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Representation of brain network interactions is fundamental to the translation of neural

structure to brain function. As such, methodologies for mapping neural interactions into

structural models, i.e., inference of functional connectome from neural recordings, are

key for the study of brain networks. While multiple approaches have been proposed

for functional connectomics based on statistical associations between neural activity,

association does not necessarily incorporate causation. Additional approaches have

been proposed to incorporate aspects of causality to turn functional connectomes

into causal functional connectomes, however, these methodologies typically focus

on specific aspects of causality. This warrants a systematic statistical framework for

causal functional connectomics that defines the foundations of common aspects of

causality. Such a framework can assist in contrasting existing approaches and to guide

development of further causal methodologies. In this work, we develop such a statistical

guide. In particular, we consolidate the notions of associations and representations

of neural interaction, i.e., types of neural connectomics, and then describe causal

modeling in the statistics literature. We particularly focus on the introduction of directed

Markov graphical models as a framework through which we define the Directed Markov

Property—an essential criterion for examining the causality of proposed functional

connectomes. We demonstrate how based on these notions, a comparative study of

several existing approaches for finding causal functional connectivity from neural activity

can be conducted. We proceed by providing an outlook ahead regarding the additional

properties that future approaches could include to thoroughly address causality.

Keywords: neural connectivity, connectome, mapping network, functional connectivity, probabilistic graphical

models, causal connectivity

1. INTRODUCTION

The term “connectome” typically refers to a network of neurons and their anatomical links, such
as chemical and electrical synapses. The connectome represents the anatomical map of the neural
circuitry of the brain (Sporns et al., 2005). Connectome mapping can be achieved with the help of
imaging techniques and computer vision methods at different scales (Shi and Toga, 2017; Sarwar
et al., 2020; Xu et al., 2020). The aim of finding the connectome is to provide insight into how
neurons are connected and how they interact to form brain function.

While the anatomical connectome includes the backbone information on possible ways of
how neurons could interact, it does not fully reflect the “wiring diagram of the brain”, which is
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expected to incorporate the dynamic nature of neurons’ activity
and their interactions (Lee and Reid, 2011; Kopell et al., 2014;
Kim et al., 2019a,b). In particular, the anatomical connectome
does not correspond to how the anatomical structure relates
to brain function since each anatomical connectivity map can
encode several functional outcomes of the brain (Bargmann and
Marder, 2013). Thereby, the term connectome has been extended
beyond the anatomical meaning. In particular, a map that reflects
neurons functions is named Functional Connectome (FC) and
it represents the network of associations between neurons
with respect to their activity over time (Reid, 2012). Finding
FC is expected to lead to more fundamental understanding
of brain function and dysfunction (Hassabis et al., 2017).
Indeed, FC is expected to include and facilitate inference of
the governing neuronal pathways essential for brain functioning
and behavior (Finn et al., 2015). Two neurons are said to
be functionally connected if there is a significant relationship
between their activity over time where the activity can be
recorded from neurons over time and measured with various
measures (Shlizerman et al., 2012). In contrast to the anatomical
connectome, the functional connectome needs to be inferred, as it
cannot be directly observed or mapped, since the transformation
from activity to associations is intricate.

Several approaches have been introduced to infer the FC.
These include approaches based on measuring correlations, such
as pairwise correlation (Rogers et al., 2007; Preti et al., 2017),
or sparse covariance matrix that is comparatively better than
correlations given limited time points (Xu and Lindquist, 2015;
Wee et al., 2016). Furthermore, for such scenarios, regularized
precision matrix approaches were proposed to better incorporate
conditional dependencies between neural time courses, where the
precision matrix is inferred by a penalized maximum likelihood
to promote sparsity (Friedman et al., 2008; Varoquaux et al.,
2010; Smith et al., 2011). While there is a wide variety of
methods, there is still a lack of unification as to what defines
the “functional connectome.” A taxonomy which provides a
systematic treatment grounded from definitions and followed
with algorithmic properties is currently unavailable. An existing
taxonomy for FC considers generic aspects, such as, undirected
and directed, model-based and model-free, time and frequency-
domains (Bastos and Schoffelen, 2016). Here, we consider the
angle of association and causation, such as pairwise association
vs. non-pairwise graphical associations.

Moreover, the prevalent research on FC, outlined above, deals
with finding associations between neural signals in a non-causal
manner. That is, in such amapping we would know that a neuron
A and a neuron B are active in a correlated manner, however, we
would not know whether the activity in neuron A causes neuron
B to be active (A → B), or is it the other way around (B →
A)? Or, is there a neuron C which intermediates the correlation
between A and B (A ← C → B)? In short, questions of this
nature distinguish causation from association.

In this work, we provide a statistical framework for FC
and investigate the aspect of causality in the notion of
Causal Functional Connectome (CFC) which would answer
the aforementioned causal questions (Ramsey et al., 2010;
Valdes-Sosa et al., 2011). Specifically, we introduce the directed

Markov graphical models as a framework for the representation
of functional connectome and define the Directed Markov
Property—an essential criterion for examining the causality
of proposed functional connectomes. The framework that we
introduce allows us to delineate the following properties for a
statistical description of causal modeling

1. Format of causality.
2. Inclusion of temporal relationships in the model.
3. Generalization of the statistical model.
4. Dependence on parametric equations.
5. Estimation-based vs. hypothesis test-based inference of CFC

from recorded data.
6. Inclusion of cycles and self-loops.
7. Incorporation of intervention queries in a

counterfactual manner.
8. Ability to recover relationships between neurons when

ground-truth dynamic equation of neural activity are given.

We discuss the applicability and the challenges of existing
approaches for CFC inference with respect to these statistical
properties. In particular, we compare existing approaches
for causal functional connectome inference, such as Granger
Causality (GC), Dynamic Causal Modeling (DCM) and Directed
Probabilistic Graphical Models (DPGM) based on these
properties. The comparative study provides a taxonomy of causal
properties that existing methods address and an outlook of the
properties for future extensions to address.

The following is a list of acronyms used in this paper:
Functional Connectivity (FC), Causal Functional Connectivity
(CFC), Granger Causality (GC), Dynamic Causal Model
(DCM), Directed Probabilistic Graphical Model (DPGM),
Directed Markov Property (DMP), Functional Magnetic
Resonance Imaging (fMRI), Diffusion Tensor Imaging (DTI),
Electroencephalography (EEG), Magnetoencephalography
(MEG), Associative Functional Connectivity (AFC), Probabilistic
Graphical Model (PGM), Markov Property (MP), Lateral
geniculate nucleus (LGN), Visual cortex (VC), Superior
colliculus (SC), Pulvinar (P), Central nucleus of the amygdala
(CeA), paraventricular nucleus (PVN), hypothalamus-pituitary-
adrenal axis (HPA), Directed Acyclic Graph (DAG), Peter Clark
(PC), Greedy Equivalence Search (GES), Greedy Interventional
Equivalence Search (GIES), Continuous Time Recurrent
Neural Network (CTRNN), Accuracy (A), Sensitivity (S), True
Positive (TP), False Positive (FP), True Negative (TN), False
Negative (FN).

2. NEURAL CONNECTOMICS:
ANATOMICAL AND FUNCTIONAL

Recent advances in neuro-imaging has made it possible
to examine brain connectivity at micro and macro
scales. These, for example, include electron microscopy
reconstruction of the full nervous system with neurons
and synapses of C. elegans in the mid-1980s (White et al.,
1986). Recent non-invasive diffusion tensor imaging,
followed by computational tractography, allow to recover
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fiber tract pathways in human brain (Conturo et al.,
1999; Catani et al., 2003; Le Bihan, 2003). Also, two-
photon tomography facilitates imaging axonal projections
in the brain of mice (Ragan et al., 2012). Although the
anatomical reconstruction gives insights into the building
blocks and wiring of the brain, how that leads to function
remains unresolved. A representative example is C.
elegans, in which connections and neurons were fairly
rapidly mapped and some neurons were associated with
functions, it is still unclear what most of the connections
“do” (Morone and Makse, 2019).

It became increasingly clear that anatomical wiring diagram
of the brain could generate hypotheses for testing, but it is far
from the resolution of how the anatomical structure relates to
function and behavior. This is because each wiring diagram can
encode several functional and behavioral outcomes (Bargmann
and Marder, 2013). In both vertebrate and invertebrate brains,
pairs of neurons can influence each other through several
parallel pathways consisting of chemical and electrical synapses,
where the different pathways can either result in similar or
dissimilar behavior. Furthermore, neuromodulators re-configure
fast chemical and electrical synapses and have been shown
to act as key mediators for various brain states. Given this
background, it is generally agreed upon that the anatomical
synaptic connectivity does not provide adequate information
to predict the physiological output of neural circuits. To
understand the latter, one needs to understand the flow of
information in the network, and for that, there is no substitute for
recording neuronal activity and inferring functional associations
from it. This is what the functional connectome aims
to achieve.

The functional connectome is the network of information flow
between neurons based on their activity and incorporates the
dynamic nature of neuronal activity and interactions between
them. To obtain neuronal activity and dynamics, the neuronal
circuit needs to be monitored and/or manipulated. Recent
approaches to record such activity include brain wide two-
photon calcium single neuron imaging in vivo of C. elegans
(Kato et al., 2015), wide-field calcium imaging of regions of
the brain of behaving mice (Zatka-Haas et al., 2020), two-
photon calcium imaging (Villette et al., 2019), Neuropixel
recordings of single neurons in the brain of behaving mice
(Steinmetz et al., 2018, 2019), and functionalMagnetic Resonance
Imaging (fMRI) recordings of voxels in the human brain as
part of the Human Connectome Project (Van Essen et al.,
2012; Stocco et al., 2019). It is noteworthy that FC aims to
capture statistical dependencies based on neural recordings
and does not rely on the underlying anatomical connectivity,
thereby FC methods are applicable for different scales of neural
data—micro (Hill et al., 2012), meso (Passamonti et al., 2015),
and macro (Mumford and Ramsey, 2014). Yet, when the
underlying anatomical connectivity is charted, e.g., macro-scale
anatomical connectivity in Diffusion Tensor Imaging (Li et al.,
2013), it can be used to further constrain the inference of
FC (Bowman et al., 2012).

In this section, we set the notions of the neural connectome
with regards to anatomical and functional aspects. These notions

are from a statistical perspective and will assist to connect
connectomics in further sections with causation.

2.1. Anatomical Connectome
Let us consider a brain network V = {v1, . . . , vN} with N
neurons labeled as v1, . . . , vN . We will denote the edges as Ea ⊂
V × V between pairs of neurons that correspond to anatomical
connectivity between the neurons (Sporns et al., 2005). We will
refer to the graph G = (V ,Ea) as the anatomical connectome
between the neurons in V . Each edge (v, u) ∈ Ea will be marked
by a weightwvu ∈ R that quantifies the strength of the anatomical
connection from v to u.

2.1.1. Examples

2.1.1.1. Binary Gap Connectome
If there is a gap junction connection from neuron v to neuron
u, the set Ea will include the edges v → u and u → v and they
will be marked with weight 1 (Jarrell et al., 2012). The resulting
graph is undirected in the sense that (v, u) ∈ Ea iff (u, v) ∈ Ea.
The resulting weight matrix with entries wvu is symmetric.

2.1.1.2. Weighted Synaptic Connectome
If there is a synaptic connection from neuron v to neuron u, the
set Ea will include the edge v → u and it will be marked with
a weight which is equal to the number of synaptic connections
starting from neuron v to neuron u. The resulting graph is a
directed graph in the sense that (v, u) ∈ Ea does not imply
(u, v) ∈ Ea, and the weight matrix (wvu) is asymmetric (Varshney
et al., 2011).

2.2. Functional Connectome (Associative)
Functional Connectome (FC) is a graph with nodes being the
neurons in V and pairwise edges representing a stochastic
relationship between the activity of the neurons. Weights of the
edges describe the strength of the relationship. Let Xv(t) ∈ R

denote a random variable measuring the activity of neuron v at
time t. Examples for such variables are instantaneous membrane
potential, instantaneous firing rate, etc. Associative FC (AFC) is
an undirected graph, G = (V ,E), where Ev,u ∈ E, an undirected
edge between v and u, represents stochastic association between
neuron v and u. Edge weights signify the strength of the
associations. Different approaches define stochastic associations
leading to different candidates for AFC, as follows.

2.2.1. Pairwise Associative Connectivity
We first describe pairwise stochastic associations (pairwise AFC).
Let us consider recordings at time points 0, . . . ,T, with activities
Xv = {Xv(t) : t ∈ 0, . . . ,T} for neuron v. The following measures
of pairwise association will correspond to pairwise AFC.

2.2.1.1. Pearson’s Correlation
The Pearson’s correlation between Xv and Xu is defined as

r(Xv,Xu) =
∑T

t=0(Xv(t)− X̄v)(Xu(t)− X̄u)
√

∑T
t=0(Xv(t)− X̄v)2

∑T
t=0(Xu(t)− X̄u)2

where X̄v = 1
T+1

∑T
t=0 Xv(t), for v ∈ V . Pearson’s correlation

takes a value between –1 and 1 and the further its value is from
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0, the larger is the degree of pairwise association. Neurons v
and u are connected by pairwise AFC with respect to Pearson’s
correlation if r(Xv,Xu) is greater than a threshold in absolute
value and the value r(Xv,Xu) would be the weight of the
connection, i.e., Ev,u = thresh

(

r(Xv,Xu)
)

. Correlation coefficient
and the AFC based on it are sensitive to indirect third party
effects such as an intermediary neuron, poly-synaptic influences,
indirect influences, and noise.

2.2.1.2. Partial Correlation
Partial correlation is an additional measure of pairwise stochastic
association between random variables defined as follows. Let the
covariance between Xv and Xu be Cvu = 1

T+1
∑T

t=0(Xv(t) −
X̄v)(Xu(t) − X̄u). The matrix of covariances, 6 = (Cvu)1≤v,u≤N
is called the covariance matrix for the variables X1, . . . ,XN . Let
the v, u-th entry of the inverse covariance matrix6−1 be γvu. The
partial correlation between Xv and Xu is defined as

ρ(Xv,Xu) = −
γvu√
γvvγuu

Partial correlation rectifies the problem of correlation coefficient
being sensitive to third party effects since it estimates the
correlation between two nodes after removing the variance
shared with other system elements. Partial correlation takes a
value between –1 and 1 and the further its value is from 0, the
larger is the degree of pairwise association. Neurons v and u are
connected by pairwise AFC with respect to partial correlation,
if ρ(Xv,Xu) is greater than a threshold in absolute value and
the value ρ(Xv,Xu) would be the weight of the connection, i.e.,
Ev,u = thresh

(

ρ(Xv,Xu)
)

.

2.2.2. Undirected Probabilistic Graphical Model
Undirected Probabilistic Graphical Models (PGM) allow for
modeling and infering stochastic associations while considering

multi-nodal interactions beyond pairwise manner through a
graphical model. Let G = (V ,E) be an undirected graph with
neuron labels V = {v1, . . . , vN} and edges E (Figure 1). Let Yv

denote a scalar-valued random variable corresponding to v ∈ V ,
for example, Yv can be the value of Xv at recording time t: Yv =
Xv(t), or average of recordings over time: Yv = X̄v, etc. For a set
of neurons A ⊂ V , let YA denote the random vector (Yv, v ∈ A).
The random vector YV , is said to satisfy the undirected graphical
model with graph G, if, Yv is conditionally independent of Yu

given YV\{v,u} for (v, u) 6∈ E, denoted as

Yv ⊥⊥ Yu|YV\{v,u} for (v, u) /∈ E. (1)

When (Equation 1) holds,Yv is said to satisfy theMarkov property
with the undirected graph G (Wainwright and Jordan, 2008).
The Markov property with undirected graph G translates each
absent edge between a pair of nodes v and u into conditional
independence of Yv and Yu given all other nodes. In other words,
nodes in the undirected PGM that are not connected by an edge
appear as non-interacting when all the nodes are examined.

Definition 1. The AFC for neurons in V is the undirected graph
G = (V ,E) such that (Yv, v ∈ V) satisfies the Markov Property
with respect to G. When Yv = Xv(t), the associative FC is
contemporaneous at each time t.

According to this definition, the graph edges Ev,u are well-
defined. With respect to their weights, there are no unique
candidates. When (Yv, v ∈ V) follows a multivariate Gaussian
distribution, an edge is present if and only if the partial
correlation between them is non-zero. Thereby, in practice,
partial correlation ρ(Xv,Xu) is typically used for weight of edge
Ev,u ∈ E (Figure 1).

In the above we have defined AFC to be the undirected
graphical model that has the Markov Property. A natural

FIGURE 1 | An undirected PGM and its Markov Property. Left: Network of 5 neurons that is defined in Example 2.1. Neurons are labeled as 1− 5 and edges are

labeled as a-e. Middle: Y1, . . . ,Y5 following centered multivariate Gaussian distribution with entries of inverse covariance matrix γij such that

γ13 = γ14 = γ15 = γ24 = γ25 = 0, when it factorizes with respect to the Neural Network. This plot shows conditional bivariate distributions given other variables

∈ (−0.2, 0.2) and demonstrates (Equation 1) where Yv and Yu are not correlated conditional on other variables (seen by nearly flat red trend-lines) for (v, u) not an edge

of the Neural Network. This indicates that Y1, . . . ,Y5 satisfies the Markov Property with the Neural Network. Right: Due to a Gaussian distribution, the non-zero entries

of the Inverse Covariance Matrix of Y1, . . . ,Y5 correspond to the edges of the Neural Network.
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question that arises is what kind of probability distributions for
the graphical model allow it to follow the Markov Property?
The Factorization Theorem by Hammersley, Clifford and Besag
prescribes conditions on the probability distributions of Yv, v ∈
V for which undirected graphical model has theMarkov property
(Drton and Maathuis, 2017).

Theorem 1 (Factorization Theorem). If Yv, v ∈ V has a positive
and continuous density f with respect to the Lebesgue measure
or is discrete with positive joint probabilities, then it satisfies the
Markov property (Equation 1) with respect to G = (V ,E) if and
only if the distribution of Yv, v ∈ V factorizes with respect to G,
which means,

f (y) =
∏

C⊂G :C is complete

φC(yC), y ∈ R
V (2)

where, f is the density of Yv, v ∈ V , φC is an arbitrary function
with domain R

C, and yC is the sub-vector (yv : v ∈ C) and C ⊂ G
is complete, i.e., Ev,u ∈ E for all v 6= u ∈ C, are connected by
an edge.

Under the multivariate Gaussian assumption, Theorem 1
yields a simple prescription for obtaining the undirected graph
with the Markov Property. When Yv, v ∈ V are distributed as
multivariate Gaussian with positive definite covariance matrix
6, then G is determined by the zeroes of the inverse covariance
matrix 6−1, i.e., Ev,w ∈ E iff 6−1ij 6= 0. This is illustrated
in Example 2.1 and Figure 1. This has been used for inferring
undirected PGMs in several applications (Epskamp et al., 2018;
Dyrba et al., 2020). In such a case, estimation of G is tantamount
to estimation of 6−1. Methods for estimation of 6−1 include
Maximum Likelihood Estimation (MLE) which provides non-
sparse estimates of 6−1 (Speed and Kiiveri, 1986) and penalized
MLE, e.g., by Graphical Lasso, which provides sparse estimates
of 6−1, with the estimates being statistically consistent under
assumptions (Meinshausen and Bühlmann, 2006; Banerjee et al.,
2008; Rothman et al., 2008; Shojaie and Michailidis, 2010).

Example 2.1 (Markov Property and Multivariate Gaussian
Assumption). Let us consider an example with 5 neurons.
Suppose (X1(t), . . . ,X5(t)) follow a centered multivariate

Gaussian distribution with positive definite covariance matrix
6 and independent copies over time t. Let 6−1 = (γij)1≤i,j≤N
be the inverse covariance matrix. The probability density of
(X1(t), . . . ,X5(t)) is given by

f (xt) ∝ exp



−
1

2

5
∑

i,j=1
γijx

t
ix

t
j



 , xt ∈ R
5. (3)

The neural network graph is illustrated in Figure 1-left and we
note that the graph has the following complete subsets

{1, 2}, {2, 3}, {3, 4}, {4, 5}, {3, 5}, {3, 4, 5}.

Thereby, for each t, it is observed that γ13 = γ14 = γ15 = γ24 =
γ25 = 0 if and only if the density in Equation (3) factorizes as

f (xt) ∝ exp

(

−
1

2
(γ11x

t
1
2 + γ12x

t
1x

t
2 + γ22x

t
2
2
)

)

exp

(

−
1

2
γ23x

t
2x

t
3

)

exp

(

−
1

2
(γ33x

t
3
2 + γ34x

t
3x

t
4 + γ4x

t
4
2
)

)

exp

(

−
1

2
(γ45x

t
4x

t
5 + γ55x

t
5
2
)

)

exp

(

−
1

2
γ35x

t
3x

t
5

)

That is, the density in Equation (3) factorizes according to
Equation (2) with respect to the graph. Hence, when γ13 = γ14 =
γ15 = γ24 = γ25 = 0, according to Theorem 1 it follows that
(X1(t), . . . ,X5(t)) satisfies the Markov Property with respect to
the graph in Figure 1-left.

3. FROM ASSOCIATION TO CAUSATION

In Section 2.2 we provided a systematic exposition of AFC,
however, the ultimate phenomenon of functional connectivity
is to capture the causal interaction between neural entities
(Horwitz, 2003; Ramsey et al., 2010; Friston, 2011; Valdes-
Sosa et al., 2011). Indeed, FC research is already targeting
addition of causal statements to associative FC by identifying
correlated brain regions as causal entities, suggesting the need
to incorporate functional connectivity beyond association (Smith

FIGURE 2 | Various connectome representations for the same network of neurons. Left to right: Anatomical connectivity between brain regions, an undirected graph

representing AFC where gray indicates spurious edges, and a directed graph with directions representing causal relationships.
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et al., 2009; Power et al., 2011; Yeo et al., 2011; Power and
Petersen, 2013). From associations alone, causal inference is
ambiguous with possible parallel, bidirectional and spurious
causal pathways. Narrowing the space of causal pathways
inferred from brain signals can significantly progress FC toward
its aims of finding causal neural interactions (see Figure 2).
For example, in a neural circuit, an edge between neuron
A and neuron B could mean either neuron A influences
neuron B or vice versa. This directionality of influence is
unclear from the association. In the instance when neuron
C influences activity of both A and B neurons, while they
do not influence each other, a spurious association would
be found between A and B in the AFC (see example in
Figure 2). Recent progress in causal inference in statistics
literature has made it possible to define causality and make
causal inferences. Given this background, we review causal
modeling in statistics to aid the development of a novel
framework for Causal Functional Connectivity (CFC) from
neural dynamics.

3.1. Causal Modeling
Causation is a relation between two events, in which one
event is the cause and the other is the effect. In the context
of neuroscience, causality is a major factor. For example, in
fear perception in the human brain, the causal relationships
among the activity of retina, lateral geniculate nucleus (LGN),
visual cortex (VC), superior colliculus (SC), pulvinar (P),
central nucleus of the amygdala (CeA), paraventricular nucleus
(PVN) and hypothalamus-pituitary-adrenal axis (HPA) can be
considered (see Figure 3). While the information flows from
the Retina to HPA, there is no direct link between them. Fear
stimulus of the retina causes trigerring of the HPA (response
region) mediated by the activity of intermediate brain nuclei
in a specific sequence of activation through two merging
pathways (Pessoa and Adolphs, 2010; Bertini et al., 2013; Carr,
2015).

A causal model relates the cause and effect, rather than
recording correlation in the data and allows the investigator
to answer a variety of queries such as associational queries
(e.g., having observed activity in LGN, what activity can
we expect in CeA?), abductive queries (e.g., what are highly
plausible explanations for active CeA during fear stimulus?),
and interventional queries (e.g., what will happen to the causal
pathways if there is an ablation of VC?). Often interventional
queries are especially of interest in neural connectomics,
with interventions including neural ablation and external
neuromodulation (Bargmann and Marder, 2013; Horn and Fox,
2020). In such cases, causal modeling aims to correctly predict
the effect of an intervention in a counterfactual manner, that
is, without necessarily performing the intervention but from
observational data (Pearl, 2009a).

3.1.1. Representing Causal Relations With a Directed

Graph
Directed graphs provide convenient means for expressing causal
relations among the variables. The vertices correspond to
variables, and directed edges between the vertices represent

FIGURE 3 | Causal graphs for electrical activity of brain nuclei for fear

perception from visual stimulus. Left: Literature describes two routes for fear

stimulus propagation from Retina to HPA: Retina→ LGN→ VC→ CeA→
PVN→ HPA (cortical route) and Retina→SC→ P→ CeA→ PVN→ HPA

(subcortical route). Right: It is demonstrated that even if there is intervention by

ablation or lesion in the striate cortex of VC, thereby blindness, yet fear

response to visual stimuli (“blindsight”) is yielded through the subcortical route

(Morris et al., 1999; Carr, 2015).

a causal relationship that holds between pairs of variables.
Formally, a graph consists of a set V of vertices (nodes) and a
set E ⊂ V × V of edges that connect some pairs of vertices.
Each edge can be either directed or undirected. In a directed
graph, all edges are directed. A directed acyclic graph (DAG) is
a directed graph without cycles. The directed graph representing
causal relationships is called a causal graph. Figure 3 is a causal
graph among eight variables representing electrical activity in
eight brain regions. If G is a causal graph and there is a directed
path from nodes a to b it implies that, the variable corresponding
to node a is a cause for the variable corresponding to node b. For
example, the electrical activity in Retina (node 1) is a common
cause for electrical activity in LGN (node 2) and SC (node 3).

If there is any intervention of one of the variables such as
ablation or neuromodulation of nodes, the network topology can
be adapted with minor changes. In Figure 3 (right), to represent
an ablation of visual cortex (VC), one would delete from the
network all links incident to and originating from the node
VC. To represent control of activity of VC by neuromodulation,
one would delete all edges only incident to VC as then VC is
not causally influenced by it’s parent region’s activity but by
external neuromodulation.

3.1.2. Statistical Properties of CFC Modeling
In the following we outline several statistical properties
that are relevant in the context of causal modeling of
functional connectivity.

1. Format of causality. This specifies how causation is defined in
the model with respect to parameters or properties satisfied by
the model.
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2. Inclusion of temporal relationships in the model. Since
the activity of neurons are related over time, this
condition specifies whether such temporal relationships
are incorporated in defining causal relationships among
neural activity in the CFC model.

3. Generalization of the statistical model. This condition specifies
model restrictions, such as linear or non-linear modeling, and
informs whether such restrictions can be generalized.

4. Parametric or non-parametric model. This specifies whether
the model is parametric (i.e., consisting of a parametric
equation and needing estimation of parameters) or non-
parametric (i.e., free of a parametric equation) (Casella and
Berger, 2002). Non-parametric models have the advantage of
not requiring assumptions on specific dynamical equations for
the neural dynamics.

5. Estimation-based vs. hypothesis test-based inference of CFC
from recorded data. Approaches for inferring CFC either
support estimation of the CFC from the data or test of
significance of hypothetical CFC models based on data. This
condition specifies which category among these does the CFC
model belong to.

6. Inclusion of cycles and self-loops in the model. Neural activity
often consist of feedback loops and cycles (Byrne et al., 2014).
This condition specifies whether such cycles and self-loops are
represented in the CFC model.

7. Incorporation of intervention queries in a counterfactual
manner. This condition specifies whether interventional
queries are answered directly by the CFC model
from observational data without performing the
experimental intervention.

8. Ability to recover relationships between neurons when ground-
truth dynamic equation of neural activity are given. It is often
desirable that causal relationships between neural activity in
ground truth dynamical equations are accurately represented
by the inferred CFC (Schmidt et al., 2016; Reid et al., 2019).
This condition sheds light into the performance of the CFC
approach to recover such ground truth relationships from
dynamical equations.

We proceed to delineate causation from statistical associations
by surveying existing approaches, and describe relation of each
approach to above statistical properties (Pearl, 2000, 2009a,b).

3.2. Granger Causality
Granger causality (GC) is a statistical methodology for
determining whether one time series is useful in predicting
another (Granger, 1969; Basu et al., 2015). Denoting Xv(t) to be
the state of neuron v at time t, the main idea of GC is that, Xj

“Granger-causes” Xi if past of Xj contains information that helps
predict the future of Xi better than using the information in the
past of Xi or past of other conditioning variables Xk (Friston
et al., 2013). There are several variations of Granger Causality
(also called Wiener-Granger Causality), based on linear vector
auto-regressive model (Lütkepohl, 2005), nonlinear vector
auto-regressive model (Tank et al., 2018), and non-parametric
approaches (Dhamala et al., 2008); conditional and pairwise
approaches (Smith et al., 2011). More formally, typical approach

considers a linear Gaussian vector auto-regressive (VAR) linear
model between the variables, in this case, states of neurons
Xi (Lütkepohl, 2005),

Xi(t) =
N

∑

j=1

K
∑

k=1
Aji(k)Xj(t − k)+ ǫi(t)

where K is the maximum number of lags (model order) and
Aji(K) are real-valued linear regression coefficients, and ǫi(t) ∼
N(0, σ 2I). Neuron j is said to Granger-cause neuron i if at least
one of the coefficients Aji(k) 6= 0 for k = 1, . . . ,K. In practice,
Aji(k) are estimated by minimizing the squared prediction error
or by maximizing the likelihood or sparsity-inducing penalized
likelihood (Pollonini et al., 2010; Basu et al., 2015). Granger
Causality has been applied toward inference of CFC in the linear
Gaussian VARmodel setting (Pollonini et al., 2010; Schmidt et al.,
2016; Guo et al., 2020). Extensions of GC to categorical random
variables, non-linear auto-regressive models and non-parametric
models exist (Dhamala et al., 2008; Marinazzo et al., 2008; Tank
et al., 2017, 2018).

GC was first introduced within econometrics and later
has been used to find directed functional connectivity in
electrophysiological studies (Granger, 1969; Geweke, 1984), in
EEG orMEGdatasets, either at source or sensor level (Bernasconi
and KoÈnig, 1999; Ding et al., 2000; Brovelli et al., 2004; Barrett
et al., 2012). The slow dynamics and regional variability of the
haemodynamic response to underlying neuronal activity in fMRI
were shown to be able to confound the temporal precedence
assumptions of GC (Roebroeck et al., 2005; Bressler et al., 2008;
David et al., 2008; Wen et al., 2012).

While Granger Causality provides a powerful tool for
understanding which neural time series have a key role in
predicting the future of other neural time series (Dahlhaus and
Eichler, 2003; Stokes and Purdon, 2017; Guo et al., 2018), studies
express concern since prediction is not a formal setting to answer
causal questions related to the consequence of interventions and
counterfactuals (Friston, 2009; Eichler, 2013; Grassmann, 2020).
Furthermore, in practice, GC uses a model assumption between
the variables, e.g., a linear Gaussian VARmodel, and results could
differ when this assumption does not hold (Lütkepohl, 2005).
Notwithstanding the limitations, GC has been a well-known
method in the neural time series scenarios, and applications
(Qiao et al., 2017; Guo et al., 2020). GC based on linear VAR
model is equivalent to Transfer Entropy for Gaussian variables,
while the latter is a non-linear method in its general formulation
(Barnett et al., 2009). Transfer Entropy has been explored as a tool
to explore connectomics at different scales (Ursino et al., 2020),
and also applied to the retina circuit (Wibral et al., 2013).

3.3. Dynamic Causal Model
The Dynamic Causal Model (DCM) is an approach for modeling
brain activity and causal interaction between brain regions (See
Figure 4). DCM was first introduced for fMRI time series and
treats the brain as a deterministic non-linear dynamical system
network in which neural activity is considered to be unobserved
and propagates in an input-state-output system (Friston et al.,
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FIGURE 4 | Schematic of the haemodynamic model used by DCM for fMRI.

Input stimuli u(t) lead to neural state x(t) subject to connectivity parameters θ

modeled by the neural state equation. Neuronal activity leads to increase in

blood flow that changes in venous volume v(t) and deoxyhaemoglobin content

q(t) modeled by the haemodynamic state equations. These haemodynamic

states are fed to a forward non-linear model λ which results in the Blood

Oxygenation Level Dependent (BOLD) fMRI response (Stephan et al., 2007b).

2003). The system is attached to a forward model that maps the
neural activity to observed Blood Oxygenation Level Dependent
(BOLD) fMRI signal (Friston et al., 2000; Stephan et al.,
2007a,b). The neural and observational models are specified
by a particular parametric form that depends on the data and
imagingmodality and they together form a fully generativemodel
(Friston et al., 2013). DCM outputs evidence for different neural
and/or observational models and posterior parameter estimates
optimized by variational Bayesian techniques (Penny, 2012). The
coupling parameters between hidden states for different brain
regions, in the differential equations that specify the model,
constitute the CFC. The DCM model incorporates interactions
due to the experimental equipment and changes due to external
perturbations (Marreiros et al., 2010).

DCM compares the evidence for different hypothesized
models, and thereby is a tool for testing hypothesis for model
and experimental design. DCMs are not restricted to linear
systems and include intricate models with large number of
parameters for neural dynamics and experimental perturbations.
The model is typically constructed to be biologically plausible.
Constraints are exercised to the model through priors. The
priors are useful to specify which connections are believed to
be more likely. A Bayesian likelihood with the prior distribution
is maximized to obtain the parameter estimates. The approach

relies on precise modeling and aims to specify a biologically
plausible detailed mechanistic model of the neuronal dynamics
and imaging equipment perturbation (Stephan et al., 2010).
While DCMwas originally formulated to be deterministic, recent
advances can include stochastic fluctuations in the neural activity
as well (Stephan et al., 2008; Li et al., 2011). The DCM framework
has also been extended beyond fMRI and established in the
magneto/encephalography domain (Kiebel et al., 2008), and in
local field potentials (Moran et al., 2013).

3.4. Directed Probabilistic Graphical
Models
Directed Probabilistic Graphical Models (DPGMs) provide a
probabilistic foundation to causality in a manner that answers
causal queries through a generalized model without requiring
specific modeling of the neural dynamics. An important aspect
to take into account in inference of CFC is stochasticity. Neural
signals are stochastic due to noise and intrinsic nature of
neuron firing (Manwani and Koch, 1999; Stein et al., 2005).
The variability and noise in neural dynamics is well known to
challenge the determination of neural phenomenon, e.g., the
detection of onset of epileptic seizures (Biswas et al., 2014;
Vidyaratne and Iftekharuddin, 2017). So, when we say “spike
in activity of neuron A is a cause of the spike in activity of
neuron B,” the cause makes the effect more likely and not
certain due to other factors like incoming inhibitory projections
from other neurons and extracellular ion concentration (Kroener
et al., 2009; Soybaş et al., 2019). Moreover, additional arbitrary
functional relationships between each cause and effect could
exist such that these introduce arbitrary disturbances following
some undisclosed probability distribution. For example, it is
widely known that diet and stress in humans change the levels
of neurotransmitters in the brain (Fernstrom, 1977; Mora et al.,
2012). Thereby, the strength of causal relationships between
neurons can be perturbed by daily variability in diet and/or
stress. Also, uncertainties in effect can occur from unobserved
causes which is especially true in the context of neural signals as
extraneous variables such as diet and stress are often not observed
or due to recording from only a fraction of the units in the
brain (Krishnaswamy et al., 2017). With these considerations,
it is elaborated that values of exogenous variables do not imply
values for the remaining variables in a deterministic manner.
This motivates the need to consider a probabilistic foundation
to causation and causal graphs provided by DPGM. We outline
three conditions of DPGM that connect probabilities with causal
graphs: The Directed Markov Property, the Causal Minimality
Condition, and the Faithfulness Condition.

Let G = (V ,E) be a DAG over neuron labels V = (v1, . . . , vN)
with directed edges E (e.g., Figure 3). DPGM typically considers
the graph to be a DAG because of coherent probability semantics
with a DAG and challenges with directed cycles, while there could
be more general extensions (Lauritzen, 2001; Maathuis et al.,
2019). Nodes v and u ∈ V are said to be adjacent if v → u ∈ E
or u → v ∈ E. A path is a sequence of distinct nodes in which
successive nodes are adjacent. If π = (v0, . . . , vk) is a path then v0
and vk are the end-points of the path. If every edge of π is of the
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FIGURE 5 | Directed Markov Property in the context of fear stimulus. The

DAG in the example of Figure 3 is annotated to illustrate the Directed Markov

Property (Equation 4). PVN is selected as node v, its random variable is hence

Yv (red). The parents of v denoted as paG(v), and corresponding random

variables are YpaG (v) (green). The non-descendants of v before parents,

denoted as ndG(v) \ paG(v), and corresponding random variables YndG (v)\paG (v)
(blue). Directed Markov Property holds with the true causal edges (black), as

for them parents and children are functionally related (Equation 6). Causal

Minimality Condition ensures that potential edges (blue dotted) between

ndG(v) \ paG(v) nodes and v are absent from the DAG.

form vi−1 → vi then v0 is an ancestor of vk and vk is a descendant
of v0. We use the convention that v is an ancestor and descendant
of itself. The set of non-descendants of v, denoted ndG(v), contains
nodes u ∈ V that are not descendants of v. The set of parents of
v ∈ V is denoted as paG(v) = {u ∈ V : u → v ∈ E}. We mark
the set ndG(v)\paG(v) as the set that contains all nodes which are
older ancestors of v before its parents (Figure 5). Let Yv denote a
scalar-valued random variable corresponding to v ∈ V , e.g., the
neural recording at time t: Yv = Xv(t), average of recordings over
time Yv = X̄(v), and for a set of neurons A ⊂ V , YA denotes the
random vector (Yv, v ∈ A). With these notations, we outline the
three conditions of DPGM.

3.4.1. Directed Markov Property
(Yv, v ∈ V) is said to satisfy the Directed Markov Property with
respect to the DAG G if and only if,

Yv ⊥⊥ YndG(v)\paG(v)|YpaG(v) (4)

for every v ∈ V . The Directed Markov Property translates
the edges in the DAG into conditional independencies, such
that each node Yv and its older ancestors YndG(v)\paG(v) are
conditionally independent given its parents YpaG (v). In other
words, the influence of each node’s ancestors beyond parents
reaches to the node exclusively via its parents. In this way,
the Directed Markov Property connects probabilistic conditional
independencies with relationships of causal influence between
nodes of a directed graph. For example, under the Directed
Markov Property, in Figure 5, the assertion that the activity of VC
and P are conditionally independent of the activity of PVN, given
the activity of CeA at time t corresponds to the causal relationship
that the influence of the activity of VC and P on the activity of
PVN is mediated by the activity of CeA, represented in the DAG

as CeA a parent node of PVN, and VC and P are non-descendant
nodes beyond parents of CeA.

The Directed Markov Property for DPGM (DMP) is different
from the Markov Property for undirected PGM (MP) in
that DMP relates conditional independencies between random
variables in a directed graph to causal relationships in the
directed graph, whereas MP relates conditional independencies
between random variables in an undirected graph to edges of
association in the undirected graph. Yet, both incorporate multi-
nodal interactions in the graphs beyond a pairwise manner.
Furthermore, we had seen in Theorem 1 that MP yields a
factorization of the probability density of the random variables
comprising the PGM. The DMP also yields a factorization of
the joint probability density for DPGM in an adapted manner as
follows (Verma and Pearl, 1988).

Theorem 2 (Factorization Theorem for DPGM). For (Yv : v ∈ V)
real random variables with density f with respect to a product
measure, it satisfies the Directed Markov Property (Equation
4) with respect to the DAG G if and only if their distribution
factorizes according to the G, which means,

f (y) =
∏

v∈V
f (yv|ypaG(v)), y ∈ R

V (5)

where f is the density of Yv, and f (yv|ypaG(v)) are conditional
probability densities.

The Directed Markov Property can be equivalently represented
with functional relationships between parent and child instead of
conditional independencies, which is described in the following
theorem (Bollen, 1989).

Theorem 3 (Functional Equivalence of DPGM). If Yv satisfies

Yv = gv(YpaG̃(v)
, ǫv), v ∈ V (6)

where ǫv are independent random variables and gv are
measurable functions for v ∈ V and G̃ is a DAG with vertices
V , then Yv, v ∈ V satisfies the Directed Markov Property with
respect to G̃. Conversely, if Yv, v ∈ V satisfies the Directed
Markov Property with respect to a DAG G̃, then there are
independent random variables ǫv andmeasurable functions gv for
which (Equation 6) holds.

Since the functional equations admit a natural causal
interpretation, so do DPGMs satisfying the Directed Markov
Property (Drton and Maathuis, 2017). The variables in YpaG̃

(v)
are direct causes of Yv, meaning that changes in YpaG̃

(v) lead
to changes in distribution Yv, but not necessarily the other way
around. Furthermore, when Yv, v ∈ V satisfies the Directed
Markov Property, then Equation (6) holds for some choice of
functions {gv} and error distributions {ǫv}, which implies causal
relationships among Yv, v ∈ V .

DPGMs can predict the consequence of a counterfactual
intervention on the random variables (Pearl, 2009a). Using
Theorem 3 we show in the following that we only need to
remove the edges pointing to the intervened random variables
in the DPGM to incorporate the impact of a counterfactual
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intervention. More precisely, if before the intervention, G is
DPGM and Yv, v ∈ V satisfies the DMP with respect to G, an
intervention to the random variables will modify (Equation 6)
only those variables that are impacted by the intervention. For
example, let us consider the intervention forcing Yv0 to take the
value 0 or 1 regardless of value at other nodes. This intervention
will change (Equation 6) by excluding the equations in which
Yv0 is a function of other nodes. This corresponds to replacing
paG(v0) by an empty set in (Equation 6), and in other words,
removing the edges pointing to node v0 in G. That is, after the
intervention, (Equation 6) holds with a different graph G′ that
is obtained by removing the edges incident upon the intervened
nodes in G. Equivalently, by Theorem 3, after the intervention
Yv, v ∈ V satisfies DMP with respect to G′, and thus G′ is the
DPGM after the intervention.

3.4.2. Causal Minimality Condition
Let (Yv, v ∈ V) satisfy the DMP with respect to the DAG G. G
satisfies the Causal Minimality Condition if and only if for every
proper subgraph H of G with vertex set V , (Yv, v ∈ V) does not
satisfy the DMP with respect to H. In other words, if adding any
edge on toG can also satisfy theDMP, we do not add such an edge,
and consider the minimal graph G with respect to which DMP is
satisfied to be the DPGM of Yv, v ∈ V . In principle, since the
complete set of causes is unknown, there can be multiple graphs
that would fit a given distribution of random variables for DMP,
each connecting the observed variables through different causal
relationships. Among all those possible graphs satisfying DMP,
the causal minimality condition considers the simplest one and
ensures a unique causal DPGM.

3.4.3. Faithfulness Condition
The Directed Markov Property with respect to a DAG G
prescribes a set of conditional independence relations on the
random variables comprising the graph. However, in general, a
probability distribution P of random variables in DAG G that has
the independence relations given by the DMP may also include
other independence relations. If that does not occur such that
all the conditional independence relations by the probability
distribution P are encompassed by G, then we denote P and G
as faithful to one another.

3.4.4. Inference of DPGM
Several methods have been developed for inferring DPGM
with the Directed Markov Property, Causal Minimality and
Faithfulness conditions for stationary observed data. These
include the PC algorithm (constraint-based, acyclic graph,
no latent confounders, no selection bias) (Spirtes et al.,
2000), FCI algorithm (constraint-based, acyclic graph, latent
confounders, selection bias) (Spirtes et al., 1999), GES (score-
based equivalence class search) (Chickering, 2002) and GIES
(score-based equivalence class search from data with multiple
interventions) (Hauser and Bühlmann, 2012).

For example, we describe here the PC algorithm which is
a popular statistical tool to infer causal connections between
stationary random variables under independent and identically
distributed sampling. It is a constraint-based method in which

a consistent statistical test for conditional independence is used
to select the connectivity graph among the random variables of
interest. For Gaussian random variables and linear relationships,
a standard choice for such a conditional independence test
is constructed using the Fisher’s Z-transform (Kalisch and
Bühlmann, 2007). For non-Gaussian variables and non-linear
relationships, kernel and distance based tests of conditional
independence are used (for e.g., the Kernel PC algorithm Tillman
et al., 2009). The algorithm first represents the observed variables
by nodes of a graph and starts with an empty set of edges and
decides whether to put an undirected edge between each pair
of nodes, e.g., node 2 and 5 in Figure 6. In order to determine
whether to have an edge between the pair of nodes, it performs
consistent statistical tests for independence of the random
variables for the pair of nodes or conditional independence given
the random variables for other node(s). If any of the tests finds
evidence for independence or conditional independence, an edge
is drawn between the pair of nodes and otherwise no edge is
drawn between the pair of nodes. The process is followed for
each pair of nodes to result in an undirected graph, called the
skeleton graph. Using rules such as the Collider Detection rule,
Known Non-Colliders rule and Cycle Avoidance rule, as depicted
in Figure 6, the undirected edges are directed to convert the
skeleton graph into a DAG. Figure 6 provides a schematic of
the algorithm with the context of neural recordings. The PC
algorithm is shown to be consistent for finding the true causal
graph in the absence of latent confounders (Spirtes et al., 2000).

3.5. Comparitive Study of Approaches to
Causal Functional Connectivity
We compare the performance of exemplary approaches of CFC
inference discussed above to recover relationships in ground
truth dynamical equations by generating synthetic data from
three simulation paradigms and estimate their CFC using the
methods of GC and DPGM (see Figure 7). The simulation
paradigms correspond to specific model assumptions to assess
the impact of model assumptions on the performance of
the approaches.

1. Linear Gaussian Time Series (Figure 7 top-row). Let N(0, 1)
denote a standard Normal random variable. We define Xv(t)
as a linear Gaussian time series for v = 1, . . . , 4 whose true
CFC has the edges 1→ 3, 2→ 3, 3→ 4. Let Xv(0) = N(0, 1)
for v = 1, . . . , 4 and for t = 1, 2, . . . , 10000,

X1(t) = 1+ N(0, 1),

X2(t) = −1+ N(0, 1),

X3(t + 1) = 2X1(t)+ X2(t)+ N(0, 1),

X4(t + 1) = 2X3(t)+ N(0, 1)

2. Non-linear Non-Gaussian Time Series (Figure 7middle-row).
Let U(0, 1) denote a Uniformly distributed random variable
on the interval (0, 1). We define Xv(t) as a non-linear non-
Gaussian time series for v = 1, . . . , 4 whose true CFC has
the edges 1 → 3, 2 → 3, 3 → 4. Let Xv(0) = U(0, 1) for
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FIGURE 6 | The PC algorithm. Steps of the PC algorithm to infer the DPGM from observed data are summarized by five diagrams (left to right). Data for variables

Y1 − Y7 is visualized in the context of neural recordings. Graph with nodes 1− 7 corresponding to variables Y1 − Y7 has no edges. Then, an edge introduced between

Yi and Yj if they are independent or conditionally independent given any other variable(s) determined by statistical tests, which results in the undirected Skeleton

Graph. Using rules of converting undirected to directed edges as depicted in the figure-Collider Detection rule, Known Non-Colliders rule and Cycle Avoidance rule,

the skeleton graph is converted to a DAG.

FIGURE 7 | Comparative study of CFC inference. CFC inference of GC, DPGM 1 and DPGM 2 methods is compared on three examples of motifs and simulation

paradigms; from top to bottom: Linear Gaussian, Non-linear Non-Gaussian, CTRNN. Table: 4 neurons motifs that define the Ground Truth CFC (left) are depicted side

by side with inferred CFC over several simulation instances according to the three different methods (right). An edge v→ w in each inferred CFC corresponds to an

edge detected in any of the inference instances. The percentage (blue) next to each edge indicates the number of times out of all instances that the edge was

detected. Right: For each motif and simulation paradigm, Sensitivity (green) and Accuracy (orange) of each method is shown.

v = 1, . . . , 4 and for t = 1, 2, . . . , 10000,

X1(t) = U(0, 1),

X2(t) = U(0, 1),

X3(t + 1) = 4 sin(X1(t))+ 3 cos(X2(t))+ U(0, 1),

X4(t + 1) = 2 sin(X3(t))+ U(0, 1)

3. Continuous Time Recurrent Neural Network (CTRNN)
(Figure 7 bottom-row). We simulate neural dynamics by
Continuous Time Recurrent Neural Networks, Equation (7).
uj(t) is the instantaneous firing rate at time t for a post-
synaptic neuron j, wij is the linear coefficient to pre-synaptic
neuron i’s input on the post-synaptic neuron j, Ij(t) is the input
current on neuron j at time t, τj is the time constant of the
post-synaptic neuron j, with i, j being indices for neurons with
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m being the total number of neurons. Such a model is typically
used to simulate neurons as firing rate units

τj
duj(t)

dt
= −uj(t)+

m
∑

i=1
wijσ (ui(t))+ Ij(t), j = 1, . . . ,m. (7)

We consider a motif consisting of 4 neurons with w13 =
w23 = w34 = 10 and wij = 0 otherwise. We also note that
in Equation (7), activity of each neuron uj(t) depends on its
own past. Therefore, the true CFC has the edges 1 → 3, 2 →
3, 3 → 4, 1 → 1, 2 → 2, 3 → 3, 4 → 4. The time constant
τi is set to 10 msecs for each neuron i. We consider Ii(t) to be
distributed as independent Gaussian process with the mean of
1 and the standard deviation of 1. The signals are sampled at a
time gap of e ≈ 2.72 msecs for a total duration of 10 secs.

For these network motifs we compare the methods GC,
DPGM 1 and DPGM 2. We compute the GC graph using
the Nitime Python library which fits an MVAR model
followed by computation of the Granger Causality by the
GrangerAnalyzer (Rokem et al., 2009).

We compute DPGM using the PC algorithm which requires
several samples of a scalar-valued random variable Yv (measured
activity) for neurons v ∈ V . We consider two of such
Yv possibilities

DPGM 1: Neural recordings at time t: Yv = Xv(t), v ∈ V .
Different t gives different samples of Yv.
DPGM 2: Windowed Average of recordings over a duration
of 50 msec: Yv = X̄v, v ∈ V , and averaging over different
windows of 50 ms with a gap of 50 ms in between consecutive
windows gives different samples of Yv.

We quantified the performance of the algorithms by inference of
CFC for 25 different simulations and summarize the performance
by twometrics, Accuracy (A) and Sensitivity(S). Let True Positive
(TP) be the number of correctly identified edges, True Negative
(TN) be the number of missing edges that were correctly
identified, False Positive (FP) be the number of incorrectly
identified edges and False Negative (FN) be the number of
missing edges incorrectly identified across simulations. We
define the Accuracy as

A =
TP+TN

TP+TN+FP+FN
,

which measures the ratio of the count of correctly identified
edges or missing edges to the count of all possible edges across
simulations. In the motifs and simulation paradigms we consider,
there are 4 neurons and 16 possible edges (including self-loops)
per simulation resulting with total of 400 possible edges across 25
simulations. We also define the Sensitivity as

S =
TP

TP+ FN

the ratio of the count of true edges that were correctly identified
to the total count of the true edges across simulations. In this
comparative study, Sensitivity is more relevant than Accuracy

since it focuses on the detection of the true edges. Indeed, in the
extreme case of having the estimated CFC to be an empty set of
edges across simulations, the linear Gaussian paradigm will still
have 70% neuron pairs correctly identified to be not connected
by an edge, thereby resulting in A = 70%. Whereas, there will
be 0% of true edges detected correctly resulting in S = 0%,
which reflects the undesirability of the empty graph estimate.
We report both Accuracy and Sensitivity for a comprehensive
summary of performance. We also report the percentage of
the simulations that has each estimated edge present. Higher
percentage indicates higher confidence in the detection of that
edge. Figure 7 compares the results for GC, DPGM 1 and DPGM
2 methods in inference of the true CFC.

In Linear Gaussian scenario (top row in Figure 7), the
connections between neurons in the Ground Truth CFC are
excitatory due to positive coefficients in the linear dynamical
equation for neural activity. GC generates a sparse set of edges
in which it correctly detects a single edge 3→ 4 among the three
edges of the true CFC. DPGM 1 generates a large set of edges (9
out of 16 possible) with several of them being spurious. Indeed,
each edge is present in less than 25% of the simulations. DPGM
2 generates the same number of edges as DPGM 1, however it
has less spurious edges indicated by higher percentages for the
expected edges in the Ground Truth CFC (1 → 3, 3 → 4 with
92% and 100%). Overall, all methods result in A > 80% while
sensitivity for GC, DPGM 1 and DPGM 2 varied significantly
S = 33.3%, 8.7%, 76.3%, respectively. We thereby conclude that
among the threemethods, GC is themost accurate but since it did
not detect two out of three edges, it is not as sensitive as DPGM 2.

In Non-linear Non-Gaussian scenario (middle row), in the
Ground Truth CFC for the Non-linear Non-Gaussian scenario,
1 → 3, 3 → 4 are excitatory due to sin(x) being an increasing
function while 2 → 3 is an inhibitory connection due to cos(x)
being a decreasing function for x ∈ [0, 1] in their dynamical
equation. As previously, GC consistently detects a sparse set of
edges (single edge 1 → 3 with 100%) which is one of the three
true edges. DPGM 1 obtains a large set of edges with several
of them are spurious edges and all edges appear in less than
25% of the trials. For DPGM 2, the number of spurious edges
obtained is more than GC and less than DPGM 1. DPGM 2
obtains correctly two out of the three true edges 1 → 3 and
2 → 3 in most of the trials (96 and 88%, respectively). In
summary, GC, DPGM 1 and DPGM 2 resulted in an accuracy
of A = 87.5%, 79.4%, 90.8%, respectively and sensitivity of S =
33.3%, 4.7%, 63.7%, respectively. For this scenario, DPGM 2 has
the highest accuracy and sensitivity among the methods.

In CTRNN scenario (bottom row), self-loops are present
for each neuron, and due to positive weights and increasing
activation function σ (·) in their dynamical equation, the
connections in the Ground Truth CFC are excitatory. GC obtains
two of the three true non-self edges 1 → 3, 2 → 3 for 60%, 40%
of the trials. DPGM 1 detects spurious edges, but also infers the
true edges 1 → 3, 2 → 3 for 72% of the trials. DPGM 2 obtains
less number of spurious edges compared to DPGM 1 and obtains
all of the non-self true edges 1 → 2 and 2 → 3 for 100% of
the trials. In summary, all methods result in a lower accuracy
of A ≈ 70% compared to other scenarios since they do not
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TABLE 1 | Comparative summary of different approaches for causal modeling in functional connectomics.

GC DCM DPGM

Format of Causality Non-zero parameters in VAR model Coupling parameters in biological

model

Directed Markov Graph

Inclusion of temporal relationships Yes Yes No, formulation for stationary

variables

Generalizable statistical model Yes No Yes

Non-parametric Model Yes, parametric and non-parametric

approaches exist.

No, biologically mechanistic

non-linear model.

Yes, equivalent to an arbitrary

functional relationship between

nodes.

Supports CFC estimation Yes No, suitable for comparing model

hypotheses

Yes

Occurrence of cycles (including

self-loops) in the model

Yes (neuron i→ i when Aii (k) 6= 0 for

some k)

Yes (i→ i when θii 6= 0) No, it is a DAG

Incorporation of interventional and

counterfactual queries

No No Yes but for stationary variables.

include self-loops and sensitivity is S = 16.7%, 28%, 33.2% for
GC, DPGM 1 and DPGM 2, respectively, which is considerably
lower than other scenarios. Among all methods, DPGM 2 obtains
the highest accuracy followed by GC and lastly DPGM 1. DPGM
2 had the highest sensitivity compared to the other methods.

The choice of thresholds tunes the decision whether a
connection exists in the CFC. For DPGM-based approaches,
increasing the p-value cut-off for conditional independence tests
increases the rate of detecting edges while also increasing the rate
of detecting false positives. We use a p-value cut-off of 0.1, after
trial and error, for DPGM 1 and DPGM 2. For GC, a likelihood
ratio statistic Luv is obtained for testing Auv(k) = 0 for k =
1, . . . ,K. An edge u → v is outputted if Luv has a value greater
than a threshold. We use a percentile-based threshold (Schmidt
et al., 2016), and output an edge u → v if Luv is greater than 95
percentile of Lij’s over all pairs of neurons (i, j) in the graph. We
also trialed with different percentile thresholds of 90 percentile
and higher, none of which outperformed DPGM.

4. DISCUSSION

In this paper, we establish a statistical guide to neural
connectomics with regards to mapping neural interaction
anatomy, function and causality with the means of graphical
models. We first describe possibilities of mapping neural
anatomical connections with a graph, i.e., anatomical
connectome, and demonstrate the difference between such
a mapping and a graph that captures functional interactions,
i.e., associative functional connectome (AFC). Recognizing that
the ultimate goal of functional connectomics is to infer causal
interactions between neurons, we define the graphical tools
and properties needed to distill AFC into a directional graph,
i.e., causal functional connectome (CFC), which represents
flows of cause and effect in the interaction between neurons.
We then compare exemplary common approaches having the
ultimate goal of finding "causation," such as Granger Causality
(GC), Dynamic Causal Model (DCM) and Directed Probabilistic

Graphical Model (DPGM), in the context of functional
connectomics. In particular, we introduce the developments
in statistical theory of DPGM to the subject of CFC inference,
and define the Directed Markov Property that guarantees
consideration of cause and effect in graph settings. We show that
this property is key in the definition of probabilistic graphical
models that could constitute neural CFC. We then describe the
PC algorithm, a common statistical approach for inference of
such graphs. Based on these notions and the outcomes of the
Directed Markov Property we formulate criteria based on which
CFC models can be compared.

We conclude by performing a holistic comparison, in Table 1,
of several common approaches that do not obey the Directed
Markov Property, such as Granger Causality (GC) and Dynamic
Causal Model (DCM), with variants of the PC algorithm
(DPGM), comparing them with respect to the criteria that
we have outlined. We demonstrate the applicability and the
challenges for inference of CFC from measured neural activity
for each of the approaches on simulated motifs in Figure 7.

Functional Connectivity between neurons describes statistical
dependency between observed neural signals and is descriptive
in nature without requiring accurate modeling. FC can either
describe undirected statistical associations (AFC) or directed
causal interdependencies among the observed neural signals
(CFC) (Bastos and Schoffelen, 2016). In contrast, there is another
concept of Effective Connectivity in literature which aims to
quantify the causal influence between hidden neural states and
corresponds to the parameter of a mechanistic model that
aims to explain the observed directed dependencies (Stephan
and Friston, 2009; Friston, 2011). In practice, the analysis of
Effective Connectivity involves comparison of generative models
with coupling among hidden brain states, based on evidence
from observed data. Whereas, analysis of CFC is predictive in
nature, that estimates the presence and/or strength of causal
dependencies from the observed recordings and does not require
generative modeling.

In this work, our aim is to formulate statistical properties
and criteria related to causality of functional connectomics,
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rather than propose a new approach for causal functional
connectome modeling. Such formulation is expected to identify
existing gaps in causal modeling and guide extensions of causal
functional connectome models ideally satisfying all criteria that
we have outlined. Indeed, capturing as many causal criteria is
fundamental to any approach from statistical and application
points of view. For example, one such property of importance
is the ability to uncover directed relationships in ground truth
dynamical equations (Schmidt et al., 2016; Reid et al., 2019),
which we include in our comparative study. We have compared
the approaches to find CFC in simulations from linear gaussian,
non-linear non-gaussian, and CTRNN to demonstrate how
specific model assumptions in ground truth dynamical equations
are impacting the utilization of the approaches in recovery of
relationships between the neurons. For the methods that we
have tested, our simulated comparison shows that GC output
typically results in a sparse graph with inferred edges that indeed
represent causal connections, but we find that it also misses
multiple edges that represent causal connections (high accuracy;
low sensitivity). For DPGM, we find that the output depends
on the choice of measured activity. DPGM 1, which uses full
neural time series, results in comparatively low accuracy and
low sensitivity since does not capture dependencies across time.
DPGM 2 uses neural activity averaged over time and results in
comparatively high accuracy as well as sensitivity for detection
of most of the true edges, but not all of them. These results are
not surprising, since the PC algorithm guarantees causality for
independent samples per time point thus guarantees the Directed
Markov Property only for a single time point, however here we
aim to infer a single CFC for the whole recording over time
(as in DPGM 1) (Pearl, 2009a). In such a case, the Directed
Markov Property and causality are not guaranteed. Averaging
over time and separating by time gaps to reduce interdependence
between samples leads to improved performance of DPGM 2, but
this does not necessarily reflect the time dependent causes and
effects between and within neural time series, thus again does not
guarantee causality.

Our exposition of properties that each approach is based upon
and the comparative study show that each of the methods address
different aspects of modeling causality of neural interaction and
mapping them in the form of a graph. In particular, GC aims to
obtain the directed functional connectivity from observed neural
states, in a way that tells whether a variable’s past is predictive of
another’s future, without requiring a detailed model. It consists of
a framework based on auto-regression models which is relatively
easy to compute. In contrast, DCM enables specific model
hypotheses to be compared based on evidence from data and
provides insights on causal connectivity between hidden neural
states based on those models. DPGM is a generic procedure
that represents causal functional connectivity from observed
neural states in a way that is predictive of the consequence
of counterfactual interventions while answering queries of
causal dependency in both interpretable and mathematically
precise manner. To summarize these differences, we outline in
Table 1 the strengths and weaknesses of each of the approaches
with respect to applicability to various criteria of causality.
Although these approaches are three distinct pathways popular

for causal modeling, there have been attempts to combine them
under a single framework (Eichler and Didelez, 2010), and to
quantify causal effects that are applicable to either framework
although under stringent conditions (Chicharro and Ledberg,
2012).

The comparative table demonstrates that with respect to
the model that each approach is assuming, GC requires a
linear model in its common use, though has recent non-
linear and non-parametric extensions. DCM requires a strict
well defined mechanistic biological model and thus can only
compare different models based on evidence from data. In
comparison, DPGM has an advantage that it does not require
modeling of the neural dynamics using a parametric equation
or assumption of a linear model. Furthermore, the Directed
Markov Condition of the DPGM implies the existence of a
functional relationship (Equation 6) between parent and children
connections in the graph, thus doing away with the need for
modeling by specific linear or non-linear functions. In regards
to guarantee of causality, GC can provide useful insights into a
system’s dynamical interactions in different conditions, however
its causal interpretation is not guaranteed as it focuses on the
predictability of future based on past observations of variables.
DCM uses the parameters for coupling between hidden neural
states in competing biological models to indicate CFC, however
it compares hypothetical models based on evidence from data
which relevance to causality is not guaranteed (Friston et al.,
2003). In comparison, DPGMprovides a probabilistic foundation
for causality which is predictive of the consequence of possible
intervention like neuron ablation and counterfactual queries.
Inference of CFC is possible with several causal graph inference
algorithms such as the PC algorithm.

Such properties of causal interaction between entities are what
makes DPGM popular in various disciplines such as genomics
and econometrics (Friedman, 2004; Haigh and Bessler, 2004;
Deng et al., 2005; Wang et al., 2005, 2017; Kalisch et al., 2010;
Ebert-Uphoff and Deng, 2012; Mourad et al., 2012; Sinoquet and
Mourad, 2014; Ahelegbey, 2016; Liu et al., 2018; Gómez et al.,
2020). However, such an inference by DPGM typically produces a
DAG, though adaptations exist which aim to include cycles in the
CFC while having a more complicated output (Richardson and
Spirtes, 1996). Furthermore, DPGM-based inference guarantees
causality for independent measurements only. There is no such
guarantee when considering whole neural time series due to
temporal dependence, and this in practice leads to a decline
in performance due to the degree of temporal dependence in
the time series. Despite these limitations, DPGM substantially
adds to the causal interpretation of CFC by being predictive
of counterfactual interventions, unlike GC and DCM. DPGM
is model-free, unlike popular GC variations relying on auto-
regression and DCM. DPGM estimates the CFC graph from
observed data, unlike DCM. Furthermore, using average activity
over time instead of the entire time series, DPGM 2 performs well
at the recovery of ground truth connectivity in simulation studies
over different motifs compared to GC (see Figure 7).

In the context of fMRI datasets, several studies aim to
evaluate the approaches. In simulated fMRI data from a DCM-
based forward model, GC and its variations have suffered in
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performance (Ramsey et al., 2010; Smith et al., 2011), suspected
to be due to inter-regional differences in the haemodynamic
response function and causal processes occuring faster than the
sampling rate. Later studies on more detailed fMRI simulations
based on spiking neuron models coupled to biophysically
realistic haemodynamic observation models revealed that, GC is
largely invariant to changes in haemodynamic response function
properties, however, in the presence of severe downsampling
and/or high measurement noise, which can be typical of fMRI
data, GC suffers in performance (Seth et al., 2013; Zhou et al.,
2014; Solo, 2016). In an attempt to address these challenges,
novel approaches to GC have recently been proposed (Winkler
et al., 2016; Barnett and Seth, 2017; Faes et al., 2017). DCM
exhibits good performance in comparing few model hypotheses
for coupling between hidden neural states, however, DCM has
the limitation that it is in general not mathematically and
computationally feasible to search across all possible functional
connectivity graphs and estimate from observed fMRI data
(Friston et al., 2003). In contrast, DPGM-based approaches
have been studied to perform relatively well in searching for
the CFC and estimate from observed data in the fMRI setting
(Ramsey et al., 2010; Mumford and Ramsey, 2014), such as, PC
algorithm used on the whole time series (Smith et al., 2011),
Independent Multisample Greedy Equivalence Search (IMaGES)
which addresses Simpson’s paradox in multi-subject fMRI data
by assigning a penalized score for the CFC for each subject,
combining them across individual subjects, and optimizing the
score (Ramsey et al., 2010), and Fast Adjacency Skewness (FASK)
which incorporates feedforward and feedback connections in the
CFC graph in fMRI setting (Sanchez-Romero et al., 2019).

In conclusion, DPGM provides a probabilistic and
interpretable formulation for CFC. We have established the
statistical properties that the inferred DPGM should posses
as well as demonstrated its performance in inference of
CFC. While DPGM is a powerful causal framework, existing
DPGM algorithms do not reflect the inter-temporal causal
dependencies within and between the neural time series. Yet

in the neural time series setting, nodes of the connectivity
graph are neurons that correspond to an entire time series of
neural activity and comprise inter-temporal dependence. Thus,
the remaining challenge is the adaptation of the DPGM based
formulation of CFC to incorporate inter-temporal dependencies
in the neural time series. Such an adaptation will further
increase the strength of using DPGM for CFC inference from
neural dynamics.
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