral invasion is beginning to emerge. COVID-
19 disease ranges from asymptomatic or mild cases up
to severe life-threatening complications and a highly lethal
pneumonia. “Long COVID” or “post-COVID-19 syndrome” is
emerging as a complex long-term disorder with extended and
heterogeneous symptoms in both systemic human physiology
and in neurological complications for each individual COVID-
19 patient. It is our opinion that the remarkable ubiquity
of the ACE2R, the primary receptor for the SARS-CoV-2
virus on multiple cell membrane types of the human host, is
probably the reason for the widespread systemic involvement
of SARS-CoV-2 invasion, and enrichment of the ACE2R in
the limbic regions of the human brain in AD patients is
probably why AD patients suffer from an increased incidence
and susceptibility to COVID-19 infection (Kallet et al., 2019;
Ahmad and Rathore, 2020; Magusali et al., 2021; Sun et al.,
2021; Lukiw et al., 2022; Stefanou et al., 2022; Visco et al.,
2022). Like many neurotropic viruses with RNA genomes,
SARS-CoV-2 has a remarkably broad neuroinvasive capacity
and neurons appear to be directly targeted by a particularly
virulent infection (Song et al., 2020; Choe et al., 2022; Lukiw
et al., 2022). Long-lasting neurological consequences after SARS-
CoV-2 infection negatively impacts the brain and CNS in
anatomical regions known to be targeted by neurodegenerative
events, as is observed throughout all phases of the AD
continuum (Lingor et al., 2022; Lukiw et al., 2022; Piekut
et al., 2022; Sirin et al., 2022; Szabo et al., 2022). Pre-existing
neurological conditions and pathological interactions among
the brain, central and peripheral nervous systems (CNS, PNS)
and respiratory, cardiovascular and endocrine systems further
modulate and/or impact the severity and long-term sequelae
of the post-COVID-19 syndrome period (Kallet et al., 2019;
Horn et al., 2021; Zuin et al., 2021; Molina-Molina and
Hernández-Argudo, 2022; Sanyaolu et al., 2022; Stefanou et al.,
2022; Visco et al., 2022). Our recent appreciation that many
intractable and invariably fatal neurodegenerative disorders
including AD that involve protein misfolding, aggregation
and spread are prion disorders provides another dimension
for the invasion of SARS-CoV-2, however the interaction
between viral structure and infectivity and changes in protein
conformation and aggregation are not well understood (Carlson
and Prusiner, 2021; Lukiw, 2022b). As both COVID-19 and
AD are complex syndromes with a protracted, heterogeneous
etiology and progressive neurological involvement, symptomatic
patients who experience post-COVID-19 neurological sequelae
would clearly benefit from careful clinical monitoring, precision
medicine and personalized treatment to better deal with each
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individual case to optimize the best possible clinical and long-
term neurological outcome.
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