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SUMMARY

Tumor-associated macrophages (TAMs) are a major cellular component in the tumor 

microenvironment (TME). However, the relationship between the phenotype and metabolic pattern 

of TAMs remains poorly understood. We performed single-cell transcriptome profiling on hepatic 

TAMs from mice bearing liver metastatic tumors. We find that TAMs manifest high heterogeneity 

at the levels of transcription, development, metabolism, and function. Integrative analyses and 

validation experiments indicate that increased purine metabolism is a feature of TAMs with 

pro-tumor and terminal differentiation phenotypes. Like mouse TAMs, human TAMs are highly 

heterogeneous. Human TAMs with increased purine metabolism exhibit a pro-tumor phenotype 

and correlate with poor therapeutic efficacy to immune checkpoint blockade. Altogether, our work 

demonstrates that TAMs are developmentally, metabolically, and functionally heterogeneous and 

purine metabolism may be a key metabolic feature of a pro-tumor macrophage population.

Graphical abstract

In brief

Li et al. examine the metabolic heterogeneity of tumor-associated macrophages (TAMs). They 

demonstrate metabolic patterns of TAMs correlate with their functional characteristics, and 

increased purine metabolism is a feature of TAMs with pro-tumor and terminal differentiation 

phenotype. They confirm these observations in patients with multiple types of cancer.
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INTRODUCTION

Tumor-associated macrophages (TAMs) are important components of the tumor 

microenvironment (TME). TAMs are associated with multiple aspects of tumor 

pathobiology, such as immunosuppression, neovascularization, metastasis, and resistance 

to therapy (Ding et al., 2009; Forssell et al., 2007; Mantovani et al., 2008; Qian and 

Pollard, 2010; Ruffell et al., 2012; Sica and Mantovani, 2012; Zou, 2005). However, 

macrophages also mediate tumor phagocytosis and can uptake, process, and present antigens 

to T cells and promote anti-tumor immunity. In addition, macrophages may directly mediate 

tumor killing and are associated with improved patient outcome in some types of cancer 

(Forssell et al., 2007; Shimura et al., 2000; Welsh et al., 2005). We postulate that the 

controversies among the previous studies may be attributed to the heterogeneity of TAM 

ontogeny, phenotype, metabolism, and their functional characteristics in vivo. We reason 

that a deeper understanding of TAM heterogeneity is critical for eventually developing 

mechanism-informed, TAM-targeted, effective cancer immunotherapy (Mantovani et al., 

2021; Wen et al., 2020; Zhang et al., 2019, 2020).

Transcriptome profiling at the single-cell level yields invaluable information on intracellular 

signaling responses, cell-type-specific pathways, potential functionalities, and activities of 

major metabolic pathways. For example, the heterogeneity of human and mouse TAMs in 

different pathological conditions have been recently analyzed at the single-cell level (Cheng 

et al., 2021; Zhang et al., 2019). It has been reported that metabolic changes can reshape 

the states of immune cells in the TME (Bian et al., 2020; Habtetsion et al., 2018; Li et al., 

2018). Along these lines, recent reports suggest that metabolic alteration is accompanied 

by the phenotypic and functional change of TAMs in the TME (Vitale et al., 2019; Xia et 

al., 2020). However, the interdependent patterns of development, metabolism, and function 

of TAMs remain largely unraveled in both tumor-bearing mice and patients with cancer. 

Here, we applied single-cell RNA sequencing (scRNA-seq) to mononuclear cells isolated 

from livers with or without tumors in subcutaneous-tumor-bearing mice. We revealed the 

metabolic landscape of hepatic TAMs in the context of liver metastasis and demonstrated the 

intertwined relationship of development, metabolism, and function in TAMs. We extended 

our analysis on tumor-bearing mice to 8 cohorts of cancer patients and correlated TAM 

transcriptomics with patient survival and clinical efficacy to immune checkpoint blockade 

therapy (ICB). Our work demonstrates that TAMs are developmentally, metabolically, and 

functionally heterogeneous, and purine metabolism may be a key metabolic feature of pro-

tumor TAMs. We suggest that targeting purine metabolic TAMs represents a novel approach 

for cancer immunotherapy.

RESULTS

Heterogeneity of TAMs within the liver tumor microenvironment

We have previously demonstrated that hepatic macrophages contribute to systemic 

immunosuppression and resistance to immunotherapy in preclinical murine models and 

cancer patients with liver metastasis (Yu et al., 2021). To characterize macrophages in the 

liver TME, we isolated hepatic mononuclear cells from mice bearing MC38 subcutaneous 

tumor with and without MC38 tumors in the liver (Yu et al., 2021) and performed scRNA-
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seq on these hepatic mononuclear cells. We computationally analyzed cells expressing 

typical macrophage markers, including Lyz2, Csf1r, Cd68, and Lgals3, but not dendritic 

cell (DC) marker Zbtb46 or neutrophil markers Ly6g and Csf3r. We performed graph-based 

clustering and Uniform Manifold Approximation and Projection (UMAP) analyses on the 

integrated projector of 8,056 isolated macrophages (Figures 1A and 1B). After clustering, 

we identified 14 transcriptionally distinct macrophage subsets (Figures 1A and 1B). Next, 

we split the integrated dataset into 2 projections, with 2,021 hepatic macrophages from mice 

without liver tumors (normal macrophages) and 6,035 hepatic macrophages from mice with 

liver tumors (TAMs) (Figure 1C). We found that the relative size of clusters 0, 1, 4, 5, 6, 9, 

12, and 13 were increased, and the size of clusters 2, 3, 7, 10, and 11 were decreased in the 

tumor samples compared with normal samples (Figures 1C and 1D). These data reveal high 

levels of heterogeneity of intrahepatic TAMs and suggest an important impact of tumors on 

TAM composition (Figures 1C and 1D).

Hepatic macrophages exhibit different origins, locations, and times of establishing residency 

in the liver (Blériot and Ginhoux, 2019; MacParland et al., 2018). To elucidate the potential 

developmental origin of those hepatic macrophages in mice with and without liver tumors, 

we reanalyzed these 14 clusters by querying the expression levels of 7 typical macrophage 

markers and 11 cell-of-origin markers. We identified 4 types of macrophages, including liver 

resident macrophages (Kupffer cells) (Davies et al., 2013), monocyte-derived macrophages 

(MDMs) (Serbina and Pamer, 2006), liver capsular macrophages (LCMs) (Blériot and 

Ginhoux, 2019; Sierro et al., 2017), and peritoneal macrophages (PMs) (Blériot and 

Ginhoux, 2019; Wang and Kubes, 2016) (Figures 1E–1G). As expected, all 4 macrophage 

populations expressed typical macrophage markers, including Lyz2, Lgals3, Fcgr3, Csf1r, 
Fcgr1, and Adgre1 (encoding F4/80) (Figures 1E and 1F). Among 14 clusters, clusters 3, 

5, and 11 showed expression of Timd4 (encoding TIM4), and Vsig4, and Clec4f and were 

determined as Kupffer cells (Figures 1F and 1G); while clusters 0, 1, 2, 4, 6, 7, 8, 9, and 

13 expressed Ccr2, Cd14, and Itgam and were determined as MDMs (Figures 1F and 1G). 

Cluster 10 expressed Itgax and Cx3cr1 and was defined as LCMs (Figures 1F and 1G). 

Cluster 12 expressed Gata6 and was defined as PMs (Gautier et al., 2014; Rosas et al., 2014; 

Xia et al., 2020) (Figures 1F and 1G). Principal-component analysis (PCA) on variable 

genes in each cluster confirmed that clusters in each individual group harbor similar cell 

identity (Figure 1H).

To validate the potential developmental origin of macrophage subsets, we queried several 

conventional functional characteristics of hepatic macrophages. Liver resident macrophages 

showed activity of iron metabolism (Figure 1I), which is an accessory characteristic of 

Kupffer cells (Blériot and Ginhoux, 2019). In contrast, most of the MDM clusters showed 

high hypoxia and proliferation activities (Figure 1I). Moreover, we evaluated expression 

of several immunosuppressive genes in TAMs, including Tgfb1 (encoding transforming 

growth factor β [TGFβ]), Vsir (encoding VISTA [V-domain immunoglobulin suppressor 

of T cell activation]), Pirb (encoding ILT2), and Trem2 (encoding TREM2 [triggering 

receptor expressed on myeloid cells 2]). Apart from Kupffer cells, MDMs, LCMs, and PMs 

manifested immunosuppressive potential, as shown by high expression of Tgfb1, Vsir, Pirb, 

and Trem2 (Figure 1I). Altogether, we transcriptionally identified 14 hepatic macrophage 
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clusters derived from 4 potentially different developmental origins. Our results reveal high 

levels of heterogeneity of macrophages in the liver TME.

TAMs manifest high metabolic diversification

Metabolism is known to affect the phenotype and function of immune cells, including T 

cells (Bian et al., 2020; Cascone et al., 2018; Li et al., 2018) and macrophages (Wang 

et al., 2021; Xia et al., 2020) in the TME. To gain comprehensive and unbiased insights 

into the metabolic activities of macrophage subsets in the liver TME, we performed 

gene set enrichment analysis (GSEA) on 14 macrophage clusters against 60 metabolic 

pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Figure 

2A). Interestingly, the 14 macrophage clusters showed distinct metabolic activities (Figures 

2B and 2C). For example, clusters 0/1/13 showed higher purine metabolism (Figure 

2B); clusters 2/7/9/10/11 had relatively higher activity of lipid metabolism; cluster 3 was 

featured with higher iron and lipid metabolism (Blériot and Ginhoux, 2019); cluster 4 was 

characterized by a mixed metabolic profile, as shown by high oxidative phosphorylation 

(OXPHOS) and high lipid and amino acid metabolism; cluster 5 showed high activity of 

glycolysis, lipid metabolism, iron metabolism, and OXPHOS (Figure 2B); clusters 6/12 

were characterized by high glycolysis activity (Figure 2B); and cluster 8 showed minor 

metabolic activity. These data suggest that TAMs in the liver microenvironment manifest 

diverse metabolic activities.

Based on this finding, we decided to explore the fine-grained metabolic heterogeneity of 

hepatic macrophages at the single-cell level. To this end, we focused our analyses on 1,310 

genes with established metabolic function. We performed clustering and gene ontology (GO) 

analysis as well as assigned dominant metabolic identity (Figure 2D). In line with previous 

metabolic activity analysis (Figure 2B), the 8,056 macrophages showed heterogeneous 

metabolic patterns (Figures S1A and S1B). Based on the similarity analysis with PCA 

(Figure S1C) and Pearson correlation matrix (Figure S1D), we classified those hepatic 

macrophages into 5 metabolic clusters, featured with lipid metabolism, purine metabolism, 

amino acid (AA) metabolism, and OXPHOS as well as glycolysis (Figures 2E and S1E). 

Further GO analysis on the top enriched genes (Figure S1F) and GSEA on metabolic gene 

signatures (Figure 2F) in each metabolic cluster showed that each defined metabolic type 

was dominantly enriched in corresponding metabolic clusters (Figures 2F and S1F).

Metabolic clustering could potentially discriminate macrophages with different origins 

(Figure 2G), including normal macrophages and TAMs (Figure 2H). Interestingly, when 

macrophages were classified into M1- and M2-like types, they exhibited mixed patterns in 

terms of metabolic profiles (Figures 2E, 2I, and S1G), developmental origins (Figures 2G, 

2I, and S1H), sample origins (Figures 2H, 2I, and S1I), and functional features (Figure 

S1J). These data suggest that classification of TAMs into M1 and M2 types bear certain 

limitations, and classification of TAMs at the basis of their metabolic profiles could provide 

complementary and novel information on TAM heterogeneity.

Nutrients and metabolites can be transported by their solute carriers (SLCs) and are 

prerequisites for metabolic activities. In line with different metabolic activities in TAM 

subsets identified in our analysis, several SLC transporters were up-regulated in their 
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corresponding metabolic clusters (Figure 2J). For example, SLC2A1, a glucose transporter, 

was highly expressed in the glycolysis cluster, while SLC25A15, an ornithine translocase, 

was highly expressed in the AA cluster (Figure 2J). In addition, distinct transcription factors 

were predicted to regulate the expression of top 10 highly expressed genes in each metabolic 

cluster (Figure 2K). To identify the metabolic differences between normal macrophages 

and TAMs, we split the integrated and metabolic labeled macrophage projector into two 

projectors (Figure 2L). The presence of tumor cells dramatically changed the metabolic 

profiles of hepatic macrophages (Figures 2L and 2M). Intriguingly, metabolic changes 

were largely derived from MDMs because metabolic profiles of residential Kupffer cells 

in the TME remained stable compared with Kupffer cells in normal liver (Figures 2L, 

S1K, and S1L). Immunofluorescence staining showed that Kupffer cells largely resided 

at the peritumor area compared with TAMs in the liver (Figure 2N), suggesting that the 

localization of Kupffer cells may shape their metabolic profile. MDMs in normal liver 

were homogenously enriched with lipid metabolism (Figures S1K and S1L), while MDMs 

from the TME exhibited heterogeneous profiles (Figures S1K–S1M), including purine 

metabolism, lipid metabolism, AA metabolism, glycolysis, and OXPHOS (Figures 2L and 

2M). Notably, all tumor-induced metabolic clusters, including purine (44.4%), AA (11.9%), 

and glycolysis (11.4%), were predominantly derived from MDMs and contributed to 67.7% 

of the TAMs (Figures 2M and 2O). Collectively, these results indicate that TAMs, especially 

MDMs, were heavily metabolically reprogrammed in the liver TME.

Metabolic profiles correlate to distinct functional programs in TAMs

Metabolic profile is coupled with phenotype and functionality of TAMs (Vitale et 

al., 2019; Xia et al., 2020). To evaluate this notion in hepatic TAMs, we identified 

differentially expressed genes (DEGs) (Figure S2A) among 5 metabolic clusters (Figure 

2E) in macrophages in a supervised manner. Pathway enrichment analysis in these DEGs 

demonstrated that distinct functional programs were enriched in different metabolic clusters 

(Figure S2B). In particular, the lipid metabolism cluster was enriched in “regulation of 

lymphocyte activation” and “cargo recognition for endocytosis.” The purine metabolism 

cluster was enriched in “angiogenesis” and “myeloid cell differentiation.” The glycolysis 

metabolism cluster was enriched in “HIF-1-alpha transcription factor pathway” and 

“phagocytosis.” The AA metabolism cluster was enriched in “cysteine and methionine 

metabolism” and “arginine metabolic process.” The OXPHOS metabolism cluster was 

enriched in “scavenging of heme from plasma” (Figure S2B).

To further investigate whether TAM metabolic profiles were related with their functionalities 

in the context of tumor, we manually queried several well-known macrophage functional 

programs, including phagocytosis, antigen presentation, angiogenesis, immunosuppression, 

and M1/M2-like polarization, in different metabolic clusters (Figures 3A–3I). TAMs 

with glycolysis showed the highest ability of phagocytosis (Figures 3A–3C). TAMs 

with purine metabolism showed the lowest capability of antigen presentation, compared 

with TAMs with other metabolic profiles (Figures 3D–3F). Moreover, TAMs with tumor-

induced metabolic features, including purine metabolism, AA metabolism, and glycolysis 

(Figure 2L), expressed high levels of pro-angiogenic genes (Figures 3G–3I). Among 

the immunosuppressive molecules we examined, Tdo2 was enriched in TAMs with AA 
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metabolism; Cd274, Nt5e, and Entpd1 were enriched in TAMs with glycolysis metabolism; 

Arg1 was enriched in TAMs with glycolysis as well as AA metabolism; and Trem2 and 

Vsir were enriched in TAMs with purine metabolism (Figure S2C). As expected, most 

TAMs showed M2-like phenotype rather than M1-like phenotype (Figures S2D and S2E). 

As a validation, we observed that macrophages in the same metabolic status tended to 

show similar functional gene patterns as assessed in PCA, regardless of the sample sources 

(Figures 3J and S2F). Taken together, these data suggest that different metabolic patterns 

correlate with distinct functional programs in TAMs.

Purine metabolic TAMs display terminal and immunosuppressive phenotype

Based on the observed associations between metabolic patterns and functional programs 

in TAMs, we asked if metabolic remodeling of TAMs was coordinated with their cellular 

differentiation. We used RNA velocity analysis via scVelo (Traag et al., 2019) to infer a 

pseudo-time axis, representing progression of cellular differentiation in context of metabolic 

remodeling (Figure 4A). We found that key metabolic-associated genes showed distinct 

inferred latent time (Figure 4A) and displayed distinct expression level and RNA velocity in 

corresponding metabolic clusters (Figures 4B and S3A). The data demonstrate pronounced 

and dynamic changes to metabolic transcriptional programs across macrophage populations 

(Figures 4A and 4B). Next, we overlaid the RNA velocity stream, which characterizes 

the direction and rate of changes to cellular transcriptional states based on the relative 

abundance of spliced and un-spliced transcripts (La Manno et al., 2018), with the metabolic 

projection as defined above (Figures 2E, 4C and S3B) (Traag et al., 2019). RNA velocity 

analysis revealed different cell states of the 5 metabolic populations (Figures 4C and S3B); 

among them, purine metabolic macrophages were at the end stage (Figures 4C and S3B). 

Additional terminal state analysis based on the inferred transition probabilities confirmed 

this finding (Figure 4D). Next, by integrating the identified terminal differentiation states 

with the tissue source of the macrophages, we observed that purine metabolic macrophages 

served as the terminal stage population in the tumor, whereas some lipid metabolic 

macrophages served as the terminal stage population in normal liver (Figures 4D and 4E). 

The endpoint state of purine metabolic macrophages was also confirmed using another 

pseudo-time algorithm of partition-based graph abstraction (PAGA) (Wolf et al., 2019) 

(Figure 4F).

Given that purine metabolic macrophages were located at the terminal stage of the 

trajectory and comprised 43.8% of all TAMs, we focused our analysis on purine metabolic 

macrophages. Normal tissue-derived macrophages in clusters 0/1 showed lipid metabolism 

(Figure 2L, left), while TAMs in clusters 0/1 displayed purine metabolism (Figure 2L, right). 

This suggests that macrophages in clusters 0/1 were metabolically reprogrammed from 

lipid metabolism to purine metabolism in the TME, in line with previous differentiation 

trajectory analysis (Figure 4C). Tumor reprogrammed macrophages with purine metabolism 

showed reduced expression of genes related to antigen presentation but conversely increased 

expression of genes related to immunosuppression and angiogenesis (Figures 4G and 

S3C). Purine metabolic gene-signature-enriched macrophages (Figure S3D, top) were 

characterized by increased angiogenesis signature (Figure S3D, middle) and reduced 

antigen presentation scores (Figure S3D, bottom). In support of this, the purine metabolic 
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gene signature showed a strong positive correlation with angiogenesis signature and a 

negative correlation with antigen presentation gene signature (Figure 4H). Conversely, other 

metabolic signatures did not show strong correlation with either angiogenesis or antigen 

presentation gene signatures (Figure S3E and S3F). Further, pseudo-time analysis suggests 

that macrophages gradually lost the expression of genes related to antigen presentation while 

acquiring expression of genes related to angiogenesis when changing from lipid metabolism 

to purine metabolism (Figures 4I and S3G). In addition, purine metabolic macrophages 

expressed three potential immunosuppressive molecules, including Trem2, Vista, and Pirb 
(Figure S4A). The expression of those three genes was gradually gained along the pseudo-

time (Figure 4I) and correlated with the expression of purine metabolic signature (Figures 

4J and 4K) but not the other three metabolic signatures (Figures S4B and Figure 4K). 

These data suggest that purine metabolic TAMs may be terminally differentiated, mediate 

immunosuppression, and have angiogenetic potential.

To experimentally validate our observations, we sorted hepatic macrophages (Figure S5A) 

and examined protein expression of key purine pathway genes, including purine nucleoside 

phosphorylase (Pnp) and adenine phosphoribosyltransferase (Aprt). Consistent with their 

transcript levels (Figure 4G), protein levels of PNP and APRT were higher in TAMs 

compared with macrophages from liver without tumor (Figure 5A). In addition, we 

found that Trem2 was specifically expressed in macrophages (Figure S5B) and positively 

correlated with the purine metabolic signature score (Figure 4J). We used TREM2 as a 

surface marker and sorted TAMs with enriched purine metabolism (Figure S5C). We found 

that TREM2+ macrophages exhibited higher activity of PNP, and expressed higher levels 

of AMP and adenosine, two key metabolites at the downstream of APRT (Figures 5B–5E). 

Moreover, there were more TREM2+ macrophages in liver with tumor compared with liver 

without tumor (Figures 5F–5H and S5D). TREM2+ macrophages showed lower expression 

of MHC-II (I-A/I-E) and MHC-I (H-2Db) Figures 5I and 5J), indicating a reduced capacity 

for antigen-presentation. These data are consistent with our transcript analysis (Figures 4G 

and 4H). To assess the immunosuppressive potential of this macrophage population, we 

sorted and co-cultured them with OT-I cells in the presence of cognate peptide SIINFEKL. 

The proliferation of antigen-specific T cells was significantly decreased in the presence of 

TREM2+ TAMs (Figures 5K and 5L). The data reveal the immunosuppressive capability 

of purine-metabolism-enriched, TREM2+ TAMs. Taken together, these results indicate that 

purine metabolic TAMs are terminally differentiated and immunologically suppressive in the 

TME.

Human TAMs manifest high metabolic heterogeneity

To corroborate our findings in humans, we proceeded with our analysis on human TAMs 

utilizing two human scRNA-seq datasets, mostly mirroring our experimental model: (1) 

macrophages in hepatocellular carcinoma (HCC) and adjacent normal tissues (Sharma et 

al., 2020) and (2) macrophages in colorectal cancer (CRC) and adjacent normal tissues 

(Zhang et al., 2020). We first analyzed metabolic profiles in human HCC and CRC 

macrophages (Figures S6A–S6C). Like mouse TAMs, we observed 5 metabolically distinct 

macrophage clusters in HCC (Figures S6A and S6B) and CRC (Figure S6C). In addition, 

separated projectors of HCC and CRC and adjacent normal tissues revealed a metabolic 
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homogeneity in normal macrophages and a high metabolic heterogeneity in TAMs (Figures 

6A–6D). Moreover, metabolic profiles were gradually shifted from adjacent normal tissues 

to peripheral tumors and then to core tumors (Figure 6A), suggesting a potent impact 

of cancer cells on TAM metabolic heterogeneity. By querying the expression of both a 

combined gene signature and key purine metabolic genes, we could identify a significant 

number of purine metabolic TAMs in HCC and CRC (Figures 6E–6I). Using pseudo-time 

analysis (Farrell et al., 2018; Sharma et al., 2020), we confirmed our prior observations 

that macrophages with purine metabolism are at the terminal differentiation stage (Figures 

6J and 6K). Furthermore, the purine metabolic gene signature showed a strong positive 

correlation with angiogenesis gene signature and immunosuppressive gene TREM2 (Figure 

6L). In addition to HCC and CRC, we also observed higher purine gene signature score in 

TAMs from uterine corpus endometrial carcinoma (UCEC), thyroid carcinoma (THCA), and 

esophageal carcinoma (ESCA), compared with macrophages from normal adjacent tissues 

(Cheng et al., 2021)(Figure 6M). Moreover, the purine gene signature score was higher at 

later stage CRC and ESCA (Figure 6N). These data suggest that purine metabolism is a 

hallmark of TAMs across multiple cancer types in humans.

Purine metabolic TAMs were associated with clinical outcome

Because purine-metabolism-enriched TAMs harbor a pro-tumor phenotype, we wondered 

whether purine metabolism in TAMs correlated with clinical response to ICB and cancer 

patient outcome. We studied 3 patient cohorts that received ICB therapy, including (1) 

cohort 1, metastatic melanoma patients (Sade-Feldman et al., 2018); (2) cohort 2, metastatic 

melanoma patients (Jerby-Arnon et al., 2018); and (3) cohort 3, advanced basal cell 

carcinoma (BCC) (Yost et al., 2019). We found that the levels of purine metabolic gene 

expression were consistently higher in TAMs from non-responders than responders (Figure 

7A; left two panels of Figures 7B and 7C; and 7D–7F). In addition, TAMs from non-

responders showed higher expression of purine metabolic genes in post-treatment samples 

compared with baseline samples (Figures 7B and 7C, right; and 7D–7F). Thus, purine 

metabolism in TAMs may contribute to both primary and acquired therapeutic resistance. 

Next, we examined the relationship between the expression level of purine metabolic genes 

in TAMs and patient survival. We used the coefficient of individual purine metabolic genes 

in cohort 1 (Sade-Feldman et al., 2018) (Figures 7G–7I) to score the risk of individual 

patients. We then stratified patients into low- or high-risk groups based on their risk scores 

(Figure 7G, top). Compared with the low-risk group, purine metabolic genes, such as APRT, 
NT5C2, and PAICS, were expressed at higher levels in the high-risk group (Figure 7G, 

bottom), in which most patients were dead (Figure 7G, middle) and had shorter overall 

survival (Figure 7H). Cox proportional hazards model (Cox-PH) analysis showed that 

patients with higher purine metabolic gene expression in their TAMs had poor prognosis 

compared with those with lower purine metabolic gene expression (Figure 7I). Taken 

together, these results strongly suggest that the expression levels of purine metabolic genes 

correlate to ICB response and are associated with patient outcomes.
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DISCUSSION

In this work, we have conducted an scRNA-seq study on hepatic macrophages in mice 

bearing tumor liver metastases and extended our findings to several cancer patient 

cohorts. We have found that TAMs are developmentally, metabolically, and functionally 

heterogeneous and that purine metabolism delineates macrophage population with a 

consistent pro-tumor phenotype.

According to the classical dualistic theory, macrophages, including TAMs, are classified 

into M1 and M2 types. M1 macrophages are viewed as pro-inflammatory and cytotoxic 

while M2 macrophages are anti-inflammatory and promote wound healing. Indeed, in 

the normal human liver tissues, there are both pro-inflammatory and immune regulatory 

macrophage subsets (MacParland et al., 2018). However, while we have found that 

most macrophages showed an M2-like phenotype in the hepatic TME, TAMs manifested 

high heterogeneity at developmental, metabolic, and functional levels. Ontogenetically, 

macrophages, including TAMs, could be classified into two populations: circulating 

MDMs and embryonically originated residential macrophages. In line with this notion, 

our transcriptome analysis demonstrated the existence of both MDMs and residential 

macrophages in the liver microenvironment (Mould et al., 2019; Sharma et al., 2020). 

Previous data suggest that embryonic-derived macrophages and peripheral MDMs may play 

different and often conflicting roles in different types of tumor models (Franklin et al., 

2014; Loyher et al., 2018; Zhu et al., 2017). For example, TIM-4+ peritoneal residential 

macrophages appear to mediate major immune suppression in ovarian cancer (Xia et al., 

2020). Interestingly, our analysis revealed that MDMs are reprogrammed in the context of 

tumor liver metastasis and exhibit an immunosuppressive and pro-tumor phenotype. Our 

results suggest that macrophage subsets can play different roles in different disease models 

or sites. Nonetheless, ontogeny of TAM subsets and potential mechanisms controlling TAM 

metabolic heterogeneity need additional studies. It is suggested that the metabolic profiles 

of TAMs may be shaped by both their developmental origin and specific histological TME 

(Argüello et al., 2020; Ben-Moshe and Itzkovitz, 2019; Ben-Moshe et al., 2019; Kumar et 

al., 2019). In line with this, we found that Kupffer cells largely reside at the peritumor area. 

This localization may potentially explain their relatively stable metabolic status in the liver 

with tumor.

Recent studies have demonstrated that nutrients and metabolites can phenotypically and 

functionally reshape the states of immune cells, including myeloid cells and T cells, 

in the TME (Bian et al., 2020; Li et al., 2018; Wang et al., 2021; Wu et al., 2019; 

Zhao et al., 2016). Accordingly, our metabolic pathway analysis revealed several features 

of TAMs. First, there was a wide heterogeneity of TAMs in the context of ontogeny 

(monocyte-derived and residential), tissue origin (normal tissue and tumor), and macrophage 

polarization status. Second, when we compared TAMs with normal macrophages, we 

discovered that tumors endow TAMs with specific metabolic profiles, as demonstrated by 

clusters with high glycolysis and AA metabolism. Additionally, tumors may also reprogram 

existing metabolic cluster(s), as shown by the metabolic shift from lipid metabolism to 

purine metabolism. Interestingly, TAM subsets enriched with purine metabolism were 

terminally differentiated. This was in stark contrast to other TAMs with high activity 
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of other metabolic pathways, such as glycolysis, OXPHOS, lipid metabolism, and AA 

metabolism. Furthermore, the purine-metabolism-enriched TAMs possessed limited ability 

of phagocytosis and antigen presentation but expressed high levels of genes related to 

angiogenesis and immunosuppression. Moreover, high purine metabolism signature score 

in TAMs correlated with poor therapeutic outcome to immunotherapy in several cancer 

patient cohorts and was associated with shorter survival. Tumor cell purine metabolism 

may promote ICB resistance (Keshet et al., 2020; Zhou et al., 2020). Previous studies 

have demonstrated that targeting CSF-1/CSF-1R signaling pathway can deplete MDMs, 

resulting in tumor regression in several murine models (Pyonteck et al., 2013; Ries et 

al., 2014; Yu et al., 2021). However, given the multifactorial roles of TAM subsets, 

systemic macrophage depletion has not been translated into therapeutic efficacy in patients 

with cancer (Cassetta and Pollard, 2018). Our work indicates that TAMs are highly 

heterogeneous, and purine-metabolism-enriched TAMs are detrimental for cancer patients. 

Given that purine metabolism plays a key role in tumor transformation and progression 

(Keshet et al., 2020; Zhou et al., 2020), targeting purine metabolism may selectively disable 

harmful TAM subset and simultaneously impair tumor cells, thereby being a “killing two 

birds with one stone” approach.

Limitations of the study

A limitation of our analysis is its relative dependence on transcriptomic profiling, while 

multiple factors, including metabolic protein expression levels, metabolic enzymatic 

activities, and environmental regulatory mechanisms, may coordinately determine the 

functional relevance of specific metabolic pathway in tumor immunity. Although we have 

validated our major conclusions with selective experiments, additional complementary and 

confirmatory strategies, such as high-throughput metabolic proteomic profiling, and gain- 

and loss-of-function studies, should be employed to fully characterize TAMs in the future.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact: Weiping Zou (wzou@med.umich.edu). 

This study did not generate new unique reagents.

Materials availability—This study did not generate new unique reagents.

Data and code availability—The in-house dataset in this study is available in GEO under 

the accession number of GSE157600 (Yu et al., 2021). Other datasets could be obtained 

from the original papers listed above and the Supplementary table S1 (Table S1). This paper 

does not report original code. All software is freely or commercially available and is listed 

in the STAR Methods description. Any additional information required to reanalyze the data 

reported in this work paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice—Eight- to ten-week-old female C57BL/6 were ordered from Jackson Laboratory. OT-

I mice were ordered from Jackson Laboratory and bred in house. All mice were maintained 

under SPF housing. Animal studies were conducted under the approval of the Institutional 

Animal Care & Use Committee (IACUC) at the University of Michigan (PRO00010169, 

PRO00009373).

Cell lines—Luciferase-expressing MC38 cells (MC38-luc) were established by 

transfection with lenti-GF1-CMV-VSVG virus expressing GFP and luciferase as previously 

described (Yu et al., 2021).

Tumor model—We studied MC38 colon cancer metastasis in the livers in murine model. 

To this end, we established subcutaneous MC38 tumors and inoculated 5 × 105 MC38 

tumor cells into liver via intrasplenic injection, followed by immediate splenectomy, as we 

reported recently (Yu et al., 2021). Control mice have undergone a sham surgery. 14 days 

after tumor establishment, we isolated hepatic mononuclear cells via density centrifugation. 

Normal livers and livers bearing MC38 tumors were resected, flushed out blood through the 

portal vein with PBS, minced, and passed through a 100-uM cell strainer (BD Biosciences). 

Hepatocytes were depleted through a series of 100 x g centrifugation steps. The supernatant 

was layered onto 15 mL Ficoll-Paque media and centrifuged at 1000 x g for 20 minutes and 

stopped without a brake applied. The buffy layer was isolated, washed, and filtered. Three 

biological replicates were pooled.

METHOD DETAILS

Immunofluorescence—Liver tissues with metastatic tumors were collected and fixed in 

4% paraformaldehyde at 4 °C overnight. Tissues were dehydrated in 30% sucrose solution 

at 4 °C overnight. After dehydration, tissues were frozen in optimal cutting temperature 

compound. Cryosections at 10 μm were made for immunofluorescent staining. Sections 

were blocked with 1% BSA (37 °C, 1 hour), stained with PE-F4/80 and anti-CLEC4F 

overnight at 4 °C, washed and stained with secondary antibody (37 °C, 20 minutes), and 

counter-stained with DAPI. Tissue sections were analyzed with confocal microscope (Nikon, 

A1) and imaged with ImageJ.

Magnetic-activated cell sorting (MACS) of hepatic macrophages—Liver 

mononuclear cells were isolated as previously described. Cell suspensions were blocked 

with rat serum at 4°C for 30 minutes, labeled with PE-F4/80 (BD Biosciences) or PE-

TREM2 (R&D systems) antibodies at 4°C for 30 minutes, washed with PBS twice, labeled 

with anti-PE microbeads (Miltenyi) at 4°C for 30 minutes, and washed with PBS twice. 

Then, PE positive cells were sorted by passing through LS columns (Miltenyi) according 

to manufacturer’s instructions. Purity of the sorted cells (> 90%) were assessed by flow 

cytometry.

Immunoblots—Sorted macrophages were lysed in RIPA buffer (Thermo Fisher Scientific) 

supplemented with Protease and Phosphatase Inhibitor Cocktail (Thermo Fisher Scientific). 

Protein concentrations of cell lysates were determined using BCA protein assay kit 
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(Thermo Fisher Scientific). Equivalent amounts of total cellular protein were separated by 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Proteins were then 

transferred to polyvinylidene fluoride membranes and immunoblotted with the indicated 

antibodies.

Purine nucleoside phosphorylase (PNP) activity assay—PNP activity was 

determined by using PNP activity assay kit (Abcam). One million sorted macrophages 

were lysed in 200 μL PNP activity assay buffer. PNP activity was determined according to 

manufacturer’s instruction.

OT-I cell proliferation assay—Splenocytes from OT-I transgenic mice were isolated 

and labeled with carboxyfluorescein succinimidyl ester (CFSE, Thermo Fisher Scientific). 

CFSE-labeled OT-I splenocytes were stimulated with OVA-SIINFEKL peptides (100 nM) in 

the presence of IL-2 (5 ng/mL), 2-Mercaptoethanol (55 μM) and seeded at a concentration of 

5 ×104 cells per well of flat 96-well plates. Sorted TREM2+ cells or TREM2− cells (2 × 105 

cells) were added at the time when the activation started. Two days after coculture, OT-I cell 

proliferation was determined by CFSE dilution. OT-I cells were gated as CD45+CD3+CD8+ 

cells.

Flow cytometry—Mononuclear cells were isolated from the livers, blocked with serum, 

and stained with fluorescently conjugated antibodies. Quantification of cell number was 

performed using CountBright Absolute Counting Beads (Thermo Fisher). Data analysis 

was performed on a BD LSRFortessa (BD Bioscience) using BD FACS Diva software. 

The following antibodies were used: CD45 (Clone 30-F11, BD Biosciences), CD11b 

(Clone M1/70, BD Biosciences), F4/80 (Clone T45-2342, BD Biosciences), I-A/I-E (Clone 

M5/114.15.2, Thermo Fisher Scientific), H-2Db (Clone AF6-88.5, BD Biosciences), and 

TREM2 (FAB17291P, R&D systems).

Single cell sequencing—Single cell library preparation was carried out by using the 

10X Genomics Chromium Single Cell 5′ Library and Gel Bead Kit v2 #1000014 (10X 

Genomics, Pleasanton, CA, USA). Single cell sequencing was performed on the single cells 

as we recently reported (Yu et al., 2021). Libraries were sequenced on an Illumina HiSeq 

2500.

QUANTIFICATION AND STATISTICAL ANALYSIS

Single cell sequencing data analysis—The data processing method for the in-house 

scRNA-seq dataset was similar to the method described previously (Yu et al., 2021). 

In brief, basecalls were first converted into FASTQs with bcl2fastq. FASTQ files were 

aligned to the mice genome (GRCm38.p6) using the STAR aligner as implemented in the 

pipeline of Cell Ranger (version 2.2). UMI counts, and gene information as well as barcode 

matrix output from the Cell Ranger workflow were used for downstream analyses. Next, 

several data quality checks and filtering steps were performed: 1) cells with fewer than 

200 genes detected, 2) cells with greater than 30% mitochondrial RNA content, and 3) 

cells not expressing macrophage markers (Lyz2, Csf1r, Cd68, and Lgal3) and expressing 

dendritic cell marker (Zbtb46) or neutrophil marker (Ly6g and Csf3r), 4) cells identified 
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as doublet by using DoubletDecon (DePasquale et al., 2019) and Scrublet (Wolock et 

al., 2019) were excluded from all downstream analyses. Subsequently, the majority of 

downstream analyses were performed using the Seurat (version 2.3.4) workflow (Satija et 

al., 2015) as described below: counts on the filtered matrix for each gene were normalized 

to the total library size with the Seurat ‘NormalizeData’ function (verbose = FALSE). 

2000 most highly variable genes identified by the function ‘FindVariableGenes’ from Seurat 

were used to perform unsupervised clustering. ‘FindIntegrationAnchors’ and ‘IntegrateData’ 

functions were used to integrate samples with and without liver tumors. Then each integrated 

feature was centered to a mean of zero and was scaled by the standard deviation with the 

function ‘ScaleData’ in Seurat. PCA was performed using the function ‘RunPCA’. The 

‘FindClusters’ function was used to calculate the clusters of the cells, with the resolution set 

to 0.8. Next, UMAP v0.3.9 (McInnes et al., 2018) plots were used to visualize clusters of 

cells localized in the graph-based clusters by using ‘RunUMAP’ function (reduction: pca, 

dims: 1:20). Markers for each cluster were identified by finding differentially expressed 

genes between cells from the individual cluster versus cells from all other clusters using the 

‘FindAllMarkers’ function (only.pos: TRUE, min.pct: 0.25, logfc.threshold: 0.25). Clusters 

were further annotated by ‘Enrichr’ software (Kuleshov et al., 2016) with the markers 

identified above. The scPred packegae was applied to validate the definition of macrophage 

clusters (Alquicira-Hernandez et al., 2019). Metabolic heterogeneity was evaluated with 1- 

(Gini index), which was calculated by R package of “ineq”.

Gene signature enrichment—In order to create heatmaps, feature plots, and violin plots 

for gene set with multiple genes, 10 curated gene expression signatures were interrogated: 1) 

residential macrophages (RTMs): Timd4, Vsig4, Clec4 (Davies et al., 2013); 2) Monocyte-

derived macrophages (MDMs): Ccr2 (Serbina and Pamer, 2006); 3) Liver capsular 

macrophages (LCMs): Itgax, Cx3cr1 (Blériot and Ginhoux, 2019; Sierro et al., 2017); 

4) Peritoneal macrophages (PMs): Gata6 (Blériot and Ginhoux, 2019; Wang and Kubes, 

2016); 5) Antigen presentation and processing, the complete signature was collected from 

databases of MSigDB ((Subramanian et al., 2005) and Mouse Genome Informatics (http://

www.informatics.jax.org/go/term/GO:0019882) with number of hsa04612 and GO:0019882, 

respectively, key genes selected to represent on related heatmaps including: H2-Aa, H2-Ab1, 

H2-DMa, H2-DMb1, H2-Dmb2, H2-Eb1, H2-Oa, H2-Ob, H2-Q6, H2-Q7, Tap1, Tap2, 

B2m, Cd74, Tapbp, Tapbpl, Ciita, Nlrc5, Cd80, Cd86, Icosl, Cd40, Il18, Il1b, and Il12b; 

6) Phagocytosis: Cd74, Fcgr2b, Gsn, Hsp90aa1, Itgam, Itgb1, Msr1, Ccl2, Tgm2, Thbs1, 

Tlr2, Cd93, Ctsl, Tuba1c, Cebpb, Ctsd, Clec4w, Nfkbia, and Trem1 (collected from KEGG 

(Kanehisa et al., 2016)); 7) Angiogenesis: Anxa1, Anxa2, C3, E2f2, Fn1, Tgfbi, Ramp1, 

Lrg1, Spint1, Vegfa (collected from KEGG (Kanehisa et al., 2016)); 8) M2-like polarization: 

Alox5, Arg1, Chil3, Cd163, Il10, Il10ra, Il10rb, Irf4, Kif4, Mrc1, Myc, Socs2, and Tgm2 
(Mould et al., 2019); 9) M1-like polarization: Azin1, Cd38, Cxcl10, Cxcl9, Fpr2, Il18, Il1b, 
Irf5, Nifkbiz, Tlr4, Tnf, and Cd80 (Mould et al., 2019); and 10) purine metabolic genes: 

Nme3, Ampd3, Adk, Pgm2, Atic, Gmps, Gmpr2, Impdh2, Nt5c2, Adsl, Nudt9, Pass1, Itpa, 
Nt5c, Paics, Gart, Dguock, Aprt, and Pnp (collected from MSigDB) (Subramanian et al., 

2005). Individual cells were scored for enrichment of gene signatures using the function of 

AddModuleScore by setting the ‘ctrl’ (number of control features selected from the same bin 

per analyzed feature) as 5. Next, standard FeaturePlot and VlnPlot function of Seurat were 
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used to generate the feature plots or violin. Transcriptional factors (TF) that regulated the 5 

metabolic clusters were predicted by using BART database (Wang et al., 2018) with top 10 

highly expressed genes in each cluster, top 5 significantly enriched TF in each cluster were 

represented.

M1-like and M2-like macrophage definition—The phenotype of M1-like and M2-like 

macrophages was defined as the mean expression score calculated by using the function 

of AddModuleScore of relative gene signatures (Azizi et al., 2018; Zhang et al., 2020). 

Genes associated with M1-like macrophages included Azin1, Cd38, Cxcl10, Cxcl9, Fpr2, 
Il18, Il1b, Irf5, Nifkbiz, Tlr4, Tnf, and Cd80 (Mould et al., 2019). Alox5, Arg1, Chil3, 
Cd163, Il10, Il10ra, Il10rb, Irf4, Kif4, Mrc1, Myc, Socs2, and Tgm2 were used to define the 

signature of M2-like macrophages (Mould et al., 2019).

Correlation analysis between gene signatures—For correlation analysis between 

gene signatures of antigen presentation (or angiogenesis) and purine metabolic genes, score 

of each signature was defined as described above. Then, Pearson correlation analyses and 

scatter plots were performed and prepared using GraphPad version 6.0.

Metabolic activity analysis with GSEA—Ranked fold-change list of differentially 

expressed genes for each cluster was obtained by comparing cells from the individual cluster 

(defined above) with cells from all other clusters. To obtain the differentially expressed 

genes of each cluster, the “FindAllMarkers” function of the Seurat pipeline was used. Next, 

GSEA was performed with 60 KEGG (Kanehisa et al., 2016) metabolic pathways and 

the ranked lists by using the “PreRanked” function of GSEA v3.0 (Subramanian et al., 

2005). Gene set enrichment nominal p values, NES (Normalized Enrichment Score) values, 

and adjusted p values (FDRs) were then calculated with 1,000 permutations in the GSEA 

software, run in Signal2Noise mode. Finally, the NES and nominal p-value were applied 

to sort each cluster of the enrichment degree of metabolic pathways. Heatmap visualization 

was performed by using GENE-E (https://software.broadinstitute.org/GENE-E/) with the 

value obtained (+/−Log2|NES/FDR|).

Metabolic clustering for hepatic macrophages—To obtain metabolic clusters of 

the 8056 macrophages, 1310 metabolic genes extracted from 60 metabolic pathways were 

obtained from the KEGG database. A new 1310 genes by 8056 cells matrix was subset 

from the total 20000 genes by 8056 cells data matrix (tumor and normal samples were 

integrated as showed above), followed by the creation of Seurat objects. The following 

steps of clustering cells by metabolic genes were the same as the standard Seurat pipeline 

described above. With the ‘dims’ parameter set to 20, ten metabolic clusters were obtained 

with those 1310 input genes and 350 highly variable features.

To identify differentially expressed genes in each of the ten metabolic clusters, the 

“FindAllMarkers” function of the Seurat pipeline was used to compare cells from an 

individual cluster with cells from all other clusters. Next, each of the ten metabolic clusters 

were annotated with the top 10 differentially expressed genes (P < 0.05 and log2(fold 

change) >=0.25) by using the Enrichr program (Kuleshov et al., 2016). The top one 

(with fisher exact test p-value ranked as the most significant) enriched metabolic pathway 
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was considered as the dominant metabolic pathway of each cluster. PCA and consensus 

clustering from scater (McCarthy et al., 2017) package was used to validate the clusters 

defined above. We found that the cells clustered by Seurat as a cell type could also be 

grouped together by PCA. Then clusters with the same annotated dominant metabolic 

pathway were merged and labeled with the same color in corresponding plots. Also, 

each cell was labeled by other features: 1) Seurat cluster defined by all marker genes, 2) 

predicted developmental origin as defined above (RTMs, MDMs, LCMs and PMs), 3) tissue 

source (tumor versus normal), and 4) the polarization states defined above. Finally, the 

UMAP projection of 20000 genes by 8056 cells was colored with the same color of the 

5 merged metabolic clusters and split into two projections of tumor and normal samples. 

The proportion of each cluster was calculated with the function of “prop.table” in Seurat 

pipeline.

Trajectory analysis—BAM files aligned using the Cell Ranger pipelines were first sorted 

by using SAMtools v1.12 (Li et al., 2009). Next, the Velocyto (La Manno et al., 2018) 

pipeline was used to count spliced and un-spliced reads, and generate two loom files of 

both tumor and normal samples. Gene-specific velocities were then computed following 

the scVelo python package (Bergen et al., 2020). Meanwhile, the projection clustered with 

metabolic genes (as defined in Figure S1A) was embedded with the velocity streams predict 

by scVelo with the loom files. Finally, plots for the ratio of spliced and un-spliced, for the 

velocity and the expression of various individual gene were generated based on the velocity 

calculated by scVelo. Additional developmental trajectory inference algorithms, URD v1.1.0 

(Farrell et al., 2018) (Figure 6J) and partition-based graph abstraction (PAGA (Wolf et al., 

2019), Figure 4F), were used to confirm the robustness of our results. For URD analysis, 

cells from the macrophage metabolic cluster characterized by OXPHOS were set as root. 

The analyses were performed by setting the parameters of knn to 100 and sigma to 16. 

For PAGA, the pseudo-time was calculated by scanpy v1.4.3 (Wolf et al., 2018). In brief, 

we followed the pipeline plugged in scVelo and used the same projection generated by 

scVelo and performed the prediction with the function of scv.pl.paga in scVelo by setting the 

parameter of basis as umap, the size as 50 and the alpha as 0.3, the min_edge_width as 2 and 

the node_size_scale as 1.5.

Clinical datasets—We extended our analysis to 8 human scRNA-seq datasets (Table S1), 

including: (I) Hepatocellular Carcinoma (HCC) and adjacent normal samples from 14 HCC 

patients (Sharma et al., 2020) (5353 macrophages, Figure 6); (II) Colorectal Cancer (CRC) 

and adjacent normal samples from 18 CRC patients (Zhang et al., 2020) (3123 macrophages, 

Figure 6); (III) melanoma samples from 22 metastatic melanoma patients treated with ICB 

(Sade-Feldman et al., 2018), named as melanoma cohort 1 (1254 macrophages, Figure 

7); (IV) melanoma samples from 31 melanoma patients grouped by the response rate 

and the treatment types (15 untreated, 15 with ICB resistance, and 1 with ICB response) 

(Jerby-Arnon et al., 2018), named as melanoma cohort 2 (420 macrophages, Figure 7); 

(V) advanced Basal Cell Carcinoma (BCC) samples from 11 BCC patients with before 

and after anti-PD-1 treatment in site-matched primary tumors (Yost et al., 2019) (3093 

macrophages, Figure 7); (VI) Uterine Corpus Endometrial Carcinoma (UCEC) and adjacent 

normal samples from 9 UCEC patients (Cheng et al., 2021) (4194 macrophages, Figure 6); 
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(VII) Thyroid Cancer (THCA) and adjacent normal samples from 10 THCA patients (Cheng 

et al., 2021) (5312 macrophages, Figure 6); (VIII) Esophageal Carcinoma (ESCA) and 

adjacent normal samples from 7 ESCA patients (Cheng et al., 2021) (4825 macrophages, 

Figure 6). As there were at least 2 patients in each stage in the CRC and ESCA data sets, we 

used these two data sets for clinical stage analysis.

Patient outcomes analysis—To evaluate the performance of the expression of purine 

metabolic genes in TAMs in ICB response, we analyzed the scRNA-seq datasets in 3 cohorts 

(Jerby-Arnon et al., 2018; Sade-Feldman et al., 2018; Yost et al., 2019). For each dataset, 

in matrix representation, the normalized expression level of each purine metabolic gene 

across macrophages (already defined by each original paper) was used. Next, the Z-scores 

were calculated by subtracting the average among all macrophages of each gene. Then, the 

Z-score was used as the input for downstream heatmap visualization by GENE-E. GraphPad 

version 6.0 was used to make boxplots and perform Mann-Whitney test on different groups 

(such as ICB response and tumor stages).

For patient overall survival (OS) analysis, based on the availability of clinical follow-up 

information, we used the melanoma cohort 1 (Sade-Feldman et al., 2018). We constructed 

a Cox proportional hazard model with OS regressed on the expression of purine metabolic 

genes. First, the value of coefficient for each gene was computed based on the expression 

levels and the living days as well as the living status (dead or not) of each patient with 

“coxph test” from the “survival” R package. Second, for each individual patient, a risk score 

was obtained by taking sum of the value of coefficient*expression level of each gene. The 

patients were then ranked by their corresponding risk score (Han et al., 2019; Wang et al., 

2019) and colored with living status (middle panel of Figure 7G). Finally, the expression 

level of each purine metabolic gene in each macrophage was represented by a heatmap with 

patients ordered according to their risk scores (bottom panel of Figure 7G). In addition, 

to explore the relationship between purine metabolic gene expression in TAMs and with 

OS, a Kaplan-Meier survival curve was generated. Patients were initially divided into two 

groups based on the expression levels of purine metabolic genes. Kaplan-Meier survival 

curves were subsequently generated, and log-rank test p values were calculated by using the 

“survival” program of GraphPad version 6.0 with the living days and the living status (dead 

or not) of patients.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Single-cell RNA-seq reveals metabolic heterogeneity of TAMs

• TAM metabolic patterns correlate with their functional features

• Purine metabolism marks TAMs with pro-tumor and terminal phenotype

• Purine metabolism signature correlates with patient outcome and response to 

ICB
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Figure 1. Heterogeneity of TAMs within the liver TME
(A) Gene expression heatmap of 14 macrophage clusters.

(B and C) UMAP visualization of integrated (B) and split projections (C) from tumor and 

normal sample, color-coded based on the clusters; each dot represents a single cell.

(D) Proportions of each macrophage cluster in tumor and normal sample.

(E) UMAP showing the expression levels of 14 selected marker genes for macrophages; 

expression levels are color-coded as gray: not expressed and blue: expressed.
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(F) Heatmap visualization of the expression of markers for typical macrophages, Kupffer 

cells, MDMs, LCMs, and PMs.

(G) Violin plots showing the enrichment of gene signatures of Kupffer cells, MDMs, LCMs 

and PMs in macrophages, determined by multiple features analysis of Seurat v. 3.

(H) Principal-component analysis (PCA) for 14 macrophage clusters for all marker genes in 

each cluster. Averaged position of all cells in each cluster were represented; dots are colored 

by Seurat cluster, as shown in (B).

(I) Heatmap showing the expression level of iron metabolism-, hypoxia-, proliferation-

related genes and T-cell-co-inhibitory molecules in Kupffer cells, MDMs, LCMs, and PMs; 

color of each heatmap cell represents the relative expression level of each gene (Z score).
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Figure 2. TAMs manifest high metabolic diversification
(A) Schematic representing the workflow of metabolic pathway activity analysis for each 

macrophage cluster with scRNA-seq.

(B) Landscape of the activity of different metabolic pathways in different macrophage 

populations (left). Enrichment analysis by GSEA; color of each heatmap cell represents 

the value calculated with formula: +/−Log2|NES/FDR|. Red: significantly up-regulated 

(nominal p < 0.05); blue: significantly down-regulated (nominal p< 0.05); gray: pathways 

not enriched (nominal p > 0.05). Heatmap on the right shows the ratio between tumor and 
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normal sample and the polarization state as well as the origin, defined in Figure 1G, for each 

macrophage population; AA: amino acid metabolism; NES: normalized enrichment scores, 

FDR: false discovery rate.

(C) The activity of selected metabolic pathway in selected macrophage populations. 

Normalized enrichment scores and nominal p values are calculated by Kolmogorov-Smirnov 

test.

(D) Workflow of metabolic heterogeneity analysis of macrophages with scRNA-seq; GO: 

the gene ontology; Lipid: lipid metabolism; Purine: purine metabolism; Gly: glycolysis; AA: 

amino acid metabolism; OX: oxidative phosphorylation.

(E) UMAP plots showing the metabolic clusters of macrophages. The color of each dot 

indicates the dominant metabolic cluster of each cell, determined using 1,310 metabolic 

genes.

(F) GSEA score (+/−Log2|NES/FDR|) of 5 metabolic clusters against 5 metabolic gene 

signatures. Red: positively enriched; green: negatively enriched; white: not enriched.

(G–I) UMAP plots showing the metabolic clusters of macrophages. The color of each dot 

indicates the developmental origin (G) and the sample (H) as well as the polarization state of 

each macrophage (I).

(J) The expression level of genes from SLC family members, ABC transporters, and pump 

and ion channels. Fold change: each metabolic cluster compared with other clusters.

(K) Enrichment analysis of transcriptional factors (TF) associated with the 5 metabolic 

clusters using BART (binding analysis for regulation of transcription) (Wang et al., 2018), 

with top 10 highly expressed genes in each cluster; top 5 significantly enriched TF in each 

cluster represented; red grid: top 5 or not; white grid: not available.

(L) The metabolic landscape of macrophage populations from normal and tumor in the 

context of 14 original macrophage populations, as shown in Figure 1C, the dot color was 

coded based on the dominant metabolism, as shown in Figure 2E.

(M) Relative proportion of cells in each metabolic cluster, as shown in Figure 2L, versus 

samples from normal and tumor. Chi-squared test was used to calculate the significance 

between tumor and normal groups; *p < 0.05, **p < 0.01, and ***p < 0.001.

(N) Immunofluorescence staining of CLEC4F and F4/80 in liver tissue with tumor.

(O) Sankey diagram showing the distribution of macrophages in terms of origin and 

metabolic clusters.
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Figure 3. Metabolic profiles correlate to distinct functional programs in TAMs
(A–I) Heatmap, violin plots, and Sankey diagrams showing the expression level of genes 

from phagocytosis (A–C) and antigen presentation (D–F) as well as angiogenesis (G–I) 

pathways in metabolic cluster of AA, Gly, lipid, OXPHOS, and purine in normal and tumor. 

Each violin represents the score of each signature (B, E, and H); Sankey diagrams show the 

proportion of macrophages expressed relative functional gene signature in context of five 

metabolic clusters; hi: expression score >1 (C, F, and I).
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(J) PCA of 5 metabolic clusters with the expression level of phagocytosis-(left) and antigen 

presentation (middle) as well as angiogenesis (right) gene signature. Cells from normal and 

tumor sample were analyzed separately; each dot shows the averaged position of cells in 

each cluster; N: normal, T: tumor.
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Figure 4. RNA velocity analysis identifies terminal-differentiated immunosuppressive 
macrophage subset
(A) Gene expression dynamics of selected metabolic maker genes in each cluster ordered 

along latent time inferred by RNA velocity analysis with scVelo. Cells were labeled by 

pseudo-time (first row), sample (second row), Seurat cluster (third row), and Leiden cluster 

(fourth row) of each cell, respectively.

(B) The RNA velocity and referred expression level of selected metabolic marker genes 

in each metabolic cluster on the Louvain projection modeled by scVelo. Positive velocity: 

up-regulated; negative velocity: down-regulated.
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(C) RNA velocity of 5 metabolic clusters overlaid with RNA velocity stream. Cells colored 

by Seurat cluster, as shown in Figure 2E.

(D) Endpoints analysis of macrophages. The endpoints are obtained as stationary states of 

the velocity-inferred transition matrix, which is given by left eigenvectors corresponding to 

an eigenvalue of 1, i.e., μend = μendπ. Color bars show the endpoint score of macrophages; 

dark blue: end.

(E) UMAP embedding of macrophages modeled by scVelo. Cells were colored by the 

sample; orange: normal; dark blue: tumor.

(F) PAGA graph showing the inferred developmental trajectories for 5 metabolic clusters. 

PAGA: partition-based graph abstraction.

(G) Volcano plot showing the fold change versus p value of macrophages of cluster 0 

(and cluster 1) from normal and tumor (as shown in Figure 2L), Representative genes 

were highlighted. Red: up-regulated in purine metabolism; blue: down-regulated in purine 

metabolism. Dashed lines show p < 0.05 and fold change >1.5.

(H) Correlation analysis between gene signatures of purine metabolism (y axis) and 

functional programs of angiogenesis and antigen presentation (x axis) on macrophages. 

Pearson’s correlation coefficient (R) and correlation test (p values) were used to evaluate the 

association between two signatures.

(I) Expression of genes from antigen presentation, angiogenesis signature, and 

immunosuppressive molecules along with the pseudo-time inferred by Monocle v. 2.

(J) Correlation analysis between purine metabolic gene signatures (y axis) and 3 

immunosuppressive molecules (x axis) on macrophages.

(K) Summary of the correlation between 5 metabolic gene signatures with 3 

immunosuppressive molecules; Pearson correlation coefficient was shown in each square.
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Figure 5. TREM2+ TAMs display purine metabolic activity and are immunosuppressive
(A) Western blotting of APRT and PNP in F4/80+ cells sorted from liver with and without 

tumor.

(B and C) Metabolic activity of PNP. PNP was detected in TREM2+ TAMs and hepatic 

F4/80+ macrophages from normal liver. Student’s t test was used to calculate the 

significance between two groups.

(D and E) Levels of key purine pathway metabolites. AMP (D) and adenosine (E) were 

measured in TREM2+ TAMs and hepatic F4/80+ macrophages from normal liver. Student’s t 

test was used to calculate the significance between two groups.

(F–H) Flow cytometry quantification of TREM2+ hepatic macrophages in liver with and 

without tumor. Percentage of TREM2+ hepatic macrophages in CD11b+F4/80+ macrophages 

(G) and cell number of TREM2+ hepatic macrophages (H) are shown. Student’s t test was 

used to calculate the significance between two groups.

(I and J) Flow cytometry analysis of MHC-II (I-A/I-E) (I) and MHC-I (H-2Db) (J) 

expression in TREM2+ TAMs and macrophages from liver without tumor. Student t-test 

was used to calculate the significance between two groups.
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(K and L) Flow cytometry analysis of OT-I cell proliferation in the presence or absence of 

TREM2+ and TREM2− cells purified from liver with tumor. Representative histogram (K) 

and the percentage of OT-I cells at the third generation (L) are shown. The ratio of TREM2+ 

or TREM2− cells to OT-I cells is 4:1.
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Figure 6. Human TAMs manifest high metabolic heterogeneity
(A) UMAP visualization of split projections of metabolic clusters from macrophages in 

tissue of adjacent normal, peripheral tumor, core tumor, and total tumor from cohort of 

HCC. HCC: hepatocellular carcinoma.

(B) Heterogeneity of macrophages in tissue of adjacent normal, peripheral tumor, core 

tumor, and total tumor from cohort of HCC. Heterogeneity: 1-(Gini index); dashed line: 

sample with significant diversity.
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(C) UMAP visualization of split projections of metabolic clusters from macrophages in 

tissue of adjacent normal and tumor from cohort of CRC (colorectal cancer).

(D) Heterogeneity of macrophages in tissue of adjacent normal and tumor from cohort of 

CRC. Heterogeneity: 1-(Gini index). Dashed line: sample with significant diversity.

(E and F) Enrichment of purine metabolic gene signature in each macrophage from cohort of 

CRC (E) and HCC (F), respectively.

(G) Diagram showing the expression of genes in purine metabolic pathways. Red font: genes 

enriched, black font: genes not enriched. Data from cohort of CRC were used.

(H and I) UMAP visualization of the expression level of selected purine metabolic genes in 

macrophages from cohort of CRC (H) and HCC (I), respectively.

(J and K) Pseudo-time analysis of macrophages in each metabolic cluster from cohort of 

CRC (J) and HCC (K), respectively. Pseudo-time for each macrophage in cohort of CRC 

was inferred by R package of URD. Pseudo-time for each macrophage in cohort of HCC 

was extracted directly from the original data (Sharma et al., 2020).

(L) Correlation analysis between gene signature of purine metabolism (x axis) with 

angiogenesis and TREM2 (y axis) on macrophages. Data from cohort of HCC (Sharma 

et al., 2020) were used. Pearson’s correlation coefficient (R) and correlation test (p 

values) were used to evaluate the correlation between the purine metabolic signature and 

angiogenesis signatures (and TREM2).

(M and N) Pan-cancer analysis of purine metabolic gene expression in macrophages from 

different tissues (M), and from patients at different grade malignancy (Cheng et al., 2021) 

(N) Mann-Whitney test was used to calculate the significance between two groups; only 

CRC and ESCA have enough patients for stage analysis (at least 2 patients at each stage are 

needed); *p < 0.05, **p < 0.01, and ***p < 0.001. HCC: hepatocellular carcinoma; CRC: 

colorectal cancer; UCEC: uterine corpus endometrial carcinoma; THCA: thyroid cancer; 

ESCA: esophageal carcinoma.
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Figure 7. Purine metabolic TAMs were associated with clinical outcome
(A) Heatmap showing the expression level of purine metabolic genes in macrophages from 

patients with melanoma (Sade-Feldman et al., 2018). Macrophages were ordered by the 

score of purine metabolic gene signature. Macrophages were labeled (the “Response” row) 

by their origins; green: macrophage from ICB non-responders; blue: macrophage from ICB 

responders.

(B and C) UMAP plots showing the clusters of macrophages from melanoma cohort 1 

(Sade-Feldman et al., 2018) (B) and basal cell carcinoma cohort (C). Cells were colored 

by the score of purine metabolic gene signature, ICB response of patients, and samples the 

macrophages were isolated from, respectively.

(D–F) The expression level of purine metabolic genes in macrophages from ICB responders 

and non-responders over three cohorts (Jerby-Arnon et al., 2018; Sade-Feldman et al., 2018; 

Yost et al., 2019). The thick line represents the median value, the bottom and top of the 

boxes are the 25th and 75th percentiles (interquartile range). Whiskers encompass 1.5 times 

the interquartile range. Mann-Whitney test was used to calculate the significance between 

two groups; *p < 0.05, **p < 0.01, and ***p < 0.001.

(G) The impact of expression of purine metabolic genes in macrophages on overall survival 

(OS) in melanoma patients. Upper: the ranked risk score of 22 melanoma patients evaluated 

by the coefficient of purine metabolic genes. Middle: the OS distribution of the 22 patients 

Li et al. Page 35

Cell Rep. Author manuscript; available in PMC 2022 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ranked according to the risk score (from upper). Bottom: heatmap of the expression pattern 

of purine metabolic genes in the macrophages from the 22 melanoma patients.

(H) The expression level of purine metabolic genes in macrophages from patients with 

melanoma. Macrophages were grouped by the OS time of corresponding patients. Mann-

Whitney test was used to calculate the significance between two groups; *p < 0.05, **p < 

0.01, and ***p < 0.001.

(I) Kaplan–Meier plots of OS for 22 melanoma patients accept ICB therapy (Sade-Feldman 

et al., 2018). Patients were stratified into low and high purine metabolism groups with 

the median of the purine metabolism score in macrophages from corresponding melanoma 

patients. Cox proportional hazards model was used to test the OS difference between low 

and high group.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-APRT antibody Abcam ab196558

Anti-PNP Antibody (D-11) Santa Cruz RRID: AB_10709574

PE Rat Anti-Mouse F4/80 BD Biosciences RRID: AB_2872009

Human/Mouse TREM2 PE-conjugate 
Antibody

R&D systems RRID: AB_884528

Anti-CD45 antibody BD Biosciences RRID: AB_1107002

Anti-CD11b antibody BD Biosciences RRID: AB_396772

Anti-I-A/I-E Thermo Fisher Scientific RRID: AB_2534339

Anti-H-2Db BD Biosciences RRID: AB_313512

Critical commercial assays

CountBright Absolute Counting Beads Thermo Fisher Scientific C36950

RIPA buffer Thermo Fisher Scientific #89900

Protease and Phosphatase Inhibitor 
Cocktail

Thermo Fisher Scientific #78430

BCA protein assay kit Thermo Fisher Scientific 23227

AMP Colorimetric Assay Kit Thermo Fisher Scientific K229

Adenosine Assay Kit (Fluorometric) Thermo Fisher Scientific K327-100

Purine Nucleoside Phosphorylase Activity 
Assay Kit (Colorimetric)

Abcam ab204707

Anti-PE Microbeads Miltenyi 130-048-801

Experimental models: Cell Lines

MC38 cells Walter Storkus N/A

Experimental models: Organisms/strains

Mouse: C57BL/6J The Jackson Laboratory Stock No: 000664

Mouse: OT-I The Jackson Laboratory Stock No: 003831

Software and algorithms

Prism 6.0 http://www.graphpad.com/faq/viewfaq.cfm?faq=1362 Commercial

Rstudio 3.6.0 https://rstudio.com RStudio Team (2020). RStudio: 
Integrated Development for R. RStudio, 
PBC, Boston, MA

Cellranger 2.2 https://10xgenomics.com 10x Genomics

Seurat 2.3.4 https://satijalab.org/seurat/ Satija et al., 2015

Monocle http://cole-trapnell-lab.github.io/projects/monocle/ Version 2.8.0

Scanpy 1.4.3 https://github.com/theislab/scanpy Wolf et al., 2018

UMAP 0.3.9 https://github.com/lmcinnes/umap McInnes et al., 2018

Enrichr https://maayanlab.cloud/Enrichr/ Kuleshov et al., 2016
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REAGENT or RESOURCE SOURCE IDENTIFIER

BART http://bartweb.org/ Wang et al., 2018

GSEA 3.0 https://www.gsea-msigdb.org/gsea/index.jsp Subramanian et al., 2005

GENE-E https://software.broadinstitute.org/morpheus/ N/A

scater https://bioconductor.org/packages/release/bioc/html/
scater.html

McCarthy et al., 2017

SAMtools 1.12 http://www.htslib.org/download/ Li et al., 2009

Velocyto 1.0 http://velocyto.org/ La Manno et al., 2018

scVelo 1.0 https://scvelo.readthedocs.io/installation.html Bergen et al., 2020

URD 1.1.0 https://github.com/farrellja/URD/releases Farrell et al., 2018

PAGA https://github.com/theislab/paga Wolf et al., 2019

DoubletDecon https://github.com/EDePasquale/DoubletDecon DePasquale et al., 2019

Scrublet https://github.com/swolock/scrublet Wolock et al., 2019

scPred https://github.com/powellgenomicslab/scPred Alquicira-Hernandez et al., 2019
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