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Abstract

Adult T-cell leukemia/lymphoma is a fatal malignancy etiologically linked to infection with the 

human T-cell leukemia virus (HTLV-1). The virally-encoded oncoprotein Tax activates 

transcription of HTLV-1 and cellular genes by cooperating with cellular transcription factors. 

Cyclin D1 is a pivotal regulator of cell cycle progression, and increased expression strongly 

correlates with malignant transformation. Here, we characterize the mechanism of Tax 

transactivation of cyclin D1. We find that cyclin D1 transcript levels are elevated in HTLV-1 

infected cells and that Tax physically associates with the cyclin D1 gene in vivo. Tax binds the 

cyclin D1 promoter-proximal cyclic AMP response element (CRE) in the presence of 

phosphorylated CREB (pCREB) in vitro, and together the Tax/pCREB complex recruits the 

cellular coactivator p300 to the promoter via this unconventional Tax-responsive element. We 

further show that Transducer of Regulated CREB 2 (TORC2) cooperates with Tax to further 

enhance p300 recruitment to the cyclin D1 promoter in vitro, consistent with enhanced cyclin D1 

expression in the presence of Tax and TORC2. Together, our findings support a model in which 

Tax-induced accumulation of cyclin D1 shortens the G1 phase of the cell cycle, promotes mitotic 

replication of the virus, and drives selection and expansion of malignant T-cells.
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Introduction

The human T-cell leukemia virus type 1 (HTLV-1)-encoded oncoprotein, Tax, promotes 

malignant transformation through disruption of diverse host-cell growth control pathways, 

resulting in aberrant cell division. Tax adversely influences cellular homeostasis through 

numerous mechanisms, including the physical interaction with cell cycle regulators and 
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transcriptional activation of cell cycle control genes, that ultimately lead to enhanced cell 

division and uncontrolled proliferation (Afonso et al., 2007; Jin, 1998; Lemoine and 

Marriott, 2001; Matsuoka and Jeang, 2007). Of significance, Tax has been shown to activate 

the cell cycle regulatory genes that encode cyclin D1 and D2 (Huang et al., 2001; Mori et 

al., 2002). In particular, Tax was shown to stimulate cyclin D1 expression through 

deregulation of the NF-κB pathway (Mori et al., 2002). Cyclin D1 regulates G1 to S phase 

progression through formation of active complexes that phosphorylate and inactivate the 

retinoblastoma (RB) protein. As such, cyclin D1 deregulation is strongly correlated with the 

development and progression of many cancers. For example, a recent study demonstrated 

that enforced overexpression of cyclin D1 directly facilitates malignant transformation by 

promoting genomic instability via centrosome amplification, mitotic spindle abnormalities 

and aneuploidy (Nelsen et al., 2005).

The oncogenic properties of Tax are primarily exerted through deregulation of two major 

cellular transcription factor pathways: ATF/CREB and NF-κB. Tax deregulation via NF-κB 

represents the most prevalent means by which Tax inappropriately alters gene expression 

levels in the cell. It is well established that Tax activates NF-κB target genes via the 

sustained release of p50 and p65 from their inhibitors, with subsequent relocation of the 

transcription factors into the nucleus (Sun and Yamaoka, 2005). Therefore, Tax activation of 

the NF-κB pathway is indirect, as Tax does not physically associate with the transcription 

factors bound at their target genes. In contrast, Tax activation through the cellular 

transcription factor CREB (and possibly other ATF/CREB family members) has only been 

well characterized at the HTLV-1 promoter. In this case, Tax promotes strong activation of 

viral transcription through the formation of a promoter-bound complex containing Tax, the 

Ser133-phosphorylated form of CREB (pCREB) and the cellular coactivators CBP/p300. 

Within the HTLV-1 promoter, three conserved 21-bp repeat enhancer elements called viral 

CREs (vCREs) are required for Tax/pCREB complex formation. CREB binds to the central 

octanucleotide CRE, and Tax binding is stabilized through protein-protein interactions with 

CREB and protein-DNA interactions with the minor groove of the GC-rich flanks 

immediately adjacent to the CRE.

The Transducer of Regulated CREB (TORC) proteins have been identified as CREB co-

activators that are also targeted by Tax (Bittinger et al., 2004; Conkright et al., 2003; 

Iourgenko et al., 2003; Koga et al., 2004; Screaton et al., 2004; Siu et al., 2006). This 

conserved family of proteins includes three members, called TORC1, 2, and 3. TORC1 is 

predominately expressed in the brain, while TORC2 and TORC3 are highly expressed in B 

and T cells (Conkright et al., 2003). TORCs associate with CREB and enhance CREB target 

gene expression (Conkright et al., 2003; Iourgenko et al., 2003). Recently, TORC proteins 

have been shown to directly interact with Tax and augment Tax activation of HTLV-1 

transcription (Koga et al., 2004; Siu et al., 2006). Together, these studies suggest that 

interactions between Tax, pCREB and TORC proteins cooperate in the strong activation of 

HTLV-1 transcription.

It is of interest that the cyclin D1 gene is regulated by several transcription factors including 

NF-κB and pCREB (Castellone et al., 2009; Fox et al., 2008; Guttridge et al., 1999; Hinz et 

al., 1999; Lee et al., 1999), and that cyclin D1 is upregulated by Tax (Mori et al., 2002). In 
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this study, we sought to elucidate the mechanism by which Tax activates cyclin D1 gene 

expression. We show that cyclin D1 transcript levels are elevated in HTLV-1 infected/

transformed cell lines, and that cyclin D1 transcription is activated by Tax through both the 

NF-κB and CREB pathways. Unexpectedly, chromatin immunoprecipitation assays (ChIP) 

reveal that Tax physically interacts with the cyclin D1 promoter region in vivo. 

Characterization of transcription factor binding to the cyclin D1 promoter in vitro 

demonstrates that the promoter-proximal CRE, together with pCREB, are required for Tax 

binding. These data were unexpected, as the cyclin D1 CRE is not flanked by the conserved 

GC-rich sequences required for Tax/pCREB binding at the vCREs in the HTLV-1 promoter. 

We find that Tax, in complex with pCREB, significantly increases the recruitment of the 

cellular coactivator p300 to the cyclin D1 promoter. Moreover, TORC2 also binds the 

pCREB/cyclin D1 CRE complex, and further increases p300 recruitment in a Tax-dependent 

manner. This enhanced coactivator binding is likely directly responsible for Tax-dependent 

activation of cyclin D1 transcription. Together, these findings deepen our understanding of 

the molecular mechanisms by which Tax activates transcription of cellular genes. 

Furthermore, our studies suggest that a significant number of CRE-containing cellular genes 

may be potential targets of deregulation by Tax in the HTLV-1 infected cell. Tax 

deregulation of the cyclin D1 gene may be of particular significance in HTLV-1-associated 

disease, as chronically elevated cyclin D1 protein levels may drive cell cycle progression 

and the potential for malignant transformation.

Materials and Methods

Expression and purification of recombinant proteins

Bacterially expressed Tax-His6 (Zhao and Giam, 1991), CREB327 (Lopez et al., 2007), and 

GST-KIX (CBP aa 588–683) (Giebler et al., 1997) were purified to >98% homogeneity as 

previously described. CREB was phosphorylated using the catalytic subunit of protein 

kinase A, as previously described (Giebler et al., 1997). The His6-TORC2 expression 

plasmid was generated by PCR amplification of pcDNA3.1-V5-TORC2 (Siu et al., 2006) 

and cloned into the NdeI and HindIII restriction sites of pET3b (Novagen). His6-TORC2 

was bacterially expressed and purified by Ni-NTA chromatography. Full-length His6-p300 

was expressed from recombinant baculovirus in Sf9 cells and purified as previously 

described (Geiger et al., 2008; Kraus et al., 1999).

Antibodies

Antibodies against His (H-15), CREB-1 (C-21), p-CREB-1 (Ser-133), CBP (A-22), p300 

(N-15), and RNA Pol II (H-224) were purchased from Santa Cruz, Santa Cruz, CA, USA. 

TORC2 was detected using the anti-His antibody. A Tax monoclonal antibody (hybridoma 

168B17-46-92) was obtained from the NIH AIDS Research and Reference Reagent 

Program. Alexa Fluor IR700 and IR800 goat anti-mouse and goat anti-rabbit secondary 

antibodies were purchased from Molecular Probes-Invitrogen.

RNA Isolation and RT PCR

Cytoplasmic mRNA was isolated and reverse transcribed (Superscript II, Invitrogen) then 

used to amplify a cyclin D1 cDNA fragment using upstream primer 5′-
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GACCATCCCCCTGACGGCCGAG-3′ and downstream primer 5′-

CGCACGTCGGTGGGTGTGC-3′. As an internal control, a thymidine kinase (TK) cDNA 

fragment was amplified using upstream primer 5′-GAGTACTCGGGTTCGTGAAC-3′ and 

downstream primer 5′-GGTCATGTGTGCAGAAGCTG-3′.

Transient Transfection Assays

Jurkat cells were grown to a density of 106 cells/ml and transfected with a constant amount 

of DNA (1 ug) using Lipofectamine reagent(Invitrogen, Carlsbad, CA, USA). After 24 hrs, 

the cells were harvested and lysed, and luciferaseactivity was measured using a dual-

luciferase reporter assaysystem (Promega). Reporter plasmids containing the cyclin D1 

promoter have been previously described (Albanese et al., 1995; Westerheide et al., 2001). 

Firefly luciferase activity was normalized to Renilla activity (pRL-TK, Promega, Madison, 

WI, USA). The expression plasmid for TORC2 (pcDNA3.1-V5-TORC2) has been 

previously described (Siu et al., 2006). The expression plasmids for Tax (pSG-Tax) 

(Rousset et al., 1996), and Tax mutants M22 (pSG-M22) and M47 (pSG-M47) have been 

previously described (Smith and Greene, 1990). The transient transfection assays were 

performed in triplicate and repeated in three independent experiments.

Chromatin Immunoprecipitation Assays

ChIP assays, real-time PCR, and data analysis were performed as previously described 

(Lemasson et al., 2002; Lemasson et al., 2004). The primers used to detect the cyclin D1 

promoter (−83 to +42 from the initiation start site) are as follows: upstream primer 5′-

CTGCCGGGCTTTGATCTTTGCTTA-3′ and downstream primer 5′-

ACTCTGCTGCTCGCTGCTACT-3′. The amount of immunoprecipitated cyclin D1 

promoter DNA relative to that present in the total input was calculated as previously 

described (Frank et al., 2001; Lemasson et al., 2004). The correlation coefficient was 0.993 

and PCR efficiency was in the range of 90–110%.

Immobilized Template Assays

The immobilized cyclin D1 promoter fragments were preincubated for 20 min at 30°C in the 

presence of Tax and CREB (or pCREB). Recombinant p300 and/or TORC2 were added for 

an additional 30 min. Protein amounts are indicated in each figure legend, and binding 

reactions were carried out as previously described (Geiger et al., 2008). Where indicated, 

CEM nuclear extract (300 ug) was incubated for 1 h at 4°C following preincubation with the 

above recombinant purified proteins.

The biotinylated double-stranded oligonucleotides were coupled to streptavidin DynabeadsR 

(Invitrogen) according to the manufacturer’s instruction. The top strand of the 5′ 

biotinylated cyclin D1 promoter sequences of the oligonucleotides are as follows. CD1 wt: 

5′-Bio/

GGAATTCCTTTGATCTTTGCTTAACAACAGTAACGTCACACGGACTACAGGGGA

GTTTTG TTGAAGTT-3′; CD1 mut1: 5′-Bio/

GGAATTCCTTTGATCTTTGCTTAACAACAGCACGGACTACAGTTGAAGTTGCAA

AGTCCT GGAGCCTC-3′; CD1 mut2: 5′-Bio/

GGAATTCCTTTGATCTTTGCTTAACAACAGCACGGACTACAGGGGAGTTTTGTTG
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AAGTT GCAAAGTC-3′; CD1 mut3: 5′-Bio/

GGAATTCCTTTGATCTTTGCTTAACAACAGTAACGTCACACGGACTACAGTTGA

AGTTGC AAAGTCCT-3′.

Electrophoretic Mobility Shift Assay (EMSA)

The indicated amounts of purified CREB, Tax, and/or GST-KIX were incubated with either 

a 32P-end-labeled HTLV-1 vCRE or cyclin D1 CRE probe. Reactions were performed and 

analyzed as previously described (Kim et al., 2007). The top strand sequence of the 

oligonucleotide probes are as follows: HTLV-1 vCRE: 5′-

TTTCAGGCGTTGACGACAACCCCTCA-3′; cyclin D1 CRE: 5′-

TTGACAACAGTAACGTCACACGGACG-3′. The octanucleotide CREs are underlined.

To calculate the apparent binding affinity of Tax for the cyclin D1 CRE (in the presence of 

pCREB and KIX), we quantified the band intensities of the quaternary complex (Tax/

pCREB/KIX/CRE) relative to the ternary complex (pCREB/KIX/CRE) over a range of Tax 

concentrations. The relative Kd, defined as the concentration of Tax at which 50% of the 

quaternary complex formed, was quantitatively determined by plotting the fraction of Tax-

containing quaternary complex versus the total concentration of Tax protein (nM) in each 

reaction. Reactions with the vCRE probe were performed in parallel to assess the relative 

binding affinities of the complexes for the respective CREs.

Image Processing

The ImageQuant program (GE, Pittsburg, PA, USA) was used to quantify band intensities. 

Images were processed in Adobe Photoshop, with minor adjustments made to brightness/

contrast as needed (gamma was kept at 1). No bands were obscured or altered. Images were 

annotated in PowerPoint.

Results and Discussion

Cyclin D1 transcript levels are elevated in HTLV-1-infected T-cell lines

To evaluate cyclin D1 RNA levels in HTLV-1 infected cells, we performed reverse 

transcriptase-polymerase chain reaction (RT-PCR). We measured cyclin D1 transcript levels 

in HTLV-1 infected (SLB-1 and C8166) and uninfected (Jurkat and CEM) human T-cell 

lines. Figure 1a shows elevated cyclin D1 transcript levels in HTLV-1 infected cells, relative 

to the uninfected cells, consistent with a previous study that reported enhanced cyclin D1 

transcription following Tax expression (Mori et al., 2002). These data are not surprising in 

light of the numerous putative Tax-responsive elements in the cyclin D1 promoter, including 

NF-κB sites and a promoter proximal CRE (see Fig. 1b).

Tax activates cyclin D1 transcription through the proximal promoter

To determine which promoter elements mediate Tax transactivation of the cyclin D1 gene, 

we performed transient transfection assays using a collection of cyclin D1 promoter deletion 

constructs driving luciferase expression (Albanese et al., 1995; Westerheide et al., 2001) 

(Fig. 1b). Jurkat T-cells were cotransfected with each of the deletion constructs in the 

absence or presence of an expression plasmid for Tax. Figure 1c shows that deletion of the 
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upstream cyclin D1 promoter to 66 (66/Luc), relative to the start site, retained Tax 

responsiveness. This promoter proximal region carries a single NF-κB binding site and a 

single CREB-binding CRE. Although the mechanism of Tax activation through the NF-κB 

pathway is well established, Tax activation through cellular CREs has not been explored.

To establish which of these two pathways is utilized by Tax in the activation of cyclin D1, 

we performed transient transfection assays using several cyclin D1 (−66) promoter/reporter 

constructs bearing point mutations in the -κB and CRE elements. For reasons that remain 

unclear, however, the mutants gave highly inconclusive results (data not shown). We 

therefore performed transient transfection assays using the well-characterized Tax mutants, 

M22 and M47, which functionally differentiate these two pathways. M22 Tax is primarily 

defective for activation through NF-κB, whereas M47 Tax is defective for activation of 

HTLV-1 via the vCREs (Smith and Greene, 1990). As shown in figure 1d, Tax M22 was 

fully defective for activation of the cyclin D1 −66 reporter plasmid, whereas the Tax M47 

mutant was down by approximately half. However, it is important to note that while M22 

Tax is >95% defective for NF-κB, it is also 45% defective in the CREB pathway (Smith and 

Greene, 1990). Based on these observations, it is difficult to quantitatively establish the 

contribution of each pathway in mediating Tax activation through the transfected cyclin D1 

proximal promoter. However, we can easily deduce that both pathways are utilized by Tax 

to activate cyclin D1 expression in vivo. This conclusion is further supported by our 

observation that co-transfection of both Tax mutants restores Tax transactivation (Fig. 1d).

Tax associates with the cyclin D1 promoter in HTLV-1 infected cells

Tax activation of NF-κB occurs via phosphorylation and degradation of IκB in the 

cytoplasm, leading to nuclear translocation of the transcriptionally competent NF-κB 

proteins (Sun and Ballard, 1999; Sun and Yamaoka, 2005). Although a previous report 

suggested that Tax physically binds to specific NF-κB proteins at promoter elements 

(Suzuki et al., 1994), subsequent studies widely support a mechanism in which Tax 

functions exclusively in the cytoplasm to release the NF-κB proteins, and does not 

physically accompany the proteins to the promoters of NF-κB-activated cellular genes. Tax 

activation through CREB (and other ATF/CREB family members) has been well 

characterized on the HTLV-1 promoter, where Tax strongly activates viral transcription 

through physical association with CRE-bound CREB and the adjacent minor groove GC-

rich DNA (Kimzey and Dynan, 1998; Lenzmeier et al., 1998; Lundblad et al., 1998). In 

vitro studies indicate that cellular CREs, which lack the requisite GC-rich flanking 

sequences, have significantly reduced capacity for Tax binding (see [Geiger et al., 2008; 

Lenzmeier et al., 1998; Lundblad et al., 1998]). Consistent with this, there have been 

relatively few reports of Tax upregulation of cellular genes through CRE sequences (de la 

Fuente et al., 2006; Hiraiwa et al., 2003; Huang et al., 2001; Iwai et al., 2001; Tanaka et al., 

1996; Terme et al., 2008). However, two recent studies reported Tax association with 

specific CRE-containing cellular gene promoters using the chromatin immunoprecipitation 

assay (ChIP) (de la Fuente et al., 2006; Wang et al., 2008), suggesting that Tax may 

physically associate with cellular CRE sequences. In addition, Tax expression further 

deregulates CREB-dependent cellular transcription via induction of a kinase that leads to 

constitutively elevated levels of serine 133 phosphorylated CREB (pCREB) (Kim et al., 
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2007; Trevisan et al., 2004; Trevisan et al., 2006). Together, these data provide evidence for 

both direct (promoter-binding) and indirect (enhanced CREB phosphorylation) mechanisms 

of Tax transactivation through cellular CREs.

Since the Tax-responsive cyclin D1 proximal promoter carries a CRE, we investigated 

whether Tax binds at the cyclin D1 promoter in vivo using the chromatin 

immunoprecipitation assay. We measured Tax binding at the endogenous cyclin D1 

promoter in HTLV-1 infected, Tax-expressing SLB-1 T-cells and in uninfected Jurkat T-

cells as a negative control. We detected elevated Tax binding at the cyclin D1 promoter only 

in the SLB-1 cells (Fig. 2). Consistent with this observation and the presence of elevated 

cyclin D1 transcript levels in these HTLV-1 infected, Tax-expressing cells (see Fig. 1a), we 

also detected enhanced association of the cellular coactivator CBP and RNA polymerase II 

at the cyclin D1 promoter. These results reveal that Tax physically associates with the 

endogenous cyclin D1 promoter and implicate the promoter-proximal CRE as the target site 

for Tax association. Together, these data support a model in which Tax binding to the CRE 

facilitates recruitment of CBP/p300 and RNA polymerase II, commensurate with enhanced 

transcription of the cyclin D1 gene.

Tax binds to the cyclin D1 proximal promoter in vitro

To decipher the molecular basis for the physical interaction between Tax and the cyclin D1 

promoter, we performed in vitro immobilized template assays. Cyclin D1 proximal promoter 

constructs carrying either the natural sequence (wt) or a deletion of both the CRE and κB 

sites (ΔCRE/ΔκB) were immobilized on streptavidin-coated magnetic Dynabeads via 

incorporation of a biotin group on the upstream end of each template, as previously 

described (Geiger et al., 2008) (see Fig. 3a). The immobilized templates were incubated 

with nuclear extract derived from CEM cells (an HTLV-1-negative human T-cell line) in the 

absence or presence of highly purified Tax protein. The templates were extensively washed 

and promoter-bound proteins were separated by SDS-PAGE and analyzed by western blot. 

Figure 3B shows that CREB, present in the nuclear extract, bound to the wild-type cyclin D1 

promoter, but not to the mutant ΔCRE/ΔκB promoter. Notably, we also detected the binding 

of Tax to the wild-type cyclin D1 promoter, but not to the mutant ΔCRE/ΔκB promoter (Fig. 

3b, lane 5). These findings corroborate the in vivo ChIP assay and further show that Tax 

specifically associates with the functionally relevant promoter proximal region of cyclin D1.

The CRE is required for Tax binding at the cyclin D1 promoter

We next sought to identify the individual contribution of the CRE and κB sites in mediating 

Tax association with the cyclin D1 promoter. We designed two additional cyclin D1 

promoter constructs carrying targeted deletions of the individual CRE or κB recognition 

elements. As before, these immobilized templates were incubated with nuclear extract and 

highly purified Tax. Deletion of the κB site (ΔκB) had no effect on Tax binding, however, 

deletion of the CRE (ΔCRE) abolished association of Tax with the cyclin D1 promoter (Fig. 

3c, lanes 4, 5). Finally, we did not detect Tax binding to the cyclin D1 promoter template in 

the absence of nuclear extract (data not shown), indicating that the physical association of 

Tax with the cyclin D1 promoter requires the presence of CREB (or a CREB-like factor) 

bound at the CRE.
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Tax and pCREB together recruit p300 to the cyclin D1 promoter

We next turned our attention to the role of CREB and the cellular coactivators CBP/p300 in 

facilitating Tax binding to the cyclin D1 promoter. Previous studies examining the binding 

of Tax at the vCREs in the HTLV-1 promoter established that the Tax/pCREB complex is 

required for CBP/p300 recruitment, and that this recruitment is essential for strong Tax 

transactivation (Geiger et al., 2008; Georges et al., 2003; Kim et al., 2007; Kwok et al., 

1996; Lemasson et al., 2006; Lu et al., 2002; Ramirez and Nyborg, 2007; Sharma and 

Nyborg, 2008). Moreover, recent studies demonstrated that the KIX domain of CBP/p300 

significantly stabilizes (>60-fold) the association between Tax, pCREB and the DNA (Kim 

et al., 2007; Ramirez and Nyborg, 2007).

With these observations in mind, we further investigated Tax binding to the cyclin D1 

promoter using the immobilized template assay and highly purified CREB, Ser133-

phosphorylated CREB (pCREB), and full-length p300. We did not detect Tax binding with 

DNA-bound CREB or pCREB in the absence of p300 (data not shown), suggesting that Tax 

has a lower binding affinity for the cyclin D1 CRE than for the vCRE. This observation 

further supports our model in which Tax and p300 exert mutually stabilizing influences in 

the assembly of transcriptionally-competent promoter-bound complexes (see below, and 

[Geiger et al., 2008; Kim et al., 2007]). Based on these results, we proceeded to characterize 

Tax/CREB complex formation on the cyclin D1 promoter in the presence of full-length 

p300. We found that Tax binding required the presence of pCREB, as the unphosphorylated 

form of CREB was insufficient for detectable complex formation (Fig. 4, compare lanes 3 

and 5). Together the promoter-bound Tax/pCREB complex supported the association of 

p300 with the cyclin D1 promoter (Fig. 4, lane 5). Similar results were obtained with 

purified, full-length CBP (data not shown). It is noteworthy that in the absence of Tax, 

pCREB alone did not support the binding of full-length p300 (Fig. 4, lane 4), consistent with 

our previous study (see [Geiger et al., 2008]). This observation is in sharp contrast to 

numerous publications that have modeled CBP/p300 binding to pCREB based on studies 

with the isolated KIX domain, and not the full-length coactivators. The significance of Tax-

mediated p300 recruitment to the cyclin D1 promoter cannot be overstated, as p300 binding 

directly correlates with transcriptional output in vitro (Geiger et al., 2008), and is a hallmark 

of transcriptionally competent genes in vivo (Heintzman et al., 2007; Visel et al., 2009). 

Finally, we analyzed, in parallel, Tax, pCREB and p300 binding to the HTLV-1 vCRE (Fig. 

4, lane 6). As expected, Tax and p300 binding was greater on the HTLV-1 vCRE than on the 

cyclin D1 CRE, correlating well with the degree of Tax-mediated transcriptional output 

from the respective promoters (>100-fold vs. 6–12 fold). While Tax only moderately 

activates the cyclin D1 gene, the 6–12 fold stimulation observed is significant for a critical 

cell-cycle regulator and proto-oncogene that must be stringently regulated.

Characterization of Tax binding to the isolated cyclin D1 CRE

Tax association with the HTLV-1 vCREs involves multiple stabilizing interactions that 

include: Tax binding to GC-rich minor groove sequences adjacent to the octanucleotide core 

CRE; Tax interaction with CREB; and the synergistic interactions between both Tax and 

pCREB with the KIX domain of CBP/p300 (Ramirez and Nyborg, 2007). Therefore, the 

unprecedented nature of Tax binding to a cellular CRE that lacks the adjacent GC-rich DNA 
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sequences prompted us to more carefully investigate the binding of Tax to this sequence. As 

shown in figure 4, binding of Tax to the cyclin D1 promoter required the presence of both 

pCREB and p300. Based on these observations, we performed electrophoretic mobility shift 

assays (EMSAs) with the cyclin D1 CRE probe and purified Tax, pCREB, and the KIX 

domain of CBP/p300 (full-length CBP/p300 are not amenable to EMSA due to their large 

size). As a positive control, we analyzed Tax binding to the HTLV-1 vCRE probe in 

parallel. As expected based on the data presented in figure 4, we did not detect a Tax-

dependent “supershift” of the pCREB/cyclin D1 CRE complex in the absence of KIX, 

suggesting that Tax did not enter into this complex (Fig. 5a, compare cyclin D1 CRE lanes 

12 and 14 with vCRE lanes 2 and 4). However, inclusion of KIX in the binding reactions 

enabled Tax incorporation into the larger quaternary complex (Tax/pCREB/KIX/CRE), as 

visualized by the supershifted band. To estimate the relative binding affinity of Tax for the 

respective CREs, we titrated Tax into binding reactions containing a constant amount of 

pCREB and KIX, and the Tax-dependent conversion into quaternary complex was measured 

on both the cyclin D1 CRE and vCRE. Figure 5a shows that higher amounts of Tax were 

required to produce the quaternary complex on the cyclin D1 CRE, relative to the vCRE, 

and that the complex formed on the cyclin D1 CRE appeared to be slightly less stable during 

electrophoresis (Fig. 5a, compare lanes 5–10 with 15–20).

We next plotted the concentration of Tax against the percent conversion into the quaternary 

complex, and determined the apparent binding affinity based on the midpoint of the binding 

transition into the quaternary complex (Fig. 5b). The apparent binding affinity of Tax for the 

cyclin D1 CRE/pCREB/KIX complex was 14-fold lower than that for the vCRE/

pCREB/KIX complex (34 nM ± 5 and 2.4 ± 0.1 nM, respectively). This 14-fold reduction in 

the relative binding affinity of Tax for the cyclin D1 CRE is likely due to the absence of 

GC-rich sequences flanking this cellular CRE. However, the binding data demonstrates that 

pCREB and KIX (or p300, Fig. 4) partially compensates for the absence of these conserved 

sequences, as both proteins significantly contribute to the overall stability of Tax on the 

cellular CRE DNA. These findings, coupled with the functional data shown in figure 1, 

clearly demonstrate that the cyclin D1 CRE is an authentic and biologically significant Tax-

response element that is responsible, in part, for enhanced expression of the cyclin D1 gene.

Tax and TORC2 cooperate in cyclin D1gene activation and CRE-dependent p300 
recruitment

To further characterize the molecular basis for Tax transactivation of the cyclin D1 gene, we 

investigated whether the TORC proteins, CREB coactivators, also participate in this process. 

Tax has previously been reported to directly interact with TORC-1, -2, and -3, and transient 

expression assays have shown that this class of proteins synergize with Tax at the vCREs to 

activate HTLV-1 transcription (Koga et al., 2004; Siu et al., 2006). Based on these 

observations, we hypothesized that these proteins facilitate Tax activation of the cyclin D1 

gene through the promoter-proximal CRE. To test this hypothesis, we performed transient 

transfection assays using Tax and TORC expression plasmids and the cyclin D1 (−66/Luc) 

reporter plasmid. We initially screened all three TORC expression plasmids and found that 

each protein stimulated cyclin D1 expression and moderately facilitated Tax transactivation 

(data not shown). Specifically, transfection of TORC2 stimulated cyclin D1 approximately 
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6-fold, and co-transfection of Tax and TORC2 stimulated cyclin D1 approximately 20-fold 

(Fig. 6a). These findings indicate that Tax and TORC2 cooperate to activate expression of 

the cyclin D1 gene. This result is consistent with the previously reported activation of a 

generic cellular CRE reporter plasmid by Tax and TORC3 (Koga et al., 2004). However, the 

molecular basis for the observed functional cooperativity between Tax and the TORC 

proteins is unknown.

To biochemically characterize TORC2 binding at the cyclin D1 promoter, we cloned and 

expressed the full-length protein, and analyzed its interactions with Tax, pCREB, and p300 

(Fig. 6b, c). TORC2 bound the cyclin D1 promoter in the presence of both CREB and 

pCREB (data not shown), but did not support p300 recruitment (Fig. 6b, lane 3). However, 

TORC2, in the presence of Tax, enhanced Tax-dependent p300 binding to the promoter 

template (Fig. 6b, compare lanes 2 and 4). The enhanced binding stability of p300 in the 

presence of Tax, pCREB, and TORC2 likely derives from the extensive intermolecular 

protein-protein interactions that take place within this elaborate DNA-bound complex. As 

such, the increased recruitment of p300 provided by TORC2 binding provides a molecular 

explanation for the functional synergy observed in vivo (Fig. 6a).

We next asked whether the cyclin D1 CRE was required for the formation of the TORC2-

containing complex on the cyclin D1 proximal promoter. We compared, in parallel, the 

binding of these proteins to the wild-type and ΔCRE cyclin D1 promoter templates. Figure 

6c shows that the formation of the pCREB/Tax/TORC2/p300 complex on the cyclin D1 

promoter is CRE-dependent, as deletion of the CRE prevented complex formation. From 

these data, we conclude that the CRE serves as the foundation for the assembly of this large 

(>500 kDa) multiprotein complex on the cyclin D1 promoter.

The data presented herein establish cyclin D1 as a target of Tax transactivation in vivo, and 

provide a molecular basis for the functional actions of Tax. The significance of our findings 

resides in the molecular dissection of a novel mechanism of Tax binding to a cellular 

promoter, coupled with the functional outcome of these interactions. First, these data clearly 

establish the cyclin D1 CRE as the foundation for the assembly of a large, multi-component 

nucleoprotein complex that facilitates Tax transactivation of this important gene (Fig. 7). 

The CRE serves as the direct binding site for pCREB, which alone is insufficient for 

coactivator recruitment (Fig. 4 and 6; also see [Geiger et al., 2008]). Tax incorporation into 

the CRE-bound pCREB complex promotes p300 recruitment, consistent with the increase in 

cyclin D1 expression observed in the presence of Tax. The CREB coactivator TORC2 also 

enters into the pCREB/Tax/CRE complex, and serves to further enhance Tax-dependent 

p300 recruitment to the cyclin D1 promoter. Again, we find a direct correlation between 

coactivator binding in vitro and transcriptional output in vivo, as co-transfection of Tax and 

TORC2 produce a 20-fold increase in cyclin D1 expression.

Together, these findings establish a role for the promoter-proximal CRE in mediating Tax 

transactivation of cyclin D1. However, the relative contribution of the CRE and the adjacent 

κB site in conferring Tax responsiveness to the cyclin D1 gene is difficult to quantitatively 

discern. Although the Tax mutant M22 is well established for disabling NF-κB activation, it 

has a significant impact on both the NF-κB and CREB pathways (Smith and Greene, 1990). 
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Therefore, the marked results obtained with Tax M22 on cyclin D1 reporter gene activation 

are likely due to defects in Tax transactivation through both the NF-κB and CREB 

pathways. Our observation that co-transfection of both Tax mutants restores Tax 

transactivation (likely due to Tax dimerization) further supports our conclusion that both 

pathways contribute significantly to Tax activation of cyclin D1. Finally, it is notable that 

the full cyclin D1 promoter carries multiple putative Tax-responsive elements that further 

contribute to Tax transactivation of the endogenous gene (see Fig. 1b).

These studies illuminate a novel pathway of Tax deregulation of cellular gene expression 

that may have important implications for HTLV-1 biology and pathogenesis. Cyclin D1 

overexpression has been shown to decreases the duration of the G1 phase of the cell cycle 

(Tashiro et al., 2007), which would enhance viral replication via accelerated mitosis of 

infected cells. Additionally, this Tax-induced increase in cyclin D1 accumulation likely 

perturbs cellular homeostasis, creating an environment that favors the creation, selection, 

and proliferation of malignant T-cells.
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Figure 1. 
The human cyclin D1 gene is transcriptionally activated by Tax. (a) Cyclin D1 transcript 

levels are elevated in HTLV-1 infected T-cell lines. Cyclin D1 RNA from uninfected (Jurkat, 

CEM) and HTLV-1 infected (SLB-1, C81 [C816645]) cells was amplified by RT-PCR and 

subjected to agarose gel electrophoresis to determine relative transcript levels. Thymidine 

kinase (TK) levels are shown as an internal control. (b) Schematic diagram of cyclin D1 

promoter. Relevant cis-acting elements and the deletion constructs used in the assay are 

shown. (c) Tax transactivates cyclin D1 through the −66 proximal promoter. Jurkat cells 

were cotransfected with the indicated deletion constructs of the human cyclin D1 

promoter/Luc (100 ng) (Albanese et al., 1995), in the absence or presence of a Tax 

expression plasmid (100 ng) (pSG-Tax). Luciferase activity was measured 24 h after 

transfection and fold-induction was quantified. The graph represents the average of three 

independent experiments. (d) The NF-κB and ATF/CREB pathways are utilized in Tax 

activation of cyclin D1. Jurkat cells were transiently transfected with the cyclin D1 −66/Luc 

reporter in the absence or presence of expression plasmids for wild-type Tax (pSG-Tax), or 

the M22 or M47 Tax mutants (pSG-M22, pSG-M47) as indicated. M22 Tax is defective for 

activation through the NF-κB pathway and M47 Tax is defective for activation through 

ATF/CREB proteins (Smith and Greene, 1990).
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Figure 2. Chromatin immunoprecipitation assays reveal that Tax is associated with the cyclin D1 
promoter in HTLV-1 infected cells
Chromatin from Jurkat (uninfected) and SLB-1 (infected) cells was immunoprecipitated 

using antibodies against the indicated proteins. Graphical representation of the ChIP data 

following immunoprecipitation and real-time PCR. Tax binding at the IL-2 promoter in 

SLB-1 cells was used as a negative control. Data shown represents the average of three 

independent experiments.
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Figure 3. The CRE is required for Tax binding at the cyclin D1 promoter in vitro
(a) Schematic diagram of the immobilized cyclin D1 core promoter template. The cyclin D1 

core promoter was bound to streptavidin-coated magnetic beads via incorporation of a biotin 

group at the upstream end of the fragment. (b) Tax interacts with the cyclin D1 core 

promoter. The immobilized template assay was performed with a wild-type (wt) cyclin D1 

promoter fragment or a mutant fragment carrying substitutions in both the κB and CRE 

binding sites (ΔCRE/ΔκB) (2 pmol each). Binding reactions were performed with CEM 

nuclear extract (NE) (300 ug) in the absence or presence of purified Tax (10 pmol). Samples 

were analyzed by western blot using antibodies against Tax or CREB, as indicated. (c) The 

CRE is required for Tax binding to the cyclin D1 promoter. The immobilized template assay 

was performed with the wild-type (wt) or mutant cyclin D1 promoter fragments (ΔCRE, 

ΔκB), as indicated. Binding reactions were performed with nuclear extract and purified Tax, 

as described in panel B, and analyzed by western blot using an anti-Tax antibody.
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Figure 4. Tax and pCREB together recruit p300 to the cyclin D1 promoter
The immobilized cyclin D1 core promoter (5 pmol) was incubated with purified full-length 

p300 (4 pmol) in the presence of purified Tax, CREB (C), or Ser133-phosphorylated CREB 

(pC) (10 pmol each), as indicated. Protein binding was detected by western blot using anti-

Tax, anti-CREB, anti-Ser133CREB, or anti-p300 antibody, as indicated. As a positive 

control, analysis of protein binding to the immobilized vCRE was performed in parallel with 

the cyclin D1 core promoter.
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Figure 5. Tax forms a stable complex with pCREB and KIX on the cyclin D1 CRE
(a) The cyclin D1 CRE supports Tax binding in the presence of pCREB and KIX. 

Electrophoretic mobility shift assays (EMSA) were performed using purified pCREB (24 

nM), GST-KIX (5 μM), and increasing concentrations of Tax (0.8, 3.1, 12, 50, 200, 400 

nM). Proteins were incubated with the 32P-labeled HTLV-1 vCRE or cyclin D1 CRE (0.15 

nM), as indicated. Binding reactions were resolved by 5% nondenaturing PAGE and 

analyzed by autoradiography. Saturating amounts of GST-KIX were used to visualize the 

Tax-dependent transition from the ternary complex (pCREB/KIX/CRE) into the slower 

migrating quaternary complex (Tax/pCREB/KIX/CRE). A dashed line was added to assist in 

evaluating the migration of the nucleoprotein complexes. The reduced amount of Tax/

pCREB/DNA complex shown in lane 4 is anomalous, and thus not representative of the 

band typically produced by Tax/pCREB binding to the vCRE (for example, see (Kim et al., 

2007). (b) Relative binding affinities of Tax for the cyclin D1 CRE and vCRE in the presence 

of pCREB and KIX. From the data shown in panel A, we quantified and plotted the percent 

quaternary complex formed with each probe against the total Tax concentration (nM) in 

each reaction. The concentration of Tax at the mid-point (50%) of the transition from the 

ternary to the quaternary complex was used to determine the apparent Kd of Tax for vCRE/

pCREB/KIX and cyclin D1 CRE/pCREB/KIX, as indicated. The average values from three 

independent experiments are shown.
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Figure 6. Tax and TORC2 cooperate to activate cyclin D1 via enhanced recruitment of p300
(a) TORC2 stimulates cyclin D1 expression and facilitates Tax transactivation. Jurkat cells 

were co-transfected with the cyclin D1 −66/Luc reporter construct (100 ng) and Tax and/or 

TORC2 expression plasmids (100 ng), as indicated. (b) Tax and TORC2 cooperate to 

enhance p300 recruitment. Immobilized cyclin D1 core promoter DNA (5 pmol) (see Fig. 

3A) was incubated with purified full-length p300 (4 pmol) and pCREB (10 pmol), in the 

absence or presence of purified Tax and TORC2 (10 pmol each). Binding reactions were 

analyzed by western blot using antibodies against the indicated proteins. (c) The cyclin D1 

CRE is required for Tax-containing complex formation. The immobilized template assay 

was performed using the wild-type (wt) and ΔCRE cyclin D1 promoter fragments, as 

described in panel B.
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Figure 7. Model depicting the Tax-containing transcription factor complex on the cyclin D1 CRE
Incorporation of Tax into the pCREB/TORC2 complex at the cyclin D1 promoter-proximal 

CRE promotes enhanced p300 binding, with subsequent association of RNA polymerase II 

(RNAPII) and activation of the cyclin D1 gene. The schematic shows Tax association with 

the promoter DNA, however, the extent of Tax-DNA interaction is not known.
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