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Abstract: The paper presents the results of study concerning the evaluation of the precipitation
hardening parameters (temperatures and times of solution treatment and artificial ageing processes)
having an effect on mechanical properties, and the change in the microstructure of the EN AC-
AlSi11(Fe) alloy. Based on the obtained results and performed statistical analysis, regression equations
and the response surface model in the form of spatial and contour plots were determined to illustrate
the effects of solution treatment and artificial ageing parameters on the mechanical properties of the
investigated alloy. The performed heat treatment had a positive effect on improving the mechanical
properties of the alloy versus the initial state. The maximum increase in tensile strength was by 52%,
in unit elongation by 56%, in Brinell hardness by 44% and impact strength by 88%. Furthermore, a
favorable change was observed in the microstructure of the investigated alloy, especially regarding
eutectic silicon precipitations, which underwent partial spheroidization and coagulation after the
heat treatment.
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1. Introduction

The Al-Si casting alloys (silumins) with the near eutectic chemical composition are
characterised by very good castability [1], low casting shrinkage and susceptibility to form
concentrated shrinkage cavity [2], as well as good mechanical properties. Furthermore,
they are not prone to hot cracking, which allows to produce thin-walled castings with
intricate shapes [3].

Iron, which has an adverse effect on alloy plasticity, tensile strength and castability
due to the formation of brittle intermetallic phases, is the most common impurity present
in Al-Si alloys [4–6]. Depending on alloy temperature and chemical composition, iron can,
upon reaching its critical level, form intermetallic phases of different morphology. The
most common of these are α(AlFeSi) phase polyhedral crystals in the shape of the so-called
Chinese script and β(AlFeSi) phase platelets in the shape of needles [7–10]. The critical Fe
content in alloy which triggers the formation of the detrimental β(AlFeSi) phase is approx.
0.75% Fe for 11% Si [11]. However, alloys used for high-pressure die casting can contain Fe
levels even up to 1.5%, as the increased Fe content in alloy helps to minimize the costs of
die-casting mould repair resulting from their use (mould cavity surface wear) [4].

Due to their very good casting parameters, high creep resistance and resistance to
corrosion and abrasion, silumins are very popular materials, widely used in various
industries. First of all, in the automotive sector, to manufacture heavy duty combustion
engine pistons [12], transmission housings [13] and clutch housings, cylinder heads and
engine blocks [14], and in the shipbuilding industry, as engine and fitting component
castings, especially for components with required high leak-tightness [15,16].
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The disadvantage of near-eutectic silumins is an irregular acicular or platelet-shaped
form of eutectic silicon crystal precipitations, occurring especially during slow cooling
down from the casting temperature. It conduces to the propagation of cracks under an
external stresses [3], which has an adverse effect on the mechanical properties, and above
all on the plasticity and impact strength of the alloy [17].

Mechanical properties of castings can be improved through various processes, such as
alloy synthesis (adding alloy additives) [18], modification [19,20] and heat treatment [21].
Precipitation hardening, involving the sequence of solution treatment, quenching and nat-
ural (T4) or artificial ageing (T6), is the basic heat treatment applied to silumins containing
Cu and/or Mg [22–24].

Typical T6 heat treatment comprises three stages:

- solution heat treatment at temperature close to the eutectic one in order to dissolve
certain intermetallic phases rich with Cu (Al2Cu) and Mg (Mg2Si) and formed during
solidification, homogenization of alloying elements in a solid solution, and the change
in morphology of eutectic silicon [25,26],

- rapid cooling, i.e., cooling down to room temperature to obtain a supersaturated solid
solution of dissolved atoms and vacancies,

- natural ageing (at room temperature) or artificial ageing (at elevated temperature) [24,27,28]
to precipitation from the solution of the finely dispersed and hardened phase.

In primary Al-Si alloys with low copper content, the main ageing products are
metastable modifications of the Mg2Si phase (β′′and β′), while in the Al-Si alloys con-
taining copper, additional precipitations of the metastable phases—Al2Cu (θ′′ and θ′),
Al2CuMg (S), and less frequently, a stable phase θ. The precipitation mechanism of inter-
metallic phases from supersaturated α(Al) solution is the basis for obtaining changes in the
mechanical properties. The strengthening of the AlMgSi alloys occurs due to the release
of metastable transition phases and formation of stable equilibrium phases [29–32]. The
sequence of the ageing treatment based on the formation of the Mg2Si phase is as follows:

α→ GP→ β′′ → β′ → β(Mg2Si)

where:
α—supersaturated solid solution
GP—the Guinier-Preston regions, β′′ and β′—metastable transient phases
β(Mg2Si)—stable, equilibrium phase

The process commences with formation of spherical GP zones consisting of enrichment
of Mg and Si atoms. Then, GP zones elongate and develop into a coherent acicular-shaped
β′′ phase. Precipitations of the β′′ phase increase with time, becoming partially coherent
rods (phase β′) and finally incoherent ones, with their matrix in the form of rods or plates
(stable β(Mg2Si) phase). A maximum alloy strength (peak of the ageing) is reached directly
before precipitation of incoherent β(Mg2Si) plates. Apelian [27] had observed that the
release of very fine β′(Mg2Si) during ageing treatment gave a clear improvement in the
mechanical properties, while Shivkumar [33] observed a large quantity of fine β′′ phases
with 2–5 µm in diameter and 10–20 µm in length at peak ageing point, and the length of
the β′′ phase increased as the ageing progressed. Precipitations of the β′′ phase can have
an Mg:Si ratio equal to 1:1 [30]. The Mg:Si ratio grows through the GP→ β′′ → β′ → β

zone sequence, and the composition of these phases results from the effect of concentration
of Si excess after cooling [34]. The Si can be precipitated in the α(Al) matrix after slight
over-ageing, when it is present in a slight excess after cooling [35]. It is presumed that a
high concentration of excessive Si after quenching will result in a β′′ phase with low Mg:Si
ratio [36], as a fraction of available Si is then consumed by the β′′ phase formation, while
the low concentration of Si remains in the solid solution, in the matrix. This concentration
is too low for the Si precipitates to be formed during the initial ageing. The composition of
metastable β precipitations changes with progressing ageing, while Si is released into the
matrix and Si precipitates are formed later [37]. The morphology of these precipitates also
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significantly influences the mechanical properties of the alloy. After the T6 heat treatment,
a microstructure is realised that is close to ideal for Al-Si alloys: globular particles of the
silicon phase uniformly distributed in the aluminum matrix, and the dispersion is hardened
by intermetallic compound particles [3]. The appropriate selection of temperatures and
times of solution treatment and artificial ageing of the alloy during heat treatment allows
to achieve a wide range of mechanical properties.

The purpose of this study was to evaluate the effects of the parameters (i.e., different
temperatures and times of solution treatment and artificial ageing processes) of T6 heat
treatment, carried out in accordance with the trivalent test plan, on the mechanical prop-
erties (tensile strength UTS, unit elongation E, hardness HBS, impact strength KC) and
microstructure of the EN AC-AlSi11(Fe) alloy.

2. Materials and Methods

The study was performed for the near-eutectic EN AC-AlSi11(Fe) alloy, chemical
composition of which was determined by spark OES (Table 1).

Table 1. Chemical composition of the EN AC–AlSi11(Fe) alloy, weight percentage.

Si Fe Cu Mn Mg Cr Ni Zn Ti Al

10.0 0.81 0.37 0.09 0.21 0.01 0.01 0.15 0.09 balance

The increased Fe content in this alloy results primarily from its target application for
components produced in the die casting process [18,38].

The alloy was melted in an electric resistance furnace. Then, test pieces for mechanical
property tests were cast in permanent moulds. The permanent moulds had been heated to
250 ◦C prior to pouring; when pouring, the temperature of alloy in the crucible was 720 ◦C.

Solution treatment and artificial ageing temperature ranges were selected after analysing
melting and crystallisation curves obtained by means of the thermal derivative analysis
(TDA) method (Figure 1).
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The times of the individual heat treatment procedures were adopted based on the
data provided in the published literature [39–43], bearing in mind the need to limit them
for economic reasons.
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Due to the number of input variables, the trivalent test plan was adopted (namely
three values for each variable parameter), with four variables (solution treatment and
artificial ageing temperatures and times) providing 27 combinations in total (Table 2). For
each test plan combination, four repetitions were conducted to calculate average values.
Measurement uncertainty was also determined in the form of expanded uncertainty (for
k = 2).

Table 2. The test piece heat treatment plan.

Combination
No.

Solution Treatment Artificial Ageing

Temperature (tp), ◦C Time (τp), h Temperature (ts), ◦C Time (τs), h

1

475

1
165 1.5

2 220 6
3 280 4
4

2.5
165 6

5 220 4
6 280 1.5
7

4.5
165 4

8 220 1.5
9 280 6
10

505

1
165 6

11 220 4
12 280 1.5
13

2.5
165 4

14 220 1.5
15 280 6
16

4.5
165 1.5

17 220 6
18 280 4
19

545

1
165 4

20 220 1.5
21 280 6
22

2.5
165 1.5

23 220 6
24 280 4
25

4.5
165 6

26 220 4
27 280 1.5

The solution treatment operation was carried out in the test stand, comprising the
electric resistance furnace and the measurement and control equipment connected to a com-
puter recording air temperatures in the furnace chamber and control sample temperatures
during heating and holding operations (Figure 2).

Temperature measurements were read every 15 s using the type K (NiCr–NiAl) ther-
mocouple. The control sample temperature was maintained within the range of±5 ◦C from
the set value. After solution treatment, the test pieces were cooled in water at 20 ◦C. Then,
artificial ageing was conducted in a laboratory drier SLN 53 STD, with the temperature
measurement accuracy of ±3 ◦C.

After performing individual heat treatment variants (compliant with the Table 2),
the test pieces were prepared for tensile strength UTS and unit elongation E testing, in
accordance with PN–EN ISO 6892–1:2010 [44]. Initially, the diameter of the parallel length
of a circular test piece was 10 ± 0.03 mm, and the gauge length was 50 mm [44]. The static
tensile tests were performed on the Instron 33R4467 strength testing machine, with 30 kN
measuring head, using a 25 mm extensometer gauge (0–2.5 mm, resolution 1 µm, class 1)
and the Instron Bluehill 3 software.
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Figure 2. Scheme of the test stand: 1—heating spiral of the furnace; 2—external shield of the
furnace; 3—test pieces; 4—thermocouple to measure temperature in the furnace; 5—test piece with
the thermocouple; 6—control system of the furnace; 7—computer storing the results; 8—digital
micro-voltmeter of V540, V544 type; 9—thermos.

The hardness was measured using the Brinell method, in accordance with PN–EN ISO
6506:2008 [45,46]. The measurements were performed using an indenter (Ø10 mm steel
ball) under a load of 9807 N sustained for 30 s.

The impact strength was measured based on the simplified method [47], on the Charpy
pendulum machine using notched cylindrical test pieces (Figure 3).
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Figure 3. The test piece used for impact strength KC testing by a simplified method (dimensions in
millimeters) [47].

Results obtained after T6 heat treatment of the EN AC–AlSi11(Fe) alloy were im-
plemented into a computer software equipped with the Design of Experiments (DOE)
module to determine regression coefficients and equations describing the effect of the heat
treatment parameters (tp, τp, ts, τs) on the mechanical properties (UTS, E, HBS, KC). The
most common approximation method of the regression coefficients is the least squares
method. The dominant form of the approximating function formed on the basis of the
linear model with respect to the function of base is a second-degree algebraic polynomial,
with double products constituting so-called interactions. For the independent variables
(tp, τp, ts, τs) as adopted in the test plan (Table 2), it shall have a function that takes the
following general form:

ŷ = β̂1tp + β̂2 τp + β̂3 ts + β̂4 τs + β̂5 t2
p + β̂6τ2

p + β̂7t2
s + β̂8 τ2

s + β̂9tpτp

+β̂10tpts + β̂11 tpτs + β̂12 τpts + β̂13 τpτs + β̂14 tsτs + β̂15
(1)

where:
ŷ—approximated value of dependent variable (UTS, E, HBS or KC)
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tp—solution treatment temperature, ◦C
τp—solution treatment time, h
ts—artificial ageing temperature, ◦C
τs—artificial ageing time, h
βi—regression coefficients (i = 1, . . . , 15)

The degree of correlation between the model and the data was determined by the
coefficient of determination R2 (belongs to <0,1>). When value of the R2 is close or equal
to 1, it can be said that the practically complete variability of the dependent variable is
explained by independent variables of the model. The F test, with the Fisher-Snedecor
distribution as its theoretical distribution, was used to assess the effect of independent
variables on the dependent variable. Furthermore, the hypothesis testing the significance
of each partial regression coefficient was verified. The equations presented further in the
study include only the variables with significant contribution in the model. The verification
of the model also involved the analysis of residual distribution [48,49].

In addition, for the investigated EN AC-AlSi11(Fe) alloy without the heat treatment,
the local chemical composition was determined in the spots under the scanning electron
microscope (SEM) performed using energy dispersive x-ray spectroscopy (EDS).

3. Results and Discussion
3.1. Ultimate Tensile Strength UTS

The tensile strength UTS of the raw alloy amounted to 174 MPa. After performing the
heat treatment of the alloy, it obtained tensile strength UTS ranging from 157 to 265 MPa.

The obtained tensile strength UTS testing results (Figure 4) for the individual combina-
tions according to the adopted test plan (Table 2) versus the initial state (W) were collated
in the form of bar charts.
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Figure 4. Tensile strength UTS—the initial state (W) and after T6 heat treatment (1–27) for the EN
AC-AlSi11(Fe) alloy.

For the investigated alloy, the highest tensile strength value UTS = 265 MPa was
obtained after the heat treatment performed according to the test plan combination no. 25
(tp = 545 ◦C, τp = 4.5 h, ts = 165 ◦C, τs = 6 h), which indicates over a 50% increase versus
the alloy state without the heat treatment (W). Moreover, for the test plan combination no.
13 and 22, the UTS values reach over 250 MPa, which indicates over a 43% increase versus
the initial state (W) for the shorter time of solution treatment (τp = 2.5 h).

For comparison, 232 MPa was obtained by authors of the publication [50], solution
treatment of the AlSi11alloy was performed for 6 h at temperatures lower with 25 degrees,
and artificial ageing it at 205 ◦C for 7 h. Instead, Pedersen [51] had received maximal
strength amounting to 260 MPa for the AlSi10Mg alloy as early as after 60 min of solution
treatment at 540 ◦C, and 4 h of artificial ageing at 150 ◦C, while a longer time of the treatment
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did not lead to increasing the UTS. Much lower ultimate tensile strength (215–230 MPa) had
been received by authors of the study [52] in case of the 314.0 alloy after extension of the
solution treatment time to 8 h, reduced solution treatment temperature (510 ◦C) and after
artificial ageing at a temperature of 155–240 ◦C for 5 h. Ammar et al. [53] solution treatment
the same alloy with addition of 0.4% Mg at temperature 495 ◦C for 4 h and quenching in hot
water (60 ◦C), and next, naturally ageing, it had received UTS similar to the one obtained
by Pedersen [51]. The introduction of artificial ageing treatment for 5 h, instead of natural
ageing, increased the UTS of the alloy to the level of 378 MPa for temperature of 180 ◦C,
and as much as to 401 MPa for temperature 155 ◦C [54]. In case of the AlSi10Mg alloy,
it had been completed many investigations concerning influence of solution treatment
and artificial aging on the microstructures and mechanical properties of SLM-produced
AlSi10Mg alloy parts, although in case of this technology, the heat treatment did not allow
obtaining acceptable mechanical properties [55]. Commonly used in industrial practice
alloys with a lower content of silicon, AlSi7Mg and AlSi9Mg are characterised by the tensile
strength after the heat treatment at a level similar to the investigated alloy. Pio [56], in case
of the AlSi7Mg alloy, after solution treatment at temperature higher with 25 ◦C for 6 h
(artificial ageing at temperature 160 ◦C for 6 h), obtained UTS = 253.5 MPa. The decrease
of the artificial ageing temperature to level of 150 ◦C and shortening of the ageing time to
4 h, as performed by Pedersen [51], resulted in increase of the UTS to the level of 270 MPa,
whereas the extension of artificial ageing temperature to 230 ◦C and prolongation of its time
to 8 h resulted in a further decrease of the UTS to 210 MPa [57]. However, Dobrzański [58],
in case of the AlSi9Mg alloy after solution treatment at temperature 525 ◦C and artificial
ageing at 150 ◦C for 6 h, obtained the ultimate tensile strength amounting to 296 MPa.
Increasing ageing temperatures with 15 ◦C and simultaneously prolonging its time with
10 h had obtained UTS at the level of 280 MPa [59]. Even a higher tensile strength (320 MPa)
was obtained by Pezda [60] by solution treatment of the alloy at temperature 545 ◦C for
1.5 h, and ageing it at temperature 180 ◦C for 8 h.

To illustrate the effect of the heat treatment parameters on tensile strength UTS, the
regression equation was determined, which takes the form of the relation (2), for which the
coefficient of determination of the reduced model is R2 = 0.92. The statistical significance of
the regression equation is τ = 0.05, as F(11;69)calc = 78.44 > 1.93 = F(0.05;11;69). The distribution
of the residuals is close to normal; it can be assumed on this basis that the correlation
between the model and the empirical data is very good.

ŷUTS = 8.49372 tp + 46.96824 τp + 5.08858 ts − 0.0069 t2
p − 2.6251τ2

p
− 0.00627t2

s − 0.05412 tpτp − 0.00487 tpts + 0.02548 tpτs
− 0.02756 τpts − 0.06246 tsτs − 2583.44376 [MPa]

(2)

The relation (2) allowed to present the effect of temperatures and times of solution
treatment and artificial ageing on tensile strength UTS in the form of 3D and contour
graphs (Figure 5).

Parameters of the heat treatment process have very significant influence on change
of the UTS. Temperature of the solution treatment should be within range of 510–540 ◦C,
while the artificial ageing temperature should be below 200 ◦C. Increasing the solution
treatment temperature caused grain growth and the insoluble phases aggregated and
coarsened, resulting in an enhancement of tensile strength [61], while low solution treat-
ment temperature enables obtaining a large amount of homogeneously distributed phases,
dispersing and hardening the alloy.
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Figure 5. Effects of the T6 heat treatment parameters on tensile strength UTS of the EN AC–AlSi11(Fe)
alloy for determined (a) ts = 165 ◦C, τs = 6 h, (b) tp = 545 ◦C, τp = 2.5 h.

3.2. Unit Elongation E

The value of the unit elongation E, obtained for the raw alloy amounted to 2.7%, while
performed heat treatment that caused the elongation E has been changed within a range of
1.5% to 4.2%.

The unit elongation E results obtained for the individual combinations according to
the adopted test plan (Table 2) versus the initial state (W) are presented in Figure 6.
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AC–AlSi11(Fe) alloy.

Alloy unit elongation E reaches the maximum value of 4.2% after the heat treatment
performed as per the test plan combination no. 21 (tp = 545 ◦C, τp = 1 h, ts = 280 ◦C, τs = 6 h)
giving an increase by 56% versus the initial state (W). Similar value of the elongation was
received by Pedersen [51] for the AlSi10Mg alloy after solution treatment at temperature
lower with 5 ◦C and 4 h artificial ageing at 150 ◦C. Additionally, 0.4 Mg additive to the
314.0 alloy and its T4 treatment based on solution treatment at temperature 495 ◦C for
4 h, as well quenching in hot water (60 ◦C) also enables the obtaining of the elongation
at the level of 4.4%. Similar elongation (4.5%) can be also obtained with use of softening
annealing, heating the alloy at temperature 370 ◦C for 8 h [62].
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The elongation within limits of 3% after T6 treatment of the AlSi9Mg alloy was
obtained by Ananthapadmanaban [59] after solution treatment of a casting for 6 h at
temperature 525 ◦C and artificial ageing at temperature 165 ◦C for 10 h. It is worth to
be noticed, that for the AlSi7Mg alloy, shortening of ageing duration from standard 15 h
at temperature 150 ◦C to 2 h at temperature 170 ◦C, and solution treatment from 4 h at
temperature 535 ◦C to 2 h at temperature 550 ◦C enables obtaining 80% of the maximum
elongation (7%) [63,64].

The unit elongation E lowest value of 1.5% was obtained after T6 heat treatment
performed according to the test plan combinations no. 10 (tp = 505 ◦C, τp = 1 h, ts = 165 ◦C,
τs = 6 h) and no. 20 (tp = 545 ◦C, τp = 1 h, ts = 220 ◦C, τs = 1.5 h). This indicates a drop by
approximately 45% versus the initial state (W). Even a lower elongation (not exceeding 1%)
for the 314.0 alloy with 2% additive of Cu, as well as without this additive, was obtained
by Abdelaziz et al. [52] after solution treatment at similar temperature (510 ◦C) lasting
many times longer (8 h), however, and artificial ageing at temperatures 155–240 ◦C for 5 h.
Reduction of solution treatment temperature to 495 ◦C and solution treatment time in half
(to 4 h) with identical parameters of the artificial ageing treatment do not have any effect
on improvement of the elongation, which is included within limits of 1.3 to 1.9 % for the
alloy without Cu additive, and below 1% in case of the alloy with 2% Cu additive [54].

From the elongation point of view, artificial ageing at low temperature (150 ◦C) is also
disadvantageous for the AlSi9Mg alloy, reducing it from 8.1% directly after the solution
treatment for 6 h at 520 ◦C to 1.2 % for 3 h of the artificial ageing, and 2.3% after 15 h of the
artificial ageing [58].

The relation describing the effect of temperatures and times of solution treatment and
artificial ageing processes on the unit elongation E value is expressed by the Equation (3),
for which the determination coefficient of the reduced model is R2 = 0.78. The value
F(12;68)calc = 20.19 > 1.9 = F(0.05;12;68).

The equation significance is τ = 0.05. The distribution of the residual values is close to
normal. It can be assumed on this basis that the correlation between the model and the
empirical data is good.

ŷA5 = −0.178794 tp − 0.125144ts − 2.564192 τs + 0.000137 t2
p − 0.051481 τ2

p
+ 0.000145 t2

s + 0.034897 τ2
s + 0.001153 tpτp + 0.000121 tpts + 0.003555 tpτs

− 0.001103 τpts + 0.002241 tsτs + 64.342632 [%]

(3)

The Equation (3) provided the basis for plotting the response surface graphs (Figure 7),
illustrating the effect of T6 heat treatment parameters on the unit elongation E.

Relatively high temperature of the solution treatment (slightly below the eutectic
temperature) allows spheroidisation of silicon precipitations and dissolution of strength-
ening components in the matrix of the alloy, combined with long-lasting artificial ageing
at temperature 280 ◦C results in the increase of elongation of the alloy, with simultaneous
decrease of its strength, which is mainly due to over-ageing of the alloy, i.e., loss of coher-
ence of the phase precipitated with the matrix, and coagulation of precipitated particles of
eutectic silicone.
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Figure 7. Effects of the T6 heat treatment parameters on unit elongation E of the EN AC–AlSi11(Fe)
alloy for determined (a) ts = 280 ◦C, τs = 6 h, (b) tp = 545 ◦C, τp = 2.5 h.

3.3. Hardness HBS 10/1000/30

The HBS10/1000/30 hardness of the raw alloy amounted to 72 HBS. After performing
heat treatment, the obtained hardness of the alloy was within the range of 56 to 104 HBS.

The obtained results of the EN AC–AlSi11(Fe) alloy hardness HBS for the individual
combinations according to the adopted test plan (Table 2) versus the initial state (W) are
presented in Figure 8.
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Figure 8. Hardness HBS 10/1000/30—the initial state (W) and after T6 heat treatment (1–27) for the
EN AC–AlSi11(Fe) alloy.

T6 heat treatment of the EN AC–AlSi11 alloy performed according to the test plan
combinations no. 13 (tp = 505 ◦C, τp = 2.5 h, ts = 165 ◦C, τs = 4 h) and no. 19 (tp = 545 ◦C,
τp = 1 h, ts = 165 ◦C, τs = 4 h) resulted in the largest increase in hardness HBS (by 44%)
versus the initial state (W). Increase at similar level (by 42%) was obtained in case of the
systems no. 10 and 25, characterised by identical as the systems specified earlier, low
ageing temperature at 2 h longer time of the process.

Hardness at a similar level of 100 HB was obtained by authors of the study [65] for an
alloy with similar chemical constitution, solution treatment such alloy for 8 h at temperature
535 ◦C and artificially ageing it at temperature 180 ◦C for 3 h. Further prolongation of the



Materials 2021, 14, 2391 11 of 20

artificial ageing time resulted in a slight decrease of the hardness to the level 80–90 HB.
Furthermore, increase of the artificial ageing temperature to 200 ◦C causes reduction of
the hardness comparing to the hardness obtained after artificial ageing at 180 ◦C within
range of solution treatment time from 1 to 24 h [65]. Similarly as it happened in case of the
tensile strength, and also in case of the hardness, the elements from the AlSi10Mg alloy and
produced using additive technologies decrease their hardness after standard heat treatment
of T6 type [66].

In case of hypoeutectic alloy of the AlSi7Mg, time needed to obtaining the hardness
within limits of 100 HB after solution treatment (540 ◦C/75 min) amounts as much as 10 h
at 170–190 ◦C (artificial ageing), while in case of temperature 210 ◦C, it is only 1 h [67].
When the temperature increases above 210 ◦C, a decrease of the strength was observed [67].
According to Tash [68], meanwhile, in case of the 356.0 alloy, both modified and not
modified, the hardness increases together with artificial ageing temperature up to 180 ◦C
(peak temperature); when such temperature is exceeded, a decrease of the hardness occurs
at 200 ◦C and 220 ◦C (overaging of the alloy). In case of the AlSi9Mg alloy, the hardness
increases to 80 to 100 BHN during age hardening (solution treatment: 525 ◦C/10 h; artificial
ageing: 165 ◦C/10 h) [59].

The functional relationship indicating the effect of the heat treatment parameters on
hardness HBS 10/1000/30 is described by the Equation (4), for which the coefficient of
determination of the reduced model is R2 = 0.94. The significance of the variables in the
model is α = 0.05 (F(12,68)calc = 89.19 > 1.9 = F(0.05;12;68)). The distribution of the residuals is
close to normal. Therefore, it can be assumed that the correlation between the obtained
model and the empirical data is very good.

ŷHBS = 4.13581 tp + 23.38913 τp + 2.26404 ts + 11.58118 τs − 0.00322 t2
p

− 0.33952 τ2
p − 0.00214 t2

s − 0.20903 τ2
s − 0.03927 tpτp − 0.00284 tpts

− 0.68340 τpτs − 0.03853 tsτs − 1268.14363 [HBS 10/1000/30]
(4)

The 3D and contour graphs (Figure 9), obtained on the basis of the Equation (4), show
how the hardness HBS values evolve depending on the T6 heat treatment parameters,
namely temperatures and times of solution treatment and artificial ageing.
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Figure 9. Effects of the T6 heat treatment parameters on hardness HBS 10/1000/30 of the EN AC-
AlSi11(Fe) alloy for determined (a) ts = 165 ◦C, τs = 4 h, (b) tp = 545 ◦C, τp = 2.5 h.

In case of the hardness, similarly like in case of the tensile strength, the main role
is played by high temperature of the solution treatment (20–30 ◦C below the eutectic
temperature) and low artificial ageing treatment temperature (165 ◦C) responsible for
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suitable dispersion degree of precipitations strengthening the alloy. The decrease in the
hardness values after the T6 heat treatment can also result from the wide dispersion
of eutectic silicon particles [50]. Moreover, according to Iskah et al. [69] area of widely
dispersed particles of the silicon is smaller, from its availability for the measuring the
intended point of view, comparing to the area of the soft phase α(Al), which results in the
lower values of the hardness of the test piece.

3.4. Impact Strength KC

The impact strength of the raw alloy amounted to 5.7 J/cm2. The impact strength of
the alloy after the heat treatment was included within the range from 4.5 to 10.7 J/cm2.

The obtained impact strength KC testing results for the test pieces after heat treatment
versus the initial state (W) are presented in Figure 10.
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Figure 10. Impact strength KC—the initial state (W) and after T6 heat treatment (1–27) for the EN
AC–AlSi1(Fe) alloy.

For the investigated alloy, the impact strength KC maximum value of 10.7 J/cm2 was
obtained after the heat treatment performed according to the test plan combination no. 27
(tp = 545 ◦C, τp = 4.5 h, ts = 280 ◦C, τs = 1.5 h). It is the increase by approximately 88%
versus the initial state (W) of impact strength. The increase above 70% relative to the raw
alloy was observed for the systems nos. 18, 21, 24 characterised by the longer time of the
artificial ageing, and the equally high (as the system no. 27) temperature of the ageing.

In practice, available literature does not deal with topics of an effect of parameters
of the T6 heat treatment on impact strength of the investigated alloy. Authors of the
publications, except presented results, had also performed studies in range of soft annealing
treatment of investigated alloys, which had given increase of the impact strength in case of a
raw alloy at a level of 4.5 J/cm2 to 6.7–7.7 J/cm2 after heating of the material at temperature
370 ◦C for 5 and 8 h, respectively [70]. Additionally, the studies [71] performed for the
AlSi7Mg alloy show that for the solution treatment performed at temperature 545 ◦C for
1 h and artificial ageing carried out at 280 ◦C for 5 h, it is possible to generate the impact
strength of the order 13 J/cm2. Meanwhile, in case of a higher temperatures of the artificial
ageing amounting to 325 ◦C (time: 2 h), the value of the impact strength increases to
27 J/cm2 (making solution treatment at 550 ◦C for 3 h), the lowest values of the impact
strength (about 5 J/cm2) were obtained for low temperatures and long lasting time of
artificial ageing (165 ◦C for 8 h) [71]. In case of the AlSi9Mg alloy, solution treatment at
temperatures 530–550 ◦C for 1.5 to 3 h and artificial ageing at temperatures above 280 ◦C
for 10–12 h allows obtaining of the impact strength at the level 23–25 J/cm2. Instead, a
decrease of the artificial ageing temperature to the level of 160 ◦C drastically reduces its
impact strength [60].
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The effect of temperatures and times of individual heat treatment procedures on the
impact strength KC is defined by Equation (5), for which the coefficient of determination
of the reduced model is R2 = 0.83. The statistical significance of the regression equation
is α = 0.05 (F(9;71)calc = 37.54 > 2.1 = F(0.05;9;71)). The distribution of the residuals is close to
normal. It can be assumed on this basis that the correlation between the model and the
empirical data is good.

ŷKC = −0.75609 tp − 0.292353 ts + 0.000694 t2
p + 0.000396 t2

s − 0.097927 τ2
s

+ 0.000229 tpts + 0.003009 τpts − 0.132103 τpτs + 0.004554 tsτs + 227.468173
[

J
cm2

] (5)

The relation (5) allowed to illustrate the effect of T6 heat treatment parameters on the
alloy impact strength KC in the form of 3D and contour graphs (Figure 11).
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3.5. Energy Dispersive X-ray Spectroscopy—EDS

For the selected microarea of the initial alloy (Figure 12a), the local chemical composi-
tion was examined in the spot by the energy dispersive x-ray spectroscopy (EDS) method.
Microanalysis results were shown in the form of EDS spectrum. An example sample EDS
spectrum (EDS Spot 1 and EDS Spot 2) image is shown in Figure 12b,c.

The analysis of the selected EN AC-AlSi11 alloy microarea microstructure (Figure 12a),
EDS spectra and the chemical composition (Table 3) allowed to identify the phase com-
ponents marked as EDS Spot 1—EDS Spot 6. Table 3 lists the quantitative chemical
composition of the EDS-analysed microareas.

The spots marked as EDS Spot 4 and EDS Spot 5 indicate the α(Al) phase. The
EDS Spot 2 is the α(Al) + β(Si) eutectic precipitation. EDS analysis also showed the
presence of Fe-rich phases in the microarea structure—EDS Spot 1, EDS Spot 3 and EDS
Spot 6. The spots marked as EDS Spot 3 and EDS Spot 6 indicate precipitations of the
intermetallic β(AlFeSi) phase, which occurs in the form of long platelet-shaped, acicular
precipitations visible in the alloy microstructure (Figure 12a). β(AlFeSi) phase has an
adverse effect on alloy castability [72], causing a drop in tensile strength, plasticity and
impact strength [5,6,73], and it conduces to the initiation of cracks [10] and porosity [74], as
well as worsening machinability [75]. The EDS Spot 1 is also an Fe-rich intermetallic phase.
This precipitation morphology, visible in the microstructure in the shape of the so-called
Chinese script (Figure 12a), enables identifying it as the α(AlFeSi) phase, which occurs
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during eutectic solidification [76]. Due to its dense morphology, the α(AlFeSi) phase is not
as harmful to the alloy mechanical properties as the β(Al5FeSi) phase [77–82].
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Table 3. EDS-determined quantitative chemical compositions of micro-areas, weight and atomic
percentage.

Micro-Area Al, wt. %/at. % Si, wt. %/at. % Fe, wt. %/at. % Phase

EDS Spot 1 74.25/81.75 8.65/9.15 17.11/9.10 α(AlFeSi)
EDS Spot 2 59.25/60.22 40.75/39.78 - α(Al)+β(Si)
EDS Spot 3 64.24/70.71 19.54/20.67 16.21/8.62 β(AlFeSi)
EDS Spot 4 100 - - α(Al)
EDS Spot 5 100 - - α(Al)
EDS Spot 6 65.42/71.73 19.02/20.03 15.56/8.24 β(AlFeSi)

3.6. Metallographic Analysis

The metallographic study was performed to evaluate the microstructure of the in-
vestigated EN AC-AlSi11(Fe) alloy. The alloy microstructure in the initial state is shown
in Figure 13a. Figure 13b shows the microstructure after the heat treatment performed
according to test plan combination no. 9, for which the investigated alloy obtained the
lowest values of tensile strength UTS = 157 MPa and hardness: 56 HBS, good impact
strength KC = 8.8 J/cm2 and unit elongation E = 2.5%. The microstructure after the heat
treatment performed according to test plan combination no. 13 is shown in Figure 13c. For
this combination, tensile strength UTS = 253 MPa, hardness: 104 HBS and unit elongation
E = 1.8% and impact strength KC = 5.2 J/cm2 were obtained. The microstructure after T6
heat treatment performed according to test plan combination no. 25 is shown in Figure 13d.
For these heat treatment parameters, the highest tensile strength UTS = 265 MPa, hardness
level: 102 HBS, unit elongation E of 2.3% and impact strength KC of 4.9 J/cm2 were obtained.
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Figure 13. EN AC-AlSi11(Fe) alloy microstructure in the (a) initial state and after T6 heat treatment
performed according to the test plan combination nos. (b) 9 (tp = 475 ◦C, τp = 4.5 h, ts = 280 ◦C,
τs = 6 h), (c) 13 (tp = 505 ◦C, τp = 2.5 h, ts = 165 ◦C, τs = 4 h), (d) 25 (tp = 545 ◦C, τp = 4.5 h, ts = 165 ◦C,
τs = 6 h).
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The EN AC-AlSi11(Fe) alloy microstructure in the initial state (Figure 13a) is charac-
terized by the presence of eutectic crystals β(Si) (in the form of irregular platelets with
sharp edges), which are randomly deposited in the interdendridic spaces of the α(Al) solid
solution. The form of the α(Al) + β(Si) eutectic can be defined as acicular. Thin, acicular
precipitations of the β(AlFeSi) phase, which have an adverse effect on the mechanical
properties of the alloy (UTS = 174 MPa, E = 2.7%, 72 HBS, KC = 5.7 J/cm2), are also visible.
For the investigated alloy, quantity of the manganese equal to 50% of the iron content
was not obtained, which was generally required from transformation of β(Al5FeSi) to
α(Al15(Fe,Mn)3Si2) point of view [83]. Heat treatment of the alloy causes a change in its
microstructure versus the initial state (Figure 13a). Finely divided dendrites of the α(Al)
phase are visible in Figure 13b–d. Eutectic silicon precipitations also underwent visible
spheroidization and coagulation. This is due to fragmentation happening first at the joints
of the branches or the necks of the β(Si) crystals, and then spheroidisation occuring to
the fragmented parts, resulting in the formation of elongated or spherical particles [84].
Processes of fragmentation, coagulation and spheroidization, similar to the dissolution, are
directly connected with diffusion movements of atoms. Prior solution treatment in the pro-
cess of the heat treatment, single crystals of β(Si) are split to many relatively small crystals,
while each of them endeavours to obtain a spherical shape. This allows obtaining the high-
est level of mechanical properties. Degree of obtaining spherical shape increases with the
increase of the heat treatment duration, and simultaneously the process of coagulation is
observed, i.e., the thickening of silicon particles. The thermodynamic driving force, which
causes changes in morphology of particles, is the tendency to minimize the total Gibbs
free energy of the system [3]. Isolated Fe-rich intermetallic phase precipitations are visible
against the α(Al) phase background. Thin and acicular precipitations are the β(AlFeSi)
phase [78,79,83,85], and the Chinese script precipitations are the α(AlFeSi) phase [9,86,87].
The minor solubility of iron in α(Al) and acicular morphology of the β(AlFeSi) phase cause
that, as a rule, they retain their morphology even after long-lasting heating at temperatures
close to the solidus equilibrium, causing the deterioration of the strength and plasticity of
Al-Si alloy [88,89] castings and initiation of cracks under load [83].

4. Conclusions

The purpose of the study was to identify the effects of T6 heat treatment (precipita-
tion hardening) of the EN AC-AlSi11(Fe) alloy by means of determining its mechanical
properties (UTS, E, HBS, KC) and to perform a microstructural analysis in the initial state
and after T6 heat treatment, according to the trivalent test plan (Table 2) for four variables
(temperatures and times of solution treatment and artificial ageing).

On the basis of obtained results, it can be concluded that: the performed heat treatment
had a positive effect on a change in the microstructure of the investigated alloy, causing
partial spheroidisation and coagulation of eutectic silicon precipitations in comparison
with the microstructure of the alloy without the heat treatment. Appropriate selection of
the solution treatment and artificial ageing parameters allows for obtaining a several dozen
percent increase in the tensile strength, hardness, impact strength and elongation of the
AlSi11(Fe) alloy compared to the raw alloy. It is also possible to restrict (to shorten) time of
individual operations, which should result in the improved economy of the process. On
this basis, it can be concluded that:

- tensile strength UTS reaches a maximum value (265 MPa) after the heat treatment
performed for tp = 545 ◦C, τp = 4.5 h, ts = 165 ◦C, τs = 6 h, which gives an increase by
52% versus the initial value (174 MPa),

- unit elongation E reaches a maximum value (4.2%) after the heat treatment performed
for: tp = 545 ◦C, τp = 1 h, ts = 280 ◦C, τs = 6 h, which gives an increase by 56% versus
the initial value (2.7%),

- hardness HBS 10/1000/30 reaches a maximum value (104 HBS) after the heat treatment
performed for: tp = 505 ◦C, τp = 2.5 h, ts = 165 ◦C, τs = 4 h and tp = 545 ◦C, τp = 1 h,
ts = 165 ◦C, τs = 4 h, which gives an increase by 44% versus the initial value (72 HBS),
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- impact strength KC reaches a maximum value (10.7 J/cm2) after the heat treatment
performed for tp = 545 ◦C, τp = 4.5 h, ts = 280 ◦C, τs = 1.5 h, which gives an increase
by 88% versus the initial value (5.7 J/cm2).

The obtained response surface models illustrate a tendency to change the mechanical
properties (UTS, E, HBS, KC) of the investigated alloy in the adopted area of the investiga-
tions. Depending on change of temperature and time of the solution treatment and artificial
ageing can be used for their preliminary prediction, as well as for obtaining required
mechanical properties of the alloy resulting from its heat treatment, which is based on the
suitable association of parameters of its solution treatment and the artificial ageing process.
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