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ABSTRACT
Airway M� and DCs are important components of in-
nate host defense and can play a critical role in limiting
the severity of influenza virus infection. Although it has
been well established that cell-surface SA acts as a pri-
mary attachment receptor for IAV, the particular recep-
tor(s) or coreceptor(s) that mediate IAV entry into any
cell, including M� and DC, have not been clearly de-
fined. Identifying which receptors are involved in at-
tachment and entry of IAV into immune cells may have
important implications in regard to understanding IAV
tropism and pathogenesis. Recent evidence suggests
that specialized receptors on M� and DCs, namely
CLRs, can act as capture and/or entry receptors for
many viral pathogens, including IAV. Herein, we review
the early stages of infection of M� and DC by IAV. Spe-
cifically, we examine the potential role of CLRs ex-
pressed on M� and DC to act as attachment and/or en-
try receptors for IAV. J. Leukoc. Biol. 92: 97–106;
2012.

Introduction
Influenza viruses are important respiratory pathogens belong-
ing to the Orthomyxoviridae family of enveloped viruses and can
be classified into three distinct types: A, B, and C, based on
antigenically distinct, internal proteins. IAVs are the major eti-
ological agent causing epidemics in humans and have the po-
tential to cause pandemics. It is well established that cell-sur-
face SA acts as the primary attachment receptor for IAV, fol-
lowing recognition by the viral HA. However, the process of

virus entry into cells, resulting in productive replication in air-
way epithelial cells or uptake by airway M� and DC, remains
poorly defined. Specialized receptors expressed by M� and DC,
including those of the CLR family, have emerged as important
receptors for attachment and uptake of a range of viruses. We
and others [1–4] have recently provided evidence that CLRs may
also play a role in IAV infection of M� and DC.

VIRAL DETERMINANTS OF IAV
INFECTION: THE ENVELOPE
GLYCOPROTEINS

The IAV genome is comprised of eight segments of single-
stranded, negative-sense RNA, which encode at least 11 pro-
teins. Two viral glycoproteins—the HA and the NA—protrude
from the surface of the virion [5] and are key determinants in
attachment, entry, and infection of target cells. The HA exists as
a trimer of three identical monomers formed by noncovalent as-
sociation. Each monomer consists of a globular head and a stalk
region anchored in the viral envelope by a short hydrophobic
sequence. Within the globular head is the receptor-binding site, a
shallow pocket of highly conserved amino acids that interact with
N-acetylneuraminic acid (commonly referred to as SA), expressed
on oligosaccharide side-chains of cell-surface glycoproteins
and glycolipids [6–8]. Following attachment, virus is internalized
via endocytosis, and HA undergoes conformational changes in
the low pH of the endosomal compartment to expose the fusion
peptide at the N-terminus of the HA2 subunit [9, 10]. Fusion of
viral and endosomal membranes allows delivery of the viral nu-
cleocapsid into the cell cytoplasm before entry into the nucleus
to initiate viral replication [11].

NA is a tetrameric glycoprotein formed by the association of
four identical monomers. Each monomer is composed of a
globular head and a stalk region embedded in the viral enve-
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lope. The majority of antigenic sites is found on the globular
head, as well the enzyme-active site that contains a number of
charged amino acid residues [12]. The enzymatic function of
NA is to cleave SA residues from the cell surface, enabling
newly synthesized virions to detach from infected cells. In
addition, NA cleaves SA from the IAV glycoproteins, thereby
preventing HA-mediated self-aggregation of virus. Hence,
HA and NA have opposing functions, such that high NA
activity could result in inadequate attachment of HA to cell-
surface SA, and conversely, excessive HA activity may limit
release of newly formed virions from infected cells. A bal-
ance between the activities of the HA and NA is therefore
critical in determining the efficiency of infection by differ-
ent IAV [13, 14].

N-linked glycosylation is a common post-translational modifi-
cation of mammalian glycoproteins, where oligosaccharide
side-chains are attached through N-glycosidic linkages to the
Asn residues of the Asn-X-Ser/Thr motif (where X may repre-
sent any amino acid except proline) [15]. HA and NA have
potential sites for N-linked glycosylation, and the attached oli-
gosaccharides are commonly a mixture of high-mannose (type
I: branched structures terminating in the sugar mannose),
complex (type II: branched structures terminating in sugars,
such as mannose, galactose, GalNAc, and/or fucose), or hy-
brid-type oligosaccharides [16–19].

On HA, oligosaccharides, attached to the stalk region, are
well-conserved between IAV strains and are important for HA
stability and conformation [20–22], whereas glycosylation of
the globular head can vary markedly in number, location,
and type of oligosaccharide [23, 24]. HA serves as the major
target for neutralizing antibodies, and glycans on the head of
HA are likely to shield or modify antigenic sites [6]. Analysis
of H1 sequences (1918– 2010) indicate no glycans present on
the top of the receptor-binding domain from 1918 and 2009
pandemic IAV strains [25], whereas the majority of seasonal
H1 IAV strains is characterized by the presence of three to five
glycosylation sites [26, 27]. Since their appearance in the hu-
man population in 1968, H3N2 viruses also acquired addi-
tional glycans on the head of HA [23, 28, 29], and recent
strains carry as many as eight to 10 potential glycosylation sites
[27]. These findings are consistent with a role for glycosylation
in mediating evasion of antibody-mediated neutralization in
the human population.

Loss or gain of glycans on HA can affect biological proper-
ties of IAV, such as changing the affinity of HA for host cell-
surface receptors [30–34] or enhancing sensitivity to recogni-
tion by collectins of the innate immune system [34–38]. The
mouse-adapted PR8 (H1N1) strain is notable for its lack of
glycosylation on the head of HA [39]. We recently reported
that addition of glycans to the PR8 HA or removal of glycosyla-
tion sites from the HA of seasonal strain A/Brazil/11/78
(H1N1) modulated sensitivity to collectins and virulence in a
mouse model [40]. Therefore, the amount of glycosylation
added to HA to circumvent humoral immune responses may
be limited by the increased sensitivity of glycosylated IAV to
components of innate defense.

CELLULAR TARGETS OF IAV INFECTION

In humans, IAV infection is predominantly confined to the
upper respiratory tract [41]. Thus, airway epithelial cells
and antigen presenting cells (APCs) represent primary targets
of IAV infection. It is well-established that attachment to
and entry of IAV into epithelial cells result in productive infec-
tion, characterized by genomic replication, synthesis of viral
proteins, assembly of virions, and release of infectious prog-
eny. M� and DC from humans or mice are susceptible to IAV,
yet the outcomes of infection are less clear. IAV infection of
M�/DC has been associated with productive infection [42–44]
but also with nonproductive infection, whereby genomic repli-
cation and synthesis of at least some viral proteins occur, yet
the infectious cycle is blocked prior to virus release [2, 3, 45–
50]. These differences may reflect the heterogeneous nature
of M� and DC, particularly in the lung, as well as susceptibility
of M�/DC to infection by the particular IAV strain(s) used.

CELLULAR DETERMINANTS OF IAV
INFECTION: CELL-SURFACE RECEPTORS

Virus attachment and entry into host cells are generally com-
plex multistep processes involving sequential and/or simulta-
neous recognition of multiple cell-surface receptors. By defini-
tion, virus receptors are host-cell molecules (usually mem-
brane-associated), which bind virus attachment proteins and are
required for entry [51]. Coreceptors are cell-membrane proteins
that bind specifically to viral proteins and are required for entry,
in addition to the primary receptor (typically to ensure the con-
tinuation of the entry process after binding) [51].

SA—the primary attachment receptor for IAV
SA is the primary attachment receptor for IAV, and there is an
abundance of SA on the surface of mammalian cells [6]. In
nature, SA is generally attached to the underlying galactose
residues of glycans by �(2,3)-Gal or �(2,6)-Gal linkages [6].
The conformation of the SA linkage on host cells is an impor-
tant determinant of virus tropism, In fact, residues within or in
the vicinity of the receptor-binding pocket of the viral HA
modulate which SA linkages are preferentially recognized [52–
54]. In general, human IAV prefer SA linked in an �(2,6)-Gal
conformation, which is abundant in the human respiratory
tract [52, 55–58], whereas avian IAV strains show a preference
for �(2,3)-Gal, which is expressed throughout the avian gastro-
intestinal tract [59–61]. Differences in receptor specificity be-
tween human and avian IAV are likely to be critical factors in
limiting interspecies transmission, as well as modulating viru-
lence.

Many studies have described the importance of SA in pro-
moting IAV infection of epithelial and immune cells. Pretreat-
ment of cells with bacterial sialidases removes cell-surface SA
and renders cells resistant to IAV [2, 7, 62–64]. In addition,
enzymatically swapping the linkage of SA expressed on the cell
surface can alter susceptibility to infection by IAV strains with
a particular receptor specificity [60, 64, 65].
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SA-independent entry of IAV
Although it is generally accepted that treatment with bacterial
sialidase prevents IAV infection, desialylated mammalian
MDCK cells can support infection, albeit at reduced levels
[66], and desialylated human airway epithelial cells were per-
missive to IAV entry and at least the early stages of infection
[57]. One study attempting to elucidate the nature of IAV re-
ceptors reported that a mutant CHO cell line deficient in N-
linked glycans (Lec1 cells) was largely resistant to IAV infec-
tion, despite retaining full capacity for virus binding [67]. This
led the authors to propose that SA expressed on glycolipids
alone were insufficient for infection of CHO cells and that N-
linked glycoprotein(s) were critical for infectious entry. Other
studies have confirmed that binding of IAV to sialylated cell-
surface receptors does not always result in receptor-mediated
internalization [68, 69]. Rappoport et al. [70] examined bind-
ing of oligosaccharide probes to MDCK and Vero epithelial
cell lines and obtained results consistent with the presence of
cell-surface galectins and/or mannose-binding lectins, which
they proposed could potentially recognize IAV and contribute
to infection. Collectively, these findings imply that the pres-
ence of cell-surface SA is not always sufficient for IAV infec-
tion. Moreover, attachment and entry of IAV into cells can
occur independently of SA. As proposed by Stray et al. [66],
SA may enhance binding to the cell surface to increase subse-
quent and/or simultaneous interaction with secondary and/or
coreceptors that are required for virus entry.

C-TYPE LECTINS ON M� AND DC AS
RECEPTORS FOR IAV

M� and DCs are immune cells equipped with an array of spe-
cialized pattern recognition receptors (PRRs), including scav-
enger receptors, toll-like receptors (TLRs), and CLRs, to facili-
tate recognition and response to a range of microbial patho-
gens, including viruses [71–76]. Although the specific
molecules mediating IAV entry into M� and DC have not
been defined, we and others [1–4] have reported interactions
between IAV and mannose-specific CLRs (e.g., MMR and DC-
SIGN/L-SIGN) and galactose-specific CLRs (e.g., MGL).

MMR
The MMR (CD206) is a type I integral transmembrane pro-
tein, 175–180 kDa in size, with an N-terminal cysteine-rich do-
main, a fibronectin type II repeat domain, an extracellular do-
main containing a tandem array of eight C-type lectin domains
(also known as CRDs), a transmembrane domain, and a short
cytoplasmic tail (Fig. 1). MMR exhibits Ca2�-dependent speci-
ficity for terminal d-mannose, N-acetyl-d-glucosamine, and l-
fucose [77]. The cytoplasmic tail contains two internalization
motifs consistent with a role for MMR as a recycling receptor
in the endocytic compartment [78–82]. MMR has been de-
tected on human alveolar M� [83], mouse peritoneal M�
[84], and rat splenic M� [85], as well as monocyte-derived
human DCs [79, 86] and subsets of endothelial cells [87–89].
A wide range of bacteria, fungi, and protozoa is recognized by
the MMR, including but not limited to Mycobacterium tuberculo-

sis, Klebsiella pneumoniae, Streptococcus pneumoniae, Candida albi-
cans, and Leishmania spp. [72, 74].

The role of MMR as a viral receptor is summarized (see Ta-
ble 1). MMR has been reported to enhance dengue virus in-
fection of M� via recognition of oligosaccharides expressed on
the viral envelope glycoprotein [90]. MMR also binds the
gp120 envelope glycoprotein of HIV-1 [91] and promotes non-
productive infection of M� [92]. For dengue virus and HIV-1,
it is currently unclear if enhanced infection results from direct
MMR-mediated endocytosis or by MMR-mediated attachment,
promoting binding to additional receptor(s), which mediate
virus entry. Aside from pathogen recognition, MMR also medi-
ates antigen uptake and presentation to T lymphocytes [78,
86, 93–95] and has been implicated in lymphocyte homing
and adhesion to lymphatic endothelium [96].

MGL
MGL (CD301) is a 42-kDa type II transmembrane glycoprotein
with a single CRD (Fig. 1), which forms homo-oligomers on
the cell surface. It is a known endocytic receptor with internal-
ization motifs located within the cytoplasmic tail [97–101]. In
mice, two distinct isoforms of MGL, namely MGL-1
and MGL-2, have been described, which share 91.5% amino
acid homology and have similar expression patterns [102].
However, MGL-1 displays Ca2�-dependent specificity for termi-
nal galactose, Lewis-X structures, and terminal GalNAc resi-
dues, whereas MGL-2 binds exclusively to terminal GalNAc
residues [103, 104]. Like murine MGL-2, rat and human or-

C N N

MMR

DC-SIGN MGL

= CRD

= tandem repeat

= Cysteine-rich domain

= Fibronectin domain

Type I Type II

Figure 1. Schematic of CLRs present on M� and DC that have been im-
plicated as putative receptors for IAV. MMR is a type I transmembrane
protein containing multiple CRDs on a single polypeptide chain, as well
as a cysteine-rich domain and a fibronectin domain. MGL and DC-SIGN
are type II transmembrane proteins containing a single CRD, which clus-
ters on the cell surface, forming homo-oligomers to increase binding avid-
ity. C � carboxy terminus; N � amino terminus.
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thologs also have oligosaccharide specificity restricted to Gal-
NAc residues [104]. In general, MGL is expressed by subsets
of M� and monocyte-derived, immature DC (reviewed in ref.
[104]). In humans, monocyte-derived DCs express moderate MGL
levels, which decrease following maturation, although MGL is up-
regulated on tolerogenic DCs generated during chronic inflamma-
tory conditions and in the presence of steroids [105, 106], consistent
with a role for MGL in immune regulation.

MMR interacts with many microbes, including enveloped
and nonenveloped viruses; however, fewer studies have investi-
gated the role of MGL as a PRR. To date, MGL has been re-
ported to bind to Schistosoma mansoni and Campylobacter jejuni
[107, 108]. MGL also recognizes the highly glycosylated, mu-
cin-like domain in the viral envelope glycoprotein of certain
filoviruses, such as Marburg and Ebola viruses (see Table 1)
[109]. Transfection-based approaches have shown that MGL
expression led to enhanced Marburg/Ebola virus infection,
but whether this enhancement was mediated by direct MGL-
mediated endocytosis or by promoting interaction with other
entry receptors is unclear [109–111].

DC-SIGN
DC-SIGN (CD209) is a tetrameric type II transmembrane gly-
coprotein (Fig. 1) with Ca2�-dependent lectin activity specific
for high-mannose [112, 113] and fucosylated oligosaccharides
[114]. It is an endocytic receptor with putative internalization
domains located within the intracellular N-terminal domain
[115]. DC-SIGN is expressed at high levels by monocyte-
and CD34�- derived subsets of immature and mature DCs
[116, 117], as well as alveolar M� [118]. DC-SIGN has a highly
related homolog known as L-SIGN (DC-SIGNR), which shares
77% amino acid identity and Ca2�-dependent lectin specificity
for high-mannose oligosaccharides. However, L-SIGN has a
vastly different expression pattern and tissue localization (pre-
dominantly endothelial cells) and is not expressed by M� or
DC (reviewed in ref. [119]). DC-SIGN is well-characterized as a
cell-adhesion and pathogen receptor and promotes uptake of
bacteria, fungi, and parasites, including M. tuberculosis, Helico-
bacter pylori, and Leishmania spp. (reviewed in refs. [72, 119]).
Binding of DC-SIGN by distinct pathogens can lead to inhibi-
tion or promotion of particular T cell responses [120, 121],
which may relate to the distinct signaling pathways induced by
mannose- or fucose-rich ligands [122].

The role of DC-SIGN as a viral receptor is summarized (see
Table 1). DC-SIGN has been implicated as an attachment re-
ceptor, resulting in enhanced infection of target cells by a
range of viruses, including dengue virus [123], WNV [124],
Ebola virus [125–127], and SARS-CoV [128]. However, the
ability of DC-SIGN to act as a direct entry receptor or to en-
hance infection via interaction with alternative coreceptors is
not clearly defined for many of these viruses (see Table 1).

CLR-MEDIATED ENHANCEMENT OF IAV
INFECTION OF M� AND DC

IAV and MMR
Current evidence suggests that lectin-mediated interactions
between IAV and MMR play a critical role in the infection of

M�. First, CRDs of the MMR have been shown to recognize
N-linked glycans on the HA/NA of IAV in a Ca2�-dependent
manner [2]. In addition, IAV infection of primary mouse M�
but not epithelial cells was inhibited by mannan, a complex
polymer of mannose residues [2, 3], and susceptibility of the
J774 M� cell line to IAV infection correlated with levels of
MMR expression [2]. Recently, we used direct-binding tech-
niques to further characterize interactions between MMR
and IAV. SA-dependent binding of IAV HA to MMR was re-
ported, as well as SA-independent recognition of glycans on
viral HA/NA by the lectin activity of MMR [3]. However, siali-
dase treatment of M� greatly reduced susceptibility to IAV
infection, demonstrating that efficient infection requires con-
tributions from SA and the lectin activity of MMR.

IAV and MGL
In our efforts to characterize IAV-MMR interactions in more
detail, virus-binding assays also revealed Ca2�-dependent bind-
ing of murine MGL to IAV [3]. Although MGL is sialylated,
binding of MGL to IAV was blocked completely in the pres-
ence of galactose, indicating that SA expressed by MGL was
not recognized by HA (or at least not by the HA of IAV strains
used in the study). Moreover, IAV infection of M� was
blocked by addition of asialofetuin, a multivalent ligand of
MGL. These studies were not designed to discriminate be-
tween binding to MGL-1 or MGL-2; however, the M� cell lines
used expressed only MGL-1, pointing to a role for this recep-
tor in IAV infection of murine M�. As for MMR, treatment of
MGL� M� with bacterial sialidase led to a marked reduction
in susceptibility to IAV infection [3].

IAV and DC-SIGN
Our studies examining murine MMR and MGL as IAV recep-
tors were informative but relied on (i) correlation between
receptor levels and susceptibility to infection and (ii) ability of
receptor ligands to block IAV infection. For many viruses,
identification of cell-surface receptors has been demonstrated
following transfection of gene(s) encoding putative recep-
tor(s) into cell lines that are resistant to infection, such that
cells are rendered susceptible to virus entry. When studying
IAV, such approaches are complicated by the abundant cell-
surface SA on mammalian cells, and it has been difficult to
find cell lines that are resistant to infection. Recently, we dem-
onstrated that Lec2 cells, a mutant CHO cell line deficient in
cell-surface SA [129, 130], bound IAV poorly and were largely
resistant to IAV infection [1]. These studies defined an experi-
mental system, in which SA-independent interactions between
IAV and putative cell-surface receptors could be investigated.
Expression of DC-SIGN (or its homologue L-SIGN) by SA-defi-
cient Lec2 cells resulted in Ca2�-dependent IAV attachment
and enhanced susceptibility to infection [1]. As infection was
blocked by mannan, but not by pretreatment with bacterial
sialidases, we concluded that DC-SIGN mediated recognition
of mannose-rich glycans on IAV to promote SA-independent
IAV infection. Wang et al. [4] also used a transfection-based
approach to report that DC-SIGN can act as a receptor for
H5N1 IAV. In this model, DC-SIGN-mediated H5N1 infection
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of transfected cells was dependent on the presence of cell-sur-
face SA (for infection in cis), and captured virus particles were
also transferred to other permissive cells (for infection in
trans).

PROPOSED MODELS FOR
CLR-MEDIATED ENHANCEMENT OF
IAV INFECTION

As described above, MMR, MGL, and DC-SIGN can bind IAV
and enhance IAV infection, yet the specific mechanisms by
which they do this are not clear. A model for CLR-mediated
IAV infection of SA-deficient Lec2 cells and M�/DC is de-
picted in Fig. 2.

Lectin-mediated interactions among IAV and MMR,
MGL, and DC-SIGN
Lectin-mediated binding of MMR, MGL, and DC-SIGN to gly-
cans, expressed on the HA/NA glycoproteins of IAV, can oc-
cur independently of SA. Highly glycosylated strains of IAV
bind these CLRs in a Ca2�-dependent manner [1, 3],
and CLR-mediated infection was blocked by multivalent li-
gands of each CLR in a manner that corresponds to their ex-
pression on target cells [1–3]. Poorly glycosylated IAV, such as
PR8, did not bind CLRs efficiently and were poor in their abil-
ity to infect CLR� cells [1, 3]. The contribution of specific gly-
cans on the head of H1 [40] and H3 [38] IAV in determining
sensitivity to soluble C-type lectins has been defined recently,
and similar approaches will yield important information as to
which glycans on different IAV subtypes are recognized by
membrane-associated CLRs.

SA-mediated interactions
Endogenous MMR, MGL, and DC-SIGN expressed on mamma-
lian cells are sialylated, but each CLR retains lectin-binding
activity for IAV in the absence of SA [1, 3]. Despite the ability
of CLRs to bind IAV independently of SA, our studies using
murine M� (which expressed MMR and/or MGL) suggest a
dual dependence on SA expression and lectin-binding activity,

as desialylated M� were not susceptible to IAV infection [2].
Studies using DC-SIGN-transfected cell lines also showed that
pretreatment with sialidase abrogated CLR-mediated enhance-
ment of H5N1 IAV infection [4].

Although interactions between SA and IAV HA are of low
affinity [131, 132], the abundance of SA on the surface of
mammalian cells provides influenza virus with multiple recep-
tors to increase binding avidity. Therefore, simultaneous bind-
ing of multiple HAs to SA would strengthen IAV binding to
the cell surface and promote lectin-mediated binding of CLR.
The ability of SA to concentrate virions at the cell surface
might be particularly important on M�/DC, as CLRs are ex-
pressed at relatively low levels. For example, there are 104–105

surface-binding sites for mannosylated ligand/cell for mouse
and rabbit M� [133–135] and �1 � 103 MGL molecules/cell
for rat peritoneal M� [136]. Although detailed binding char-
acteristics between IAV HA/NA and CLRs are yet to be deter-
mined, CLRs have been reported to bind other viral glycopro-
teins with high affinity [137].

For SA-independent infection of epithelial cells, Stray et al.
[66] proposed that the requirement for initial interaction with
SA to enrich IAV at the cell surface might be circumvented at
higher virus concentrations. Similarly, the high levels of CLR
expressed on SA-deficient Lec2-DC-SIGN cells [1] may also
bypass the need for SA-mediated attachment and enrichment
at the cell surface. Hence, although transfection-based ap-
proaches allow for isolation of putative IAV receptors in the
absence of the confounding complexities of SA–HA interac-
tions, it is critical to confirm the role of CLRs on relevant cell
types (i.e., M�/DC), where SA is expressed. Such studies will
allow us to determine the relevant contributions of SA
and CLR to IAV infection of appropriate target cells.

CLRs—attachment or entry receptors for IAV?
Our studies using M�/DC or CLR-transfected Lec2 cells do
not discern between CLR-mediated endocytosis of IAV or
whether CLRs represent an (additional) attachment receptor
that passes IAV to other entry receptor(s) (Fig. 2A and B). For
many viruses, it is unclear whether enhanced infection results

A B

? 
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??

?

Cell membrane

(i) (ii)

endosome endosome

? 

? 

??

??

? (i) (ii) (iii)

SA
CRD

endosomeendosome

Cell membranee

Figure 2. Models for CLR-mediated enhancement of IAV in-
fection. (A) IAV infection of SA-deficient Lec2 CHO cells via
CLR. (i) Lectin-mediated binding of the DC-SIGN CRD
(shown in blue) to mannose-rich glycans on IAV HA/NA
could lead to direct DC-SIGN-mediated endocytosis. Alterna-
tively, (ii) IAV could be passed from DC-SIGN to additional
cell-surface receptor(s) (the identity of which is currently un-
known; shown in green), resulting in enhanced infection of
Lec2 cells. Note that CLRs could also remain associated with
IAV to facilitate entry via additional coreceptors. (B) IAV in-
fection of M� and DC: a multistep process involving CLRs. (i)
IAV HA binds to SA on cell-surface glycoproteins or glycolip-
ids. Abundant cell-surface SA provides multiple sites for IAV
attachment, thereby concentrating IAV at the cell surface. (ii)

Attachment to cell-surface SA facilitates lectin-mediated binding of CLRs to glycans on IAV HA/NA. Lectin-mediated binding may be strengthened
by HA-mediated recognition of SA residues expressed on CLRs. Direct CLR-mediated entry may result, or (iii) CLRs may pass IAV to additional
unidentified receptor(s) (shown in green) for virus entry. Binding of IAV to additional receptors could be SA-dependent or -independent. Interac-
tions between IAV and unidentified receptors could also occur independently of CLRs [i.e., Step (i) followed by Step (iii)]. In addition, IAV could
be endocytosed directly after binding to sialylated receptors in Step (i).
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from CLR-mediated endocytosis or following subsequent inter-
action with other entry receptors (Table 1). WT and endocyto-
sis-defective DC-SIGN permitted dengue virus infection of trans-
fected cells, indicating that endocytosis via DC-SIGN itself was not
essential for infection [140]. Similar approaches will be used to
determine whether CLRs can act as direct entry receptors for
IAV. As well as promoting infection in cis, CLRs on M�/DC can
capture and sequester virus, which may then be passed to other
permissive cells. In this way, DC-SIGN promotes in trans infection
by H5N1 IAV [4], HIV-1 [142], HCV [146], CMV [149],
and Ebola viruses [127]. MMR on M� has also been reported to
facilitate in trans infection of T cells by HIV-1 [138]. These repre-
sent additional mechanisms by which CLR–virus interactions can
modulate virus dissemination during infection.

CONCLUDING REMARKS, IMPLICATIONS,
AND SIGNIFICANCE

Many viruses use a two-step infection process, whereby virus
initially binds to an abundant receptor (e.g., SA or heparin
sulfate), via a low-affinity interaction, to promote contact with
additional receptor(s), which are required for virus entry. For
IAV, it seems likely that multiple low-affinity interactions be-
tween the viral HA and SA concentrate virus at the cell sur-

face, allowing it to “browse” or “roam” the cell surface until it
contacts secondary receptor(s), as posited by Burnet [152]. On
M� and DC, lectin-mediated binding by CLRs may represent
one pathway by which IAV entry and infection can occur.
However, at present, it is not clear whether CLRs themselves
act as endocytic receptors for IAV or if additional receptors
and/or coreceptors are required for virus entry. Understand-
ing the specific mechanisms by which M� and DC recognize
and internalize IAV may provide important information rele-
vant to the tropism of different IAV for particular airway cells
and therefore, pathogenesis. For example, mouse-adapted
IAVs, such as PR8, evade detection by CLR [2, 3], infect airway
M� poorly [1, 2, 153], and induce severe disease in mice fol-
lowing intranasal infection [154]. Moreover, in mice �(2,6)-
Gal SA is the predominant linkage of M� compared with
�(2,3)-Gal SA on epithelial cells [64, 155, 156], suggesting that
the particular linkage of SA may be an important factor in re-
cruiting particular IAV to different airway cells.
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TABLE 1. MMR, MGL, and DC-SIGN CLRs as Receptors for Viruses

CLR Virus Attachment receptor Enhancement of infection

Mechanism of enhanced infection:

Direct entry Coreceptor required

MMR Dengue Yes �90�a,b Yes �90�a,b ? ?
HIV-1 Yes �138�b Yes �92�a,b ? ?

Yes �92�a,b

IAV Yes �2�b Yes �2�b ? ?
Yes �3�b Yes �3�b

MGL Ebola Yes �109�a Yes �109�a ? ?
Yes �111�a Yes �111�a

Marburg Yes �110�a Yes �110�a ? ?
Yes �109�a Yes �109�a

IAV Yes �3�b Yes �3�b ? ?
DC-SIGN Dengue Yes �139� Yes �140�a,b ? �140�a,b Yes �140�a

Yes �141�b ? �123�a ? �123�a

Yes �123�a,b

HIV Yes �142, 143�a,b

SIV Yes �144, 145�a

HCV Yes �146�a

Yes �147�b

Yes �148�a

CMV Yes �149�a Yes �149�a ? ?
WNV Yes �125�a,b Yes �125�a,b ? �150�a,b Yes �150�a,b

Yes �150�a,b Yes �150�a,b

Ebola Yes �124�a Yes �124�a ? �124�a Yes �124�a

Yes �126�a Yes �126�a Yes �126�a

Yes �127�a

Marburg Yes �128�a Yes �128�a ? ?
SARS-CoV Yes �151�a Yes �151�a ? �151�a ? �151�a

Yes �128�a Yes �128�a Yes �128�a

IAV Yes �1�a Yes �1�a ? ?
IAV H5N1 Yes �4�a,b Yes �4�a,b ? Yes �4�a,b

aStudies performed with transfected cells. bStudies performed with primary cells or cell lines.
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