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Diseases and associated fragility of bone is an important medical issue. There is
increasing evidence that bone health is related to blood flow and oxygen delivery.
The development of non-invasive methods to evaluate bone blood flow and oxygen
delivery promise to improve the detection and treatment of bone health in human. Near-
infrared spectroscopy (NIRS) has been used to evaluate oxygen levels, blood flow, and
metabolism in skeletal muscle and brain. While the limited penetration depth of NIRS
restricts its application, NIRS studies have been performed on the medial aspect of the
tibia and some other prominent bone sites. Two approaches using NIRS to evaluate
bone health are discussed: (1) the rate of re-oxygenation of bone after a short bout
of ischemia, and (2) the dynamics of oxygen levels during an intervention such as
resistance exercise. Early studies have shown these approaches to have the potential to
evaluate bone vascular health as well as the predicted efficacy of an intervention before
changes in bone composition are detectable. Future studies are needed to fully develop
and exploit the use of NIRS technology for the study of bone health.
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INTRODUCTION

Bone is a highly vascularized organ, and it has been well-documented that blood supply plays a key
role in bone development (Marenzana and Arnett, 2013). Changes in bone blood supply has been
observed in aging and pathological rodent models (Prisby et al., 2007; Stabley et al., 2015; Prisby,
2019). However, the assessment of bone vascular function in human has proven to be a difficult task,
primarily because the stiff material properties of bone aren’t conducive to traditional measurement
approaches. Positron emission tomography (PET) (Ashcroft et al., 1992; Frost et al., 2003) and
dynamic contrast-enhanced magnetic resonance imaging (MRI) (Wang et al., 2009; Ma et al., 2013)
are capable of measuring bone blood flow. However, these approaches have limited application due
to the non-portable nature of this equipment as well as the high cost, high technical requirement
to perform and analyze the PET and MRI scans. There is a growing need for non-invasive, easy to
perform assessment for bone hemodynamics. Emerging research have suggested that near-infrared
spectroscopy (NIRS) could potentially be a suitable tool for this mission (Binzoni and Spinelli, 2015;
Meertens et al., 2018). However, little research has been performed using NIRS on bone, and many
questions remain unanswered. Here we discuss some basic principles of NIRS as it can be applied
to bone, summarize current studies that assessed long bone hemodynamics using NIRS, and point
out promising directions for future research.

Frontiers in Physiology | www.frontiersin.org 1 December 2020 | Volume 11 | Article 615977

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2020.615977
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2020.615977
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2020.615977&domain=pdf&date_stamp=2020-12-18
https://www.frontiersin.org/articles/10.3389/fphys.2020.615977/full
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-615977 December 15, 2020 Time: 15:3 # 2

Zhang and McCully Measuring Bone Hemodynamics With NIRS

REVIEW OF NIRS TECHNOLOGY

Portable NIRS devices utilize near-infrared light and detect
changes of absorption (and scattering for some devices)
at different wavelengths when penetrating biological tissues.
A number of comprehensive reviews on NIRS technology have
been published (Ferrari et al., 2011; Hamaoka et al., 2011;
Quaresima et al., 2012; Jones et al., 2016; Barstow, 2019).
Many comprehensive reviews have been published with details
on the underlying physics as well as the application of the
NIRS technique to the study of skeletal muscle (Hamaoka
et al., 2007; Jones et al., 2016; Willingham and McCully, 2017;
Hamaoka and McCully, 2019) and brain (Ferrari and Quaresima,
2012; Quaresima and Ferrari, 2019). Briefly, wavelengths in
the near infrared region have biologically useful absorption
characteristics. By resolving the light changes between light
sources and detector through the use of the modified Beer-
Lambert law, NIRS devices can determine concentrations of
oxygenated (HbO2) and deoxygenated hemoglobin (HHb),
and therefore measuring oxygenation in the tissue of interest
(Jobsis, 1977). The determination of absolute (versus relative)
concentrations of the heme species is a hotly debated topic,
although even as relative changes, the measurements have been
shown to have biological value. In skeletal muscle, myoglobin also
contributes to the signal.

Near-infrared spectroscopy device emits photons from the
light source, which travel through the biological tissue and
are eventually partially picked up by a detector that’s usually
located several centimeters away from the light source. During
the penetration, there are many different scattering paths that
the photons may potentially follow (Patterson and Pogue, 1994),
with a portion of photons being absorbed and others being
scattered. Only the photons that are scattered in such a way
as to reach the location of the detector can be measured. In
general, the depth of the penetration of the measured light is
related to both the scattering and absorption coefficients of the
medium, with greater depth found for low coefficient values.
The penetration depth can also be modulated by changing
the separation distance between the light source and detector.
Greater separation distances result in greater penetration depths,
with, however, less photons, returning to the detector (Patterson
et al., 1995). Consequently, modern commercially available NIRS
devices usually have separation distances between 2 and 5 cm.
For less sophisticated NIRS devices, such as the continuous
wavelength devices, no information regarding to changes of
scattering when measuring the tissue is provided. Therefore, the
concept of differential pathlength factor (DPF), which is the
theoretical mean path length has been proposed and measured
to quantitatively measure tissue optical properties. It should be
noted that while there are existing studies to estimate DPF for
brain and skeletal muscles (Ferrari et al., 1993; Duncan et al.,
1995), such information is lacking for bone. On the other hand,
more sophisticated NIRS such as the phase-modulated devices,
can provide some information about the scattering coefficients
and therefore allow for better quantitative evaluation of tissue
optical properties. A question for future studies is whether
the continuous wavelength devices are capable of providing

useful measurements of oxygen levels in bone, or whether more
expensive and less portable NIRS devices that provide scattering
coefficients are required.

The application of NIRS to assess bone hemodynamics and
oxygenation might be expected to be based on the rather
extensive literature on the use of NIRS to study skeletal muscle
in both healthy (van Beekvelt et al., 2001a,b; Ryan et al., 2013a,b;
Southern et al., 2014; Zhang et al., 2020) as well as in clinical
populations (Abozguia et al., 2008; Sjogaard et al., 2010; Bossie
et al., 2017; Willingham et al., 2019). NIRS measurements of
skeletal muscle can mainly be divided into three categories: (1)
measuring levels of oxygen at rest and during exercise (Hesford
et al., 2013; Niemeijer et al., 2017), (2) measuring the rate of
re-oxygenation after ischemia or exercise (Willingham et al.,
2016; Willingham and McCully, 2017; Lucero et al., 2018),
and finally (3) using short periods of repeated ischemia to
measure oxidative metabolism or mitochondrial capacity (Ryan
et al., 2013b; Bossie et al., 2017; Sumner et al., 2020). NIRS
measurements of oxygen levels in the brain have been used in a
similar fashion to fMRI to measure activation of the brain (Duan
et al., 2012; Heinzel et al., 2013). The question to be addressed is
whether similar measurements can be performed on bone. One
of the major challenges to the NIRS technique is the limited
penetration depth of the light used, which is usually thought
to be approximately half of the separation distance between the
light source and detector (Miura et al., 2003). As a result, only
surface tissues within 1–2 cm of the NIRS device can be evaluated.
In addition, subcutaneous adipose tissue has been shown to
affect the interpretation of NIRS signals from the deeper skeletal
muscle (van Beekvelt et al., 2001a). These limitations pose major
challenge for using NIRS on long bones, as they are usually
located beneath skin, adipose tissue and various layers of skeletal
muscles. As a result, few attempts have been made to utilize NIRS
to assess long bone hemodynamics. On the other hand, there
are a few anatomical locations of bone that are not covered with
thick layers of adipose tissue and muscle. Tibial bone becomes
the ideal candidate for NIRS studies, as the medial aspect of the
tibia is generally free of most adipose or muscle tissues. Because
of this, most studies of long bone using NIRS have focused on
the medial aspect of the tibia (Binzoni et al., 2002, 2006; Draghici
et al., 2018). In addition, some studies also looked at blood flow
and hemodynamics at other prominent bone landmarks, such as
the calcaneus (Pifferi et al., 2004; Sekar et al., 2015; Konugolu
Venkata Sekar et al., 2016) and femoral head (Sekar et al., 2015;
Konugolu Venkata Sekar et al., 2016).

NIRS ASSESSED LONG BONE
HEMODYNAMICS

The Rate of Re-Oxygenation After
Ischemia and Its Application in Bone
Post-occlusive reactive hyperemia is a technique commonly used
to assess peripheral hemodynamic responses (Willingham et al.,
2016). This method usually involves placing the NIRS probe on
the tissue of interest and placing a blood pressure cuff connected
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to a rapid inflation system above the joint (Figure 1A). The blood
pressure cuff is rapidly inflated to 200–300 mm Hg (supra-systolic
pressure), with the purpose to completely cut off the blood flow
to the distal extremity. The ischemic occlusion usually lasts 3–
5 min, and then the cuff is rapidly released. The NIRS device
collects signal both during the ischemic occlusion and recovery
period. With occlusion the HbO2 signal drops and the HHb signal
rises in proportion to the metabolic rate of the tissue. As the cuff
is released, the HbO2 and HHb signals return to their baseline
levels, often showing an overshoot, and muscle oxygen saturation
changes accordingly (Figure 1B, black line). There can also be a
change in the HbO2 and HHb signals during the cuff and release
periods due to changes in total blood volume in the tissue.

Using HbO2 signal from NIRS, a number of investigators
were able to show that compared to healthy controls, individuals
with peripheral arterial disease (PAD) showed significantly longer

FIGURE 1 | (A) Experiment set-up for measuring tibia reactive hyperemia.
A NIRS probe is placed at the medial aspect of the tibia and attached to the
skin with double-sided tape. Pre-wraps are also usually used to wrap around
the NIRS probe to ensure that the probe is secure in place but also not too
tight. An occlusion cuff connected to a rapid cuff inflation system is placed
above the knee to provide arterial occlusion. (B) Figure showing muscle (black
line) and bone (red line) NIRS oxygen saturation changes during the reactive
hyperemia experiment. Compared to muscle, the magnitude of oxygen
reduction in bone is expected to be smaller during arterial occlusion, and it
takes longer time for bone to recovery oxygenation levels after the occlusion is
released. The results in this figure are roughly based on results see in the few
studies performed on tibial bone with the expected results from skeletal
muscle.

recovery time, slower rate of recovery, and lower maximal
changes during reactive hyperemia (McCully et al., 1994, 1997;
Kragelj et al., 2001). Importantly, the recovery of oxygen levels
was correlated with ankle-brachial index (ABI), a clinical marker
for disease severity in PAD. Overall, these studies demonstrate
the feasibility of using NIRS to measure microvascular function
as well as its application to clinical populations. In an attempt
to find the most reproducible parameter to indicate vascular
health during reactive hyperemia (Willingham et al., 2016) tested
20 healthy young individuals at two different time points for
both a standardized as well as a leg elevation protocol (to
simulate ischemic pre-condition). They concluded that time to
half recovery of HbO2 signal after releasing the cuff was the most
reliable parameter (Willingham et al., 2016).

Similar technique has been used to assess tibia hemodynamics.
Binzoni et al. (2002) used NIRS to assess tibia HbO2 and HHb
concentration changes following a 3-min ischemic occlusion on
13 healthy subjects with a wide range of age (25–72 years),
and concluded that reperfusion rate decreases linearly with age
starting from 30 years old. This study used the parameter of
“Perfusion index,” which is the first derivative of the HHb-time
recovery curve by mean of the Savitzky–Golay algorithm. This
study is of great value in that it is the first study of its kind
to demonstrate that NIRS signal is sensitive to changes in bone
blood flow. In addition, the same study also measured muscle
response during the reactive hyperemia, and was able to show
that while muscle perfusion rate also declines with age, the
absolute blood volume is greater in muscle than bone at any
given age. However, due to the limited number of participants,
the age associated results should be interpreted with caution.
For example, in a study later on, the same group found that
bone reperfusion capacity starts to decrease after 50 years old
(Binzoni et al., 2003). Interestingly, this observation is consistent
with the age commonly consider for major bone mass loss to
start (Heaney et al., 2000). The discrepancy is likely the result
of limited number of participants at a given age range as well
as the small variations of perfusion rate in people with relative
younger ages, and larger studies with more participants at specific
age ranges are needed to determine the true onset age for bone
perfusion rate to start decline.

Another study looked at tibial hemodynamic responses in
people with spinal cord injury (SCI) using a 3-min occlusion
protocol. It was found that individuals with SCI require longer
time for tibia re-oxygenation compared to their able-bodied
counterparts (Khakha et al., 2006). This study confirmed the
feasibility of this technique on clinical populations. More recently
and consistent with findings by Binzoni et al. (2002), a new
study suggests that compared to muscle, tibia is characterized
with slower desaturation rate and lower post-occlusive reactive
hyperemic response as indicated by total oxygen index (HbO2 to
total hemoglobin) as well as HHb changes in healthy population
(Meertens et al., 2016). Moreover, it was shown that the intra-
operator reliability for the NIRS measurements was high.

Based on previous studies, post-occlusive reactive hyperemia
is a potentially useful method to study the hemodynamics
of bone. Perhaps the most important issue related to post-
occlusive hyperemia in bone is to link this measurement to bone
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health. This would assist the interpretation of impaired bone
hemodynamic signals if they were identified. Other important
new directions would be to confirm changes in NIRS based post-
occlusive reactive hyperemia with established methods such as
MRI. In addition, showing that the NIRS signals were sensitive to
change and predicted changes in bone health will be important.
However, many questions remain with regard to its application to
measure long bone hemodynamics due to a lack of quality studies.
Many NIRS derived markers were used to indicate hemodynamic
response/vascular function, but it is unclear which one/ones are
the best indicators. Studies aiming to identify markers that are
longitudinally reproducible are needed. On the other hand, it may
also be plausible to interpret HbO2 and HHb signals separately.
In theory, during occlusion HHb increase in the tissue comes
almost exclusively due to oxygen consumption, while changes in
HbO2 signal may partially due to blood volume shift (Ryan et al.,
2012), therefore HHb signal increase should reflect oxidative
metabolism of the tissue. When the cuff is released, the HbO2
increase in the tissue should come almost exclusively from the
new blood entering the tissue, so the change of HbO2 signal could
reflect the blood flow influx. However, more research is needed
confirm this inference.

NIRS Measured Long Bone Oxygen
Levels During Rest or Exercise
Near-infrared spectroscopy measured tissue oxygen levels has
been used to indicate the balance between oxygen delivery and
oxygen utilization, both at rest and during exercise (Hamaoka
et al., 2011; Hesford et al., 2012). An early study on the tibia
by Binzoni et al. (2006) showed that NIRS signal is sensitive
enough to detect the hemodynamic changes in response to
orthostatic stress changes caused by as little as 15◦ bed tilting
in healthy individuals. Specifically, they were able to show that
NIRS can detect the oxy-, deoxy- and total hemoglobin content
increase due to the increased orthostatic pressure caused by
bed tilting. However, another study found minimal changes to
NIRS measured oxygen levels at four different body positions,
including sitting, supine, 15◦ head down tilt (HDT), and 15◦

HDT plus lower body negative pressure (Siamwala et al., 2015).
These studies were designed to improve our understanding on
bone loss associated with spaceflight. More recently, Draghici
et al. (2018) were able to demonstrate changes in oxygen levels
in tibial bone during and after rowing. They found that while
able-bodied individuals show clear increases in deoxygenated
hemoglobin levels during and after rowing, individuals with SCI
showed minimal changes (Draghici et al., 2018). These studies
suggest that NIRS can measure changes in bone oxygenation
during loading and exercise, and that such changes might
indicated differences in response in clinical populations. Clearly
more studies need to be conducted to better understand the
changes in bone oxygen levels with loading and exercise, and how
these changes might guide our understanding of bone health in
clinical populations.

One clear distinction between muscle and bone
hemodynamics as measured by NIRS is the magnitude of
signal. Despite being a highly vascularized organ, when

compared to muscle, the total amount of blood volume in
bone is much less. This is demonstrated by the higher absolute
heme signal and perfusion rate in muscle compared to bone
(Binzoni et al., 2002; Klasing and Zange, 2003; Meertens et al.,
2016). A potential implication for the blood volume disparity
is the resting measurements. Due to the less total amount of
hemoglobin in the bone vascular system, it is possible that
the NIRS measured HbO2 and HHb as well as their derived
measurements measured at rest on bone are likely to be less
accurate than on muscle, especially for continuous wavelength
NIRS devices which do not measure changing of scattering. On
the positive side, changes in scattering are less likely to be an
issue during hyperemic conditions, such as the post-occlusive
reactive hyperemia or post-exercise recovery. However, studies
designed to measure bone hemodynamics should take potential
changes in scattering into consideration.

FUTURE RESEARCH CONSIDERATIONS

NIRS Measurement Location
Considerations
Near-infrared spectroscopy has been used to measure
hemodynamics at various prominent bone sites. Several studies
performed “optical biopsy” using broad-band time-resolved
spectroscopy at human bony landmarks, including the calcaneus
(Pifferi et al., 2004; Sekar et al., 2015; Konugolu Venkata Sekar
et al., 2016), femoral head (Sekar et al., 2015; Konugolu Venkata
Sekar et al., 2016), and some forearm locations (Sekar et al., 2015;
Konugolu Venkata Sekar et al., 2016) where adipose and muscle
are minimal. The advantage of this specialized NIRS technique is
that in addition to quantifying HbO2 and HHb concentrations,
they can provide more information to the measurement
sites, such as water, lipid, and collagen concentrations. The
disadvantages are the complexity of device set-up which could
potentially prevent from being widely adopted. While a good
reliability has been shown (Konugolu Venkata Sekar et al., 2016),
it’s currently unknown how accurate these measurements are,
and validation studies can be difficult to design due to a lack
of means to compare to. Regardless, these studies showed the
possibility of measuring bone hemodynamics at sites other than
the tibia and are therefore of great value.

Most of the available studies that assessed hemodynamics
on the tibia did not specify NIRS probe placement method.
This is an important issue, because bone is not a homogeneous
organ, and the composition of long bone varies greatly from
the proximal to the distal end (Figure 2). The long bone shaft
(diaphysis) is consisted primarily of cortical bone with large
endosteal space. The hollow cavity is filled with bone marrow
and is where most of vessels reside. As it moves along the bone
to the distal and proximal ends, more trabecular bone is present,
which gradually takes over the bone marrow space, and most
blood vessels and bone marrow resides within the trabeculae
space. Because long bone has different compositions at different
segments, it is reasonable to assume that blood flow could be
different as well. Therefore, it is very likely that the magnitude of
NIRS signal measured at different segments of the tibia can vary.
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FIGURE 2 | Figure showing the anatomy of the tibia. The long bone shaft is consisted primarily of cortical bone, with large medullary cavity inside for bone marrow to
reside. Trabecular bone is presented primarily at the end of the bone, with bone marrow resides between the trabeculae space.

Whether placing the NIRS probe at different locations of the tibia
can provide similar information of bone hemodynamic changes
needs to be further explored.

Relationship Between NIRS
Measurements and Bone Development
Little information is known about the relationship between NIRS
measured bone hemodynamics and bone development. Very
recently, using the post-occlusive reactive hyperemia technique,
it was shown that reduction rate in HbO2 at the tibia during
arterial occlusion and subsequent recovery rate were correlated
with areal bone mineral density (aBMD) measured by dual-
energy X-ray absorptiometry (DXA) at the legs in healthy
people (Meertens et al., 2020). This demonstrated the potential
link between bone microvascular function and its development
in human. Nevertheless, to date, studies examining the
relationship between NIRS measurements and bone strength and
microarchitecture are still lacking. Filling this gap in literature
is of great importance, because DXA is a two-dimensional
technology, and its derived aBMD measurement cannot truly
represent the bone three-dimensional structure and strength. The
value of adding bone strength and microarchitectural assessment
in addition to BMD could help us differentiate those who do and
do not fracture and improve our ability to predict fracture risks
(Link et al., 1998; Majumdar et al., 1999; Ciarelli et al., 2000).

This topic is particularly important with respect to
pathological conditions like type 2 diabetes (T2D). Adults
with T2D usually present with normal or even high aBMD
compared to similar aged healthy counterparts without T2D

(Buysschaert et al., 1992; Akin et al., 2003; de Liefde et al., 2005;
Oz et al., 2006). However, they have a higher fracture incidence
rate (Nicodemus et al., 2001; de Liefde et al., 2005; Vestergaard,
2007). Human studies suggest that the trabecular bone density
and structure are well preserved or even enhanced (Burghardt
et al., 2010; Farr et al., 2014; Starr et al., 2018), whereas cortical
bone properties are predominately compromised in T2D
(Burghardt et al., 2010; Petit et al., 2010; Farr et al., 2014). Such
disparity is intriguing, yet no conclusive explanations have
been provided. It is possible that the high level of circulatory
glucose causes microvascular damage to the bone through
a mechanism similar to that of other peripheral vascular
systems, which contributes to this paradox. Rodent models
suggest that long-term T2D is associated with altered bone
vascular function, and endothelium dependent-vasodilation
is correlated with cortical and total volumetric BMD (Stabley
et al., 2015). However, whether bone microvascular function
changes can partly account for the trabecular and cortical
bone development disparities in human T2D individuals has
yet to be explored. The advancement of NIRS application on
tibia hemodynamic assessment has enabled this possibility,
therefore studies are urgently needed to address this gap
in the literature.

Another physiological condition of interest is aging. Aging
is a process accompanied with high bone fracture incidence
rate (Ensrud, 2013) with declining bone mass and quality
(Cohn et al., 1976; Nyssen-Behets et al., 1997; Agnusdei et al.,
1998; Nalla et al., 2004; Koester et al., 2011). Animal studies
have demonstrated that age-related deteriorations in the bone
vascular system, which include but not limited to reduced blood
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FIGURE 3 | Figure showing how NIRS may be used to assess bone health and monitor intervention studies designed to enhance bone quality. Existing evidence
suggest that posture, gravity, vascular health can impact bone blood flow. There is some evidence and a growing interest in bone hyperemia, as induced either by
laboratory vascular occlusion procedure or exercise/physical activity, on bone blood flow changes primarily due to its modifiable nature. In addition, interventions
designed for better loading, nutrition or hormonal conditions in human can enhanced bone blood flow. We propose that enhanced bone blood flow, which can be
monitored by NIRS, will lead to greater total bone size and cortical (gray ring) expansion, resulting in stronger bones, whereas poor bone blood flow induced by a
lack of these stimulation factors could lead to poor bone development or even bone loss, resulting in less cortical bone.

flow, increased ossification, and decreased mass (Prisby et al.,
2007; Prisby, 2014). Because bone remodeling is dependent on
the supply of nutrients and other necessities by bone vessels
(Prisby, 2019), alterations in the bone vascular function/blood
flow could have tremendous negative impact on bone repair
after microdamage, leading to bone fragility. To date, the
role of bone vascular system deterioration on age-related bone
compromise in human has not been examined. Establishing
the relationship between these two could potentially provide
us with a new therapeutic target for reducing the prevalence
of osteoporosis.

Implications for NIRS Measurements in
Bone Intervention Studies
Although more research is needed, the evolvement of this field
could have important clinical implications. Because bone is
an organ considered to have slow turnover rate, interventions
designed to improve bone density and quality and therefore
reduce fracture risks generally takes many months, even
years before the effects are large enough to be observed.
On the other hand, improvement in bone microvascular
function likely precedes the improvement of bone quality and
strength (Figure 3). If a clear link between NIRS measured
bone microvascular hemodynamics and bone strength and/or
microarchitecture is established, it would provide us with
another means to conduct early evaluation of the efficacy of
the intervention program. However, more research is needed
to confirm the notion that NIRS measured bone blood
hemodynamic changes can serve as an early indicator of the
effectiveness of the intervention programs.

NIRS Measurement and Homeostasis
Other than the development of bone itself, it needs to be
emphasized that bone is also important in maintaining proper
homeostasis to human body. One of the key considerations of
this aspect is the new red blood cells (RBC) generation. New
RBC are formed almost exclusively at human bone marrow after
birth. Impaired bone vascular function could have detrimental
effects on the system RBC availability, as pointed out by a
study suggesting that aging-related augmented bone marrow
blood vessels ossification at femur corresponds with reduced
RBC count in rats (Guderian et al., 2019). Vascular system in
bone is responsible for its nutrient supply, waste exchange and
RBC delivery to the system. Therefore, maintaining proper bone
vascular health is not only important to bone, but could also
have great implication on individual’s oxygen delivery system.
Future studies are needed to determine whether NIRS derived
bone measurements are related to human RBC count and
subsequently, the aerobic capacity.

CONCLUSION

In conclusion, existing evidence suggest that NIRS has great
potential in assessing long bone blood flow and oxygenation. The
portability, affordability nature of the NIRS testing equipment
and the relatively easy data analysis procedure make it an
ideal tool to be integrated as part of clinical or research
assessment in evaluating bone health. However, the relative lack
of studies has left many unanswered questions in this field. More
studies are needed to evaluate and establish the most reliable
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testing and data processing procedure. More studies are also
needed to establish the connection between NIRS measurements
and bone strength and microarchitectural measurements, and
determine whether they can be used to monitor changes due
to intervention.
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