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Abstract

Two experiments assessed the contributions of implicit and explicit learning to base-rate

sensitivity. Using a factorial design that included both implicit and explicit learning disrup-

tions, we tested the hypothesis that implicit learning underlies base-rate sensitivity from

experience (and that explicit learning contributes comparatively little). Participants learned

to classify two categories of simple stimuli (bar graph heights) presented in a 3:1 base-rate

ratio. Participants learned either from “observational” training to disrupt implicit learning or

“response” training which supports implicit learning. Category label feedback on each trial

was followed either immediately or after a 2.5 second delay by onset of a working memory

task intended to disrupt explicit reasoning about category membership feedback. Decision

criterion values were significantly larger following response training, suggesting that implicit

learning underlies base-rate sensitivity. Disrupting explicit processing had no effect on

base-rate learning as long as implicit learning was supported. These results suggest base-

rate sensitivity develops from experience primarily through implicit learning, consistent with

separate learning systems accounts of categorization.

Introduction

Classification judgments are commonly based on observable stimulus attributes, such as the

presence or absence of symptoms in a medical diagnosis. When observable traits are inconclu-

sive regarding category membership, though, classification can be guided by other knowledge.

A widely-studied example is category base rates (relative prevalence of each candidate cate-

gory). Swollen glands, for example, might suggest a number of possible conditions (e.g., aller-

gies, mononucleosis, HIV). It often makes sense on initial diagnosis to presume the presence

of a common ailment. Achieving optimal classification performance (e.g., that maximizes

reward or accuracy over the long run) requires combining knowledge of category base-rates

(prior probabilities) with likelihood of membership in each category being considered.

Much research shows that base-rate information is often underused in classification judg-

ments (although not entirely neglected [1]). In many studies participants receive a written

summary of base-rates along with stimuli to classify, and proceed to make decisions exhibiting

limited adherence to the supplied probabilities. Base-rate studies often focus on the format of

the summary information (e.g., relative frequency vs. probabilities) or other contextual details

to account for base-rate effects [2].
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In contrast to base-rates presented in summary numeric form, several studies show that

participants show sensitivity to base-rates when encountered via direct experience over a series

of decision or classification trials (e.g., [3]). Sensitivity develops even though base-rate infor-

mation is never explicitly communicated [4–9].

In this paradigm, base-rate influence is often gauged in terms of placement of a classifica-

tion criterion or boundary (e.g., the β value in signal detection theory [10–13]). The optimal

(e.g., reward-maximizing) value of β is a likelihood ratio reflecting category base-rates (and

payoffs, which are not considered here). For example, if categories are presented with equal

frequency (a 1:1 base-rate ratio), the optimal β value is 1. If category 1 is presented twice as fre-

quently as category 2, the optimal β value is 2 (a 2:1 base-rate ratio), and so on. Participants

typically adopt a criterion biased in the optimal direction—one that increases accuracy/reward

on the high base-rate category—but not to the optimal extent. This failure to adjust sufficiently

is termed “conservative cutoff placement”.

Decision criterion placement is a useful measure of base-rate sensitivity because a) perfor-

mance can readily be compared to an “optimal” classifier that has knowledge of category base-

rates and maximizes long-run performance, and b) base-rate sensitivity can be examined in

relation to other important factors like category discriminability (d’) and the payoffs (benefits

and costs) for correct and incorrect responses [14].

Implicit base-rate learning

The apparent difficulty in utilizing explicit base-rate summaries, along with the fact that base-

rate sensitivity can develop from direct experience, may have consequences for training in

domains where classification is uncertain (e.g., radiology, dermatology). It would be beneficial

to understand how base-rate sensitivity develops from experience.

Some researchers have hypothesized that base-rate sensitivity from direct experience devel-

ops through implicit learning [2, 15, 16]. Written base-rate summaries rely on conscious

awareness and explicit reasoning, but sensitivity gained from experience may develop asso-

ciatively over time without ever resulting in explicit awareness of relative base-rate probabili-

ties. This hypothesis has received very little empirical investigation from researchers, although

Bohil & Wismer [17] recently reported evidence suggesting that implicit learning contributes

to base-rate sensitivity.

Multiple learning systems

Although direct experience is known to improve base-rate sensitivity, direct experience is not

synonymous with implicit learning. In recent years categorization researchers have posited a

role for several distinct learning systems, which may be employed under different circum-

stances [18–20]. Many of these ideas have been supported by neuroscience results [18, 21, 22].

One influential idea in categorization research is that separate brain systems—one for

explicit (verbalizable) learning and one for implicit (nonverbalizable) learning—are involved

in category rule learning. This argument is the basis for the neuropsychological theory of cate-

gorization called COVIS (Competition between Verbal and Implicit Systems [23]). COVIS

posits that category rule learning can be accomplished by either a prefrontal-cortex mediated

explicit reasoning system or via gradual associative learning mediated by the basal ganglia. The

systems compete on each learning trial to determine the categorization response. Over many

trials, one system comes to dominate performance. If the explicit system is able to discover a

verbalizable rule—through conscious, “explicit” hypothesis testing from trial-to-trial—that

achieves high response accuracy, then this system will determine most responses. If this system

fails to identify an effective verbalizable rule, though, excellent performance may still be
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achieved via gradual associative learning by the implicit system. Learning in the implicit sys-

tem is facilitated by making a motor response on each learning trial, helping to associate cate-

gory feedback with responses.

Many studies have dissociated explicit and implicit category learning behaviorally as well as

in neuroimaging data (e.g., [24]). In these studies, categories are learned through a long series

of training trials (i.e., through direct experience with category examples). The implication is

that even though category learning takes place over many trials, learning may be mediated by

either an explicit or implicit process depending on the brain system experiencing the most suc-

cess. Thus, direct experience learning does not necessarily equate to implicit learning with

respect to base-rate influence. Therefore, the hypothesis that implicit learning underlies base-

rate sensitivity from direct experience requires testing. Although other theories of categoriza-

tion exist, the current research was inspired by COVIS predictions since they directly relate to

our goal of disentangling implicit learning and direct experience.

Testing implicit and explicit learning contributions to base-rate sensitivity

We predict that base-rate learning through classification experience does indeed rely on

implicit learning. This is because people have been shown in many categorization studies to be

influenced by base-rates without explicit mention of them, and also due to the well-

documented difficulty people have with explicitly presented base-rate information. Conse-

quently, base-rate sensitivity gained from experience may or may not benefit from explicit rea-

soning (at least for category learning). The current research evaluates these two possibilities.

Bohil & Wismer [17] recently found support for the hypothesis that implicit learning is

important for developing category base-rate sensitivity. They replicated an earlier classification

experiment that disrupted implicit learning by use of an observational category training task

(participants merely watched stimuli and category labels on training trials as opposed to the

more standard design where each stimulus presentation is followed by a response and then

feedback about category membership; following [25, 26]). Ashby and colleagues [25] showed

that learning of an easily verbalized category rule—thought to be learned explicitly via con-

scious, trial-by-trial hypothesis testing—was not diminished by observational training, but

learning of a nonverbalizable rule—thought to rely on implicit learning—was substantially dis-

rupted. In a second experiment, Bohil & Wismer [17] disrupted implicit learning in a

response-training condition by inserting a short delay (2.5 seconds) between response and

feedback presentation (similar to a category rule-learning study conducted by Maddox, Ashby,

& Bohil, [27]). Both methods of disrupting implicit learning—observational training and

response-training with delayed feedback—led to greater conservatism in decision criterion

placement (i.e., less response bias toward the high base-rate category).

Bohil and Wismer’s [17] results align with the argument that implicit learning contributes

to base-rate acquisition from experience. Their studies did not, however, attempt to control

the role explicit reasoning may play in base-rate learning from experience. In the current

study, we factorially combined conditions in which implicit and explicit learning are sup-

ported or disrupted. Participants completed either a response training condition (in which

implicit learning should proceed normally) or an observational training condition (which dis-

rupts implicit learning). Participants also completed a secondary working memory task allow-

ing either a short or long duration to process classification feedback (depending on condition).

This task—a variant of the widely used Sternberg [28] working memory task—was intended to

interfere with feedback processing and has been shown in several previous studies to disrupt

explicit learning of a categorization rule [29–32].

Base-rate sensitivity through implicit learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0179256 June 20, 2017 3 / 21

https://doi.org/10.1371/journal.pone.0179256


We predicted that base-rate sensitivity would develop normally in the response training

conditions and be limited in the observational training conditions (as indicated by more con-

servative decision criterion placement). We also predicted that with response training (i.e.,

when implicit learning is supported) disrupting the explicit system should have little effect on

base-rate acquisition. This would further support the conclusion that base-rate sensitivity from

experience relies on implicit learning, while explicit reasoning about base-rates has compara-

tively less value.

Experiment 1

Experiment 1 tested the contribution of explicit and implicit learning processes to develop-

ment of base-rate sensitivity in classification. We replicated and extended the design of Experi-

ment 1 from Bohil & Wismer [17]. Participants learned two categories presented with unequal

category base-rates and either provided a keyboard response on each trial (response training)

or simply observed stimuli and category labels during training (observational training). This

training manipulation varies the involvement of the implicit learning system. We expected to

find larger (closer to optimal) decision criterion values in response training conditions where

implicit learning was supported, and smaller criterion values (i.e., unbiased) in observational

conditions where implicit learning was disrupted.

During classification training, participants also completed a secondary working memory

task designed to moderate performance of the explicit learning system. Participants experi-

enced (between subjects) either a short- or long-delay between classification feedback offset

and secondary task onset on each trial. Immediate secondary task onset should disrupt work-

ing memory processing of the feedback and thus the explicit learning system, making apparent

whether explicit learning contributes to base-rate sensitivity from experience. A long delay—

which doesn’t interfere with feedback processing—should allow normal operation of the

explicit learning system. We predicted that a short feedback processing time would not dimin-

ish criterion values in the response training conditions if explicit learning is of little help when

procedural learning is intact. And if explicit learning contributes little to base-rate sensitivity,

then a long delay may not improve performance in observational training conditions where

procedural learning is disrupted.

Method

Experimental design. Four experimental conditions—resulting from factorial combina-

tion of 2 training types (response, observational) and 2 feedback processing times (short,

long)–were run in a between-subjects design. As in prior studies, all participants began by

completing an unbiased base-rate “baseline” training phase to separate category structure

learning from the effect of base-rates on decision criterion placement [11, 17, 33].

After completing the baseline phase, participants completed several classification trials with

unequal category base-rates. This unequal base-rate phase alternated between training blocks

with trial-by-trial response feedback and test blocks without feedback. For this phase, stimuli

were sampled from the two categories to produce a 3:1 base-rate ratio (i.e., Category A stimuli

were presented three times as often as Category B stimuli). During this phase, participants

completed five cycles of alternating 60-trial training (response or observational classification

with feedback and working memory task) and test blocks (response classification without feed-

back and no working memory task; see Fig 1). These values were chosen to replicate several

earlier studies in this area (e.g., [4, 8, 9, 33]).

The only differences among the four experimental conditions were the training phases in

which one of two training types (response or observational) and one of two feedback
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processing times (short or long) were experienced. Category discriminability was constant

across all phases (details below). The entire experiment took participants between approxi-

mately 1 to 1.5 hours to complete.

Participants. We conducted a power analysis with G�Power 3.1 [34] using the effect size

from a study similar to the current one (Bohil & Wismer [17]; Experiment 1). The recom-

mended sample size was 82 based on statistical test ANOVA: Fixed effects, special, main effects

and interactions; alpha = .05, power = .8, effect size = .314, # groups = 2). We recruited 84 Uni-

versity of Central Florida undergraduate student participants. Twenty-one participants com-

pleted each condition (response-short, response-long, observational-short, and observational-

long) in exchange for course credit. The study protocol was approved by the University of

Central Florida Institutional Review Board, and written informed consent was provided by all

participants.

Stimuli. Perceptual categorization stimuli were used in every phase, while working mem-

ory stimuli were only presented during the five training phases as a secondary task.

Categorization stimuli appeared, one per trial, as white bar graphs on a black background

on a high resolution computer monitor. Bar height varied from trial-to-trial and was the indi-

cator of category membership (again, details replicate those from several previous studies).

Each bar graph was 40-pixels wide and rested on a 60-pixel wide base that was centered

onscreen. Bar height ranged from about 2–6 degrees of visual angle.

Two categories—A and B—were sampled from overlapping univariate normal distributions

(Mu A = 99.5, Mu B = 120.5, SD = 21; d’ [category discriminability] = 1). A set of 60 bar-height

values was sampled to reflect a 3:1 base-rate ratio for training and test phases: 45 from Cate-

gory A and 15 from Category B. The sample characteristics were very close to the population

parameters (Mu A = 99.57; Mu B = 120.55; SD = 21.00). For the baseline phase (1:1 base-rate),

30 stimulus values were sampled from each category distribution (60 total), with sample values

again closely matching the population characteristics (Mu A = 99.56; Mu B = 120.55;

SD = 21.00). The presentation order for the 60 stimuli was randomized for each block but was

identical for each participant.

Verbal working memory stimuli were used only in the unequal base-rate training phases

(not during baseline training). Following each classification response, the working memory

stimulus set (four integers, from 1–9, randomly sampled without replacement on each trial)

was displayed in a row at the center of the screen horizontally spanning approximately four

degrees of visual angle. The memory set was later replaced by a single integer “memory

probe”. On each trial, there was a 50% chance the memory probe was a digit that appeared in

the memory set. The characteristics of the memory scanning task were chosen to match those

of Zeithamova & Maddox [32] (see also [29]). In these earlier studies, the secondary working-

Fig 1. Experimental design. Participants completed the baseline phase followed by 5 cycles of alternating

training and test blocks with unequal base-rates. (WM = Working memory task, Resp = response training

condition, Obs = observational training condition).

https://doi.org/10.1371/journal.pone.0179256.g001
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memory task was shown to disrupt learning of an easily verbalized selective attention rule that

produces high accuracy. The task as implemented here should at minimum occupy working

memory and somewhat diminish the effectiveness of explicit reasoning processes.

Procedure. Participants were informed they would complete a simulated medical diagno-

sis task. On each trial, a bar graph was displayed representing a hypothetical patient’s test

result. The test result (i.e., bar graph) would be used to distinguish between two diseases—A

and B. Participants were told they would start out by guessing but improve over time. They

were also informed perfect performance was impossible because the test was an imperfect pre-

dictor, but over time they should be able to achieve a high level of performance. The baseline

phase was described as a series of warm-up trials to become familiar with the task. They were

told that after completing the warm-up trials, they would move on to the experiment trials

consisting of alternating training and test phases. Participants were given identical instructions

in all conditions with the exception of the training phase description, which differed for

response and observational conditions (see Fig 2).

During the baseline phase (regardless of training type), participants viewed each categoriza-

tion stimulus for 500ms above a line of text saying "Diagnose the patient as having disease A or

B". The stimulus was then removed from the screen (with the text remaining), allowing for

participant responses. They responded with ‘A’ or ‘B’ by pressing a keyboard button (key ‘z’ or

‘m’ labeled as A and B). They had a maximum of 10 seconds to respond, although participants

responded much faster (average observed response time was about a half second in all condi-

tions. We don’t consider response times further). To provide corrective feedback, the category

label was then displayed (500ms), followed by a 2000ms inter-trial interval (ITI). The baseline

phase had equal category base-rates (30 of each category presented for each 60-trial baseline

block) and did not include the secondary working memory task.

Participants completed a minimum of 60 baseline trials (i.e., all 30 stimuli from each cate-

gory), and up to a maximum of 300 trials. After the first 60 trials, accuracy for the most recent

60 trials was calculated (and recalculated every 10 trials thereafter). If accuracy reached 65% or

higher (optimal accuracy during baseline phase was 69%), the baseline phase ended and the

participant moved on to the biased (3:1) base-rate training trials (where optimal accuracy was

78%). This criterion ensured participants had learned the categories well, allowing participants

to proceed to experimental trials with only three more incorrect responses than the optimal

classifier for the most recent 60 trials. Participants failing to reach this criterion in 300 trials

Fig 2. Participant instructions describing each phase of the experiment. Underlined text was seen only

in response conditions, italicized text in observational conditions. All other text was seen by all participants.

https://doi.org/10.1371/journal.pone.0179256.g002
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continued on to complete the rest of the experiment (see Results for additional consideration

of baseline performance).

The training blocks were the only aspect of the experiment that differed among conditions.

The category base-rate ratio (3:1) was the same for all participants. However, the training type

and onset delay of the secondary task differed across conditions during the training blocks. In

response training conditions, participants guessed either category A or B by pressing the

appropriate keyboard button. In observational training conditions no response was made.

Instead, stimuli and category labels were merely observed on each trial. The stimulus timings

for the response condition were as follows: 1000ms stimulus on screen with text "Diagnose the

patient as having disease A or B", removal of stimulus and pause for participant response (max

10 seconds), followed by a blank screen (500ms) and 500ms feedback display. In the observa-

tional conditions, the stimulus was shown for 1000ms, followed by a blank screen for 500ms,

and then the category label for 500ms.

During training trials, category label offset was followed by the verbal working memory

task. In the short feedback processing conditions, the working memory task began immedi-

ately following the offset of the category label. Fig 3 illustrates event timing for the long and

short delay conditions. In the long feedback processing conditions, the working memory task

began 2500ms after category label offset. The sequence of the working memory task was as fol-

lows (block labeled "WM" in Fig 3): presentation of the 4-digit working memory stimulus set

(500ms), then a blank screen (1000ms), followed by presentation of the 1-digit memory probe

(response-terminated). Following a response to the working memory probe (keys ’a’ or ’l’

labeled as ‘Yes’ and ‘No’), an ITI of 2000ms occurred. No feedback on the working memory

task was given, but in-between blocks participants were encouraged to keep their accuracy on

the working memory task high. In short conditions, the ITI was preceded by an additional

blank screen of 2500ms to counterbalance the interval occurring between category label and

working memory task in long conditions.

During test blocks—regardless of training condition—participants viewed a stimulus

(1000ms) above the words "Diagnose the patient as having disease A or B", and the stimulus

was then removed allowing for participant classification response (max 10 seconds). Instead of

receiving feedback, participants were shown the message “your response has been recorded”

Fig 3. Layout of trials in the training phase for long and short feedback processing time response

conditions. Layout was identical for response and observational conditions, with the exception that

observational conditions were shown the category label without making a response.

https://doi.org/10.1371/journal.pone.0179256.g003
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(500ms) after responding. The same ITI of 2000ms was used. During training and test blocks

with unequal base-rates, optimal accuracy was 78%.

Results

Most participants (90%) completed the baseline phase in fewer than 300 trials (76 of 84 partici-

pants; Mdn = 110 trials), and the median number of trials to reach criterion did not differ

among experimental conditions (p = .968). A regression analysis indicated that the number of

baseline trials completed did not significantly affect one’s decision criterion in the unequal

base-rate phase [e.g., Block 4: F(1, 80) = .04, p = .850; Block 5: F(1, 82) = 0.48, p = .493]. By the

time participants began the experimental (unequal base-rate) phase, their classification accu-

racy was in most cases within three errors of the optimal classifier over the most recent 60 tri-

als. Thus, the results reported below are based on the full set of 84 participants (none were

omitted based on their baseline phase performance).

Accuracy. Table 1 displays average proportion of correct classification responses across

blocks for Experiment 1. We conducted a mixed-factor ANOVA using accuracy as the depen-

dent measure (between: 2 training types X 2 feedback processing times; within: 5 test blocks).

Following the convention of Dienes [35] and Jeffreys [36], we also report Bayes Factors (BF)

which help to distinguish between results supporting the null hypothesis and those resulting

from a lack of statistical power. We interpret BF> 3 as evidence for the experimental hypothe-

sis, BF< .33 as evidence for the null hypothesis, and values in between as equivocal. Data from

two participants were omitted because their accuracy value for at least one block was more

than three standard deviations from the mean and so were considered outliers (one each in the

response-long and observational-short conditions).

There was a main effect of block (Greenhouse-Geisser corrected), F(3.18, 248.30) = 7.29, p
< .001, ηp

2 = .085, with accuracy increasing over blocks. There was a main effect of training

type on accuracy, F(1, 78) = 4.64, p = .034, ηp
2 = .056, with higher average accuracy in response

conditions (M = .67) than in observational conditions (M = .64), but no main effect of feed-

back processing time, F(1, 78) = 0.59, p = .443, ηp
2 = .007. The interaction of block and training

type was marginally significant, F(3.18, 248.30) = 2.59, p = .05, ηp
2 = .032, as accuracy increased

more across blocks in the Response conditions than in the Observation conditions. The inter-

action of block, training type, and working memory condition was also significant, F(3.18,

248.30) = 2.65, p = .046, ηp
2 = .033. All other interactions were non-significant (p’s > .225).

Table 1. Average proportion correct (& signal-detection β values) by condition & block in Experiment 1.

Condition Test block 1 Test block 2 Test block 3 Test block 4 Test block 5

Individual (n = 21/cond)

Response-Short .62 (1.02) .66 (1.25) .68 (1.28) .65 (1.32) .69 (1.66)

Response-Long .63 (1.04) .71 (1.31) .69 (1.37) .70 (1.39) .72 (1.73)

Observational-Short .61 (1.01) .66 (1.06) .61 (1.08) .65 (1.12) .67 (1.29)

Observational-Long .63 (1.08) .64 (1.20) .67 (1.26) .63 (1.20) .62 (1.16)

Average (n = 42/cond)

Response .62 (1.03) .68 (1.28) .68 (1.33) .67 (1.35) .70 (1.70)

Observational .62 (1.04) .65 (1.13) .64 (1.17) .64 (1.16) .64 (1.23)

# (#) * (*) * (#) # (*) ** (**)

Note. Observational = observational-training; Response = response-training; Short = short feedback processing time; Long = long feedback processing

time. Note. Significance of β comparisons across training conditions is reported below proportions for average training conditions (# p� .05; * p < .05; ** p

< .01).

https://doi.org/10.1371/journal.pone.0179256.t001
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Bayesian analyses were conducted for each dependent variable using JASP computer soft-

ware [39]. Bayesian analyses are reported following the example of Wagenmakers et al. [37]

and Wagenmakers et al. [38]. A Bayesian analysis of the accuracy data revealed overwhelming

support for including an effect of block (BFinclusion = 307.73), while all other variables received

little-to-no support for including an effect (all BFinclusion’s< 1.27). The model that received the

most support against the Null model is the two main effects model, block + training type (BF10
= 976.16). Adding the main effect of feedback processing time decreases the degree of this sup-

port by a factor of 976.16/284.98 = 3.43. This is the Bayes factor in favor of the two main effects

model versus the three main effects model. Adding the interaction of training type and feed-

back processing time decreases the degree of support by a factor of 976.16/145.54 = 6.71.

As a manipulation check, we ran a mixed factor ANOVA on accuracies from the working

memory task (in the training blocks) to verify that accuracy on the secondary task did not dif-

fer between training conditions. Critically, there was no difference between response (M = .95)

and observational (M = .94) conditions (p = .676).

Signal detection. Table 1 displays average signal detection criterion values (β) across

blocks for Experiment 1 (see values inside parentheses). Correct responses for stimuli from the

high base-rate category were considered “hits”, and incorrect responses to stimuli from the

low base-rate category were considered “false alarms”. Response bias (β) measures were

derived from these. Data from four participants were omitted because their β value for at least

one block was more than three standard deviations from the mean and so were considered

outliers (two in the response-short, one in the response-long, and one in observational-long

conditions). With β as a dependent measure, we performed a mixed-factor ANOVA to com-

pare all four experimental conditions (between: 2 training types X 2 feedback processing

times; within: 5 test blocks).

There was a main effect of training type, F(1, 76) = 4.45, p = .038, ηp
2 = .055, with larger β

values in response (M = 1.34) than in observational (M = 1.15) conditions (See Fig 4). There

was also a main effect of block. Values of β increased toward optimal (βoptimal = 3) across

blocks, F(2.35, 178.39) = 10.05, p< .001, ηp
2 = .117. There was no main effect of feedback pro-

cessing time, F(1, 76) = .42, p = .519, ηp
2 = .005. There was an interaction between block and

training type, F(2.35, 178.39) = 3.76, p = .019, ηp
2 = .047, such that β’s in response conditions

increased more rapidly than β’s in observational conditions. No other interactions were signif-

icant (all p’s> .322).

Fig 4. Average signal detection β values by condition. Resp = response training; Obs = observational

training; Short = short feedback processing time; Long = long feedback processing time. Optimal β value = 3.

Error bars show standard error.

https://doi.org/10.1371/journal.pone.0179256.g004
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A Bayesian analysis of the signal detection criterion data revealed overwhelming support

for including an effect of block (BFinclusion = 64824.53) as well as support for including effects

of training type (BFinclusion = 3.34) and block � training type (BFinclusion = 6.25). All other vari-

ables received support against having an effect (all BFinclusion’s< .136). The model that received

the most support against the Null model is the model with two main effects and one interac-

tion, block + training type + block � training type (BF10 = 314005.8). Adding the main effect of

feedback processing time decreases the degree of this support by a factor of 314005.80/

85517.83 = 3.67. This is the Bayes factor in favor of the two main effects and one interaction

model versus the three main effects and one interaction model. Adding the interaction of

training type and feedback processing time decreases the degree of this support by 314005.80/

26439.02 = 11.88.

We also ran two separate ANOVAs looking at the effect of the working memory manipula-

tion on response conditions and observational conditions alone. There was no main effect

of feedback processing time on response conditions (p = .662) or observational conditions

(p = .635).

Modeling. In order to better understand the response strategy used by each participant,

we fit three decision-bound models to each data set (separately for each participant and for

each block). The models assume either a decision criterion value (β) that is fixed at a value to

instantiate different hypotheses (e.g., sensitivity or neglect of base-rates), or estimate a decision

criterion value that best describes the participant’s classification responses to the stimuli pre-

sented during the experiment (a detailed description of decision-bound models can be found

elsewhere; e.g., [40]). The location of the bound in stimulus space is a reflection of the partici-

pant’s response bias toward either category. For example, a decision bound equidistant

between the category means would reflect complete insensitivity to base-rates (e.g., β = 1).

Decision-bound models have informed our interpretation of base-rate learning from experi-

ence in several previous studies, and they allow us to test specific hypotheses based on statisti-

cal comparisons at the individual participant level [4, 11, 17, 41].

We compared three models: (1) an unbiased-boundary model, (2) an optimal model, and

(3) a free-boundary model. The first two models each include only one free parameter: a noise

parameter which estimates a combination of perceptual and criterial noise (i.e., variation in

stimulus perception over time and imperfect memory for criterion location over trials, respec-

tively). The unbiased-boundary model fits the data using a decision criterion fixed at an unbi-

ased value (β = 1), and the optimal model fits the data using a decision criterion fixed at the

optimal value (β = 3). In other words, the unbiased model tests the assumption that the partici-

pant was not sensitive to the base-rate manipulation at all, and the optimal model tests the

assumption that the participant used the optimal (long-run reward maximizing) bound. The

free-boundary model included two free parameters: a decision-bound parameter and the noise

parameter. The model was free to estimate the criterion value that best describes the partici-

pant’s classification responses, separately for each block of test trials. For each model, maxi-

mum likelihood estimation was used to determine best-fitting parameter values for each data

set (i.e., each model predicted the probability of responding category 1 or 2 on each trial given

each value of the decision bound, and free parameters were adjusted to bring model predic-

tions as close as possible to the observed responses). All models included the noise parameter.

The decision criterion value was fixed for the unbiased and optimal models (at the values

described above), and the decision criterion was an additional free parameter in the free-

boundary model. For each subject and block, the most parsimonious description of each par-

ticipant’s responding was determined based on model fit comparisons using Akaike Weights

[42].
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Table 2 displays the proportion of cases for which each model provided the most parsimo-

nious account of an individual’s data, as well as the β value estimated by the free-boundary

model. The free-boundary model and the optimal model were often more parsimonious than

the unbiased-boundary model, indicating that in many cases decision criterion values reflected

sensitivity to unequal base-rates (i.e., biased in favor of the high base-rate category). Partici-

pants in response conditions were more likely to be best described by the optimal model than

in observational conditions. This difference between training types approached significance

(z = 1.546, p = .06; collapsed over blocks).

The unbiased-boundary model fared better in observational conditions (z = 3.14, p< .001;

collapsed over blocks) than in the response conditions. There were significantly more cases of

base-rate neglect in the observational training condition than in the response training condi-

tion, particularly by the end of training (block 5). Decision bound (β) estimates from the free-

boundary model were larger for response conditions than for observational conditions in each

block (p< .05 for blocks 2–5). So the modeling results corroborate, at the individual partici-

pant level, our findings based on the aggregate signal detection analyses above.

With respect to feedback processing time, participants in the response-long condition were

more often accounted for by the unbiased model than those in the response-short condition

(z = 2.88, p< .005; collapsed across blocks). This was especially apparent in block 4 of the

response training condition (z = 2.17, p< .05). No other delay comparisons were significant.

We consider the implications of this finding in the General Discussion section.

Discussion

Experiment 1 tested our hypothesis that base-rate sensitivity develops from classification expe-

rience when the implicit learning system is engaged (e.g., when accompanied by a motor

Table 2. Proportion of participants (and FRB model β values) in Experiment 1 whose data were most parsimoniously accounted for by each

model.

Condition Test block 1 Test block 2 Test block 3 Test block 4 Test block 5

Individual (n = 21/cond)

Resp-Short UNB 0.19 (0.74) 0.14 (0.9) 0.14 (1.26) 0.14 (0.6) 0.05 (1.39)

OPT 0.33 (3.17) 0.57 (3.55) 0.38 (3.47) 0.57 (4.61) 0.67 (4.13)

FRB 0.48 (2.32) 0.29 (4.28) 0.48 (5.31) 0.29 (3.72) 0.29 (5.8)

Resp-Long UNB 0.48 (1.17) 0.33 (1.06) 0.29 (0.8) 0.38 (1.04) 0.19 (0.94)

OPT 0.29 (3.28) 0.48 (3.14) 0.52 (3.56) 0.52 (3.93) 0.62 (2.92)

FRB 0.24 (0.84) 0.19 (2.43) 0.19 (3.3) 0.1 (2.9) 0.19 (3.71)

Obs-Short UNB 0.57 (0.98) 0.52 (0.93) 0.29 (1.02) 0.24 (1.02) 0.29 (0.91)

OPT 0.19 (3.36) 0.43 (2.82) 0.38 (3.54) 0.38 (2.95) 0.38 (2.97)

FRB 0.24 (0.63) 0.05 (1.49) 0.33 (1.3) 0.38 (2.18) 0.33 (2.19)

Obs-Long UNB 0.48 (1.04) 0.48 (1.11) 0.14 (0.78) 0.43 (1.1) 0.38 (0.77)

OPT 0.14 (3.9) 0.33 (2.96) 0.38 (2.74) 0.38 (1.83) 0.29 (2.77)

FRB 0.38 (1.62) 0.19 (1.81) 0.48 (1.45) 0.19 (2.5) 0.33 (1.63)

Average (n = 42/cond)

Response 0.33 (1.99) 0.24 (2.85) 0.21 (3.38) 0.26 (3.26) 0.12 (3.59)

Observational 0.52 (1.51) 0.50 (1.82) 0.21 (1.96) 0.33 (1.92) 0.33 (1.88)

* (#) ** (**) # (**) # (**) * (**)

Note. Obs = observational-training; Resp = response-training; Short = short feedback processing time; Long = long feedback processing time;

UNB = unbiased boundary model; OPT = optimal boundary model; FRB = free boundary model. Note. Significance of comparisons across training

conditions is reported below proportions for average training conditions (# p� .05; * p < .05; ** p < .01).

https://doi.org/10.1371/journal.pone.0179256.t002
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response). This was the case in the response training conditions, where participants made a

keyboard response to classify each stimulus. In the observational training conditions, partici-

pants merely observed category exemplars along with category labels during training trials.

Observational training is known to disrupt category rule acquisition with two-dimensional

categories when participants must learn which dimensions are relevant for classification [25].

When the stimuli are 1-dimensional as in the current study there is no question as to which

dimension should be used to classify, but rather the location of the criterion must be deter-

mined. (Other recent studies have looked at criterion placement—which can be considered a

sub-process of rule learning after relevant dimensions have been identified by the learner—in

relation to separate learning systems, but not in the context of base-rate learning; e.g., [43]).

Our hypothesis in this case is that learning the optimal criterion location in response to

unequal category base-rates makes use of implicit learning.

The current data support our hypothesis. Decision criterion values—based on signal detec-

tion and decision-bound modeling analyses—were closer to optimal after response training.

Criterion values in observational training conditions were significantly less biased in the opti-

mal direction. Accuracy was also significantly higher in the response training than in the

observational training conditions, although the BF value suggested insufficient test sensitivity

for a definitive conclusion in Experiment 1. The current results replicate the pattern found in

Bohil & Wismer’s [17] Experiment 1 but also provides insight into the relative contribution of

explicit learning when base-rate sensitivity is gained from experience.

The secondary working memory task either disrupted or left intact the full potential of the

explicit learning system (in the short and long feedback processing conditions, respectively).

In the current study—again as judged by signal detection and decision-bound modeling analy-

sis—disruption of the explicit learning system had no effect on criterion placement. In

response conditions—when the implicit system was intact—base-rate sensitivity developed

equally regardless of whether participants had a short or long period to contemplate corrective

feedback. In the observational training conditions—when the implicit learning system was dis-

rupted—there was no significant increase toward optimal in criterion values during the long-

delay conditions. Similar conclusions can be drawn from the accuracy results, and BF values

for accuracy and β values indicated evidence in favor of the null hypothesis with respect to

feedback processing time. There seems to have been no benefit from an intact explicit learning

system in the observational training conditions.

One prominent trend in the current data is a gradual increase in criterion values over

blocks in the response conditions. As in many previous studies, we included the equal base-

rate baseline training phase to separate category learning from the effect of the subsequent

base-rate manipulation. During the baseline training phase, participants learn to use an unbi-

ased decision criterion (i.e., β = 1). It may be the case that after switching to the experimental

(unequal base-rate) trials, the effect of base-rates on criterion values was impeded somewhat

by interference from this prior learning. To explore this possibility, we replicated the current

study in Experiment 2, removing the initial baseline training phase.

In Experiment 2, the categories were learned with unequal base-rates. We wished to see if

the difference between response and observational training might appear earlier in perfor-

mance. If the baseline learning phase does interfere with the later influence of unequal base-

rates, then we should see evidence of earlier criterion adjustment when the baseline training

phase is omitted. If this is the case, then we might also expect to see more of an effect—if any—

of the explicit learning system manipulation. Perhaps any influence of unequal base-rates over

the explicit system was limited by interference from the prior baseline criterion training.

Experiment 2 replicates the design of Experiment 1 but simply omits the baseline training

phase.
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Experiment 2

In Experiment 1, the difference between response and observational conditions was most pro-

nounced at the end of training although criterion values tended to be larger across blocks with

response training. A plausible explanation for this gradual effect of implicit learning could be

inertia carried over from the baseline category training phase. During the unequal base-rate

phase of training, the participant must overcome prior learning of the decision criterion,

which may somewhat inhibit learning a new criterion that reflects the asymmetric category

base-rates.

In Experiment 2, we sought to replicate Experiment 1 but without this potential source of

influence over criterion placement. We again compared learning in response and observa-

tional training conditions. Also, we again manipulated the feedback processing time after each

categorization response by including the working memory task following a short or long delay

as in Experiment 1. In Experiment 2, participants learned the base-rates and category struc-

tures simultaneously.

Method

The design and procedure of Experiment 2 was identical to that of Experiment 1 except for the

exclusion of the 1:1 base-rate baseline phase. In addition, in order to assess conclusions regard-

ing null results for processing time, we increased our sample size to reflect power = .9. We

recruited 155 University of Central Florida undergraduate student participants. There were 39,

39, 39, and 38 participants in the response-short (R-S), response-long (R-L), observational-

short (O-S), and observational-long (O-L) conditions, respectively. All participants completed

600 categorization trials (300 training, 300 test as in Experiment 1), and the experiment lasted

approximately one hour. Participants received course credit for completing the task. The study

protocol was approved by the University of Central Florida Institutional Review Board, and

written informed consent was provided by all participants.

Results

Fifteen participants were classified as outliers and were subsequently removed list-wise from

all analyses. Participants were classified as outliers if either: 1) their estimated criterion (β) in

any block was more than 3 standard deviations from the mean, or 2) in the final test block,

either category was selected only once or not at all. The first condition removes major outliers

from the data, while the second condition guards against extreme response rates that have a

disproportionate effect on beta values. The resulting sample sizes for R-S, R-L, O-S, and O-L

were 35, 34, 38, and 33, respectively.

Accuracy. Table 3 displays average classification accuracy across blocks for Experiment 2.

We conducted a mixed-factor ANOVA with classification accuracy as the dependent measure

(between: 2 training types X 2 feedback processing times; within: 5 test blocks). There was a

main effect of block on accuracy, F(3.44, 467.57) = 11.24, p< .001, ηp
2 = .076, with accuracy

increasing across blocks. There was also a large main effect of training type, F(1, 136) = 23.30,

p< .001, ηp
2 = . 146, with higher average accuracy in response conditions (M = .69) than in

observational conditions (M = .62). There was again no main effect of feedback processing

time [F(1, 136) = 0.18, p = .676, ηp
2 = .001], nor were there any significant interactions (all p’s

> .384). Again, a manipulation check of accuracy on the working memory task in training

blocks again revealed no differences between response (M = .94) and observational (M = .95)

conditions (p = .159).

A Bayesian analysis of the accuracy data revealed overwhelming support for including

effects of block (BFinclusion = 552985.30) and training type (BFinclusion = 1571.7), but all other
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variables received support against having an effect (all BFinclusion’s< 0.137). The model that

received the most support against the Null model is the two main effects model, block + train-

ing type (BF10 = 6.077 � 10^9). Adding the main effect of feedback processing time decreases

the degree of this support by a factor of 6.077�10^9/1.308�10^9 = 4.65. This is the Bayes factor

in favor of the two main effects model versus the three main effects model. Adding the interac-

tion of training type and feedback processing time decreases the degree of this support by a

factor of 6.077�10^9/4.577�10^8 = 13.28.

Signal detection. Fig 5 displays average signal detection criterion values (β) across blocks

for Experiment 2 (see values in parentheses). We conducted the same analyses as in Experi-

ment 1 using β as a dependent measure (Mixed factor ANOVA: between: 2 training types X 2

feedback processing times; within: 5 test blocks). There was again a large main effect of train-

ing type, F(1, 136) = 22.72, p< .001, ηp
2 = .143, with larger β values in response (M = 1.47)

than observational (M = 1.17) conditions. There was a main effect of block, with β values

increasing toward optimal (βoptimal = 3) across blocks, F(2.83, 384.42) = 7.45, p< .001, ηp
2 =

.052. There was no main effect of feedback processing time, F(1, 136) = 0.63, p = .430, ηp
2 =

.005. The interactions of block and training type, F(2.83, 384.42) = 0.89, p = .441, ηp
2 = .007,

Table 3. Average proportion correct (& signal-detection β values) in each condition and block in Experiment 2.

Condition Test block 1 Test block 2 Test block 3 Test block 4 Test block 5

Individual

Resp-Short (n = 35) .65 (1.25) .69 (1.75) .68 (1.42) .70 (1.45) .70 (1.59)

Resp-Long (n = 34) .66 (1.24) .68 (1.41) .70 (1.86) .70 (1.40) .70 (1.35)

Obs-Short (n = 38) .59 (1.05) .66 (1.29) .63 (1.29) .64 (1.22) .64 (1.13)

Obs-Long (n = 33) .58 (0.91) .63 (1.15) .60 (1.13) .63 (1.19) .62 (1.30)

Average

Response (n = 69) .66 (1.25) .69 (1.58) .69 (1.64) .70 (1.43) .70 (1.47)

Observ. (n = 71) .59 (0.98) .65 (1.22) .62 (1.21) .64 (1.20) .63 (1.21)

** (**) ** (**) ** (**) ** (**) ** (**)

Note. Obs = observational-training; Resp = response-training; Short = short feedback processing time; Long = long feedback processing time. Note.

Significance of β comparisons across training conditions is reported below proportions for average training conditions (** p < .01).

https://doi.org/10.1371/journal.pone.0179256.t003

Fig 5. Average signal detection β values in Experiment 2 by condition. Resp = response training;

Obs = observational training; Short = short feedback processing time; Long = long feedback processing time.

Optimal β value = 3. Error bars represent standard error.

https://doi.org/10.1371/journal.pone.0179256.g005
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block by feedback processing time, F(2.83, 384.42) = 2.23, p = .088, ηp
2 = .016, and training

type by feedback processing time, F(1, 136) = 0.03, p = .866, ηp
2 < .001,were not significant.

There was however a significant interaction among block, training type, and feedback process-

ing time, F(2.83, 384.42) = 4.33, p = .006, ηp
2 = .031.

A Bayesian analysis of the signal detection criterion values revealed overwhelming support

for including effects of block (BFinclusion = 282.77) and training type (BFinclusion = 1040.68), but

all other variables received support against having an effect (all BFinclusion’s< 0.10). The model

that received the most support against the Null model is the two main effects model, block

+ training type (BF10 = 1961000). Adding the main effect of feedback processing time

decreased the degree of this support by 1961000/351942 = 5.57. This is the Bayes factor in

favor of the two main effects model versus the three main effects model. Adding the interac-

tion of training type and feedback processing time decreases the degree of support by a factor

of 1961000/66945.4 = 29.29.

We also ran two individual ANOVAs looking separately at the effect of the working mem-

ory manipulation on response and observational training conditions. There was no main effect

of feedback processing time on response conditions (p = .717) or observational conditions (p =

.369). However, there was some performance disruption caused by the working memory task

in the observational training condition. In block 5, β values were larger in the long-delay con-

dition than in the short delay condition for subjects receiving observational training, F(1, 35)

= 5.538, p< .05).

Modeling. As in Experiment 1, we fit three decision-bound models to each data set (unbi-

ased-boundary, optimal, free-boundary). Table 4 displays the proportion of cases for which

each model best accounted for an individual’s data, along with decision criterion (β) values

from the free-boundary model. Participants in response conditions were more likely to be best

described by the optimal model than in observational conditions. This difference between

training types approached significance (z = 1.531, p = .06; collapsed across blocks). The unbi-

ased-boundary model fared better in observational conditions than in response conditions

(z = 7.817, p< .001; collapsed across blocks). There were again more cases of base-rate neglect

in the observational training condition than in the response training condition. And again the

free-boundary model decision criterion (β) estimates were significantly larger in each block in

response conditions than in observational conditions (p< .001 in each block). There was a sig-

nificant effect of the delay manipulation in block 1 of the response conditions, where more

participants were best fit by the unbiased model in the long-delay condition (z = 1.717, p<
.05), similar to the modeling result in Experiment 1.

Discussion

The results of Experiment 2 replicate those from Experiment 1. In fact they seem to provide

clearer support for our hypotheses. In observational training conditions, there was again rela-

tively little bias in decision criterion values and very little change in values over blocks. In

response training conditions, on the other hand, the influence of base-rates on criterion place-

ment was clear. Response training led to larger values reflecting sensitivity to the base-rate dif-

ference between categories. Delay condition again had no main effect on performance in

either response or observational training conditions, although delay condition did disrupt per-

formance in the short- compared to long-feedback processing time conditions in the final

block of trials in observational training conditions. Performance in response training condi-

tions was not diminished by limiting feedback processing time, and performance in observa-

tional training conditions gained only limited benefit from the longer feedback processing

time.
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Regarding the removal of baseline training in Experiment 2, response training criterion val-

ues were clearly adjusted in the optimal direction as early as the first block of trials. This sup-

ports the argument that Experiment 1 baseline training may have interfered with later base-

rate influence on criterion placement. In the observational conditions, there was no analogous

increase in criterion values in the early training blocks, and very little increase as training

progressed.

General discussion

We explored the contributions of implicit and explicit learning to developing category base-

rate sensitivity via direct experience in a classification task (instead of summary presentation

of base-rate information). In two experiments, participants learned to classify simple percep-

tual stimuli (bar graph heights) sampled from two categories. Members of one category were

presented three times as often as the other (i.e., in a 3:1 base-rate ratio). Both experiments

combined manipulations to disrupt explicit learning, implicit learning, or both.

Learning took place through either response or observational training. In response training

conditions, participants made a keyboard response to classify each stimulus, followed by cor-

rective feedback (the correct category label). In observational training conditions, participants

again viewed a category stimulus on each trial, followed by the associated category label. But

they did not make any response during training trials; they merely observed stimuli and cate-

gory labels. In both response and observational conditions, five training blocks (as just

described) alternated with five test blocks. During each test block, participants made a key-

board response to classify each stimulus (regardless of their training condition). No category

Table 4. Proportion of participants (and FRB model β values) in Experiment 2 whose data were most parsimoniously accounted for by each

model.

Condition Test block 1 Test block 2 Test block 3 Test block 4 Test block 5

Individual

Resp-Short (n = 35) UNB 0.15 (0.88) 0.13 (0.9) 0.1 (1.2) 0 (-) 0.03 (1.31)

OPT 0.49 (4.33) 0.62 (3.96) 0.59 (4.21) 0.74 (3.59) 0.54 (4.25)

FRB 0.36 (4.08) 0.26 (4.62) 0.31 (5.03) 0.26 (6.29) 0.44 (5.65)

Resp-Long (n = 34) UNB 0.33 (1.05) 0.15 (1.08) 0.08 (0.7) 0.15 (1.17) 0.08 (1.07)

OPT 0.49 (3.67) 0.62 (3.24) 0.51 (3.61) 0.56 (3.16) 0.51 (3.46)

FRB 0.18 (2.41) 0.23 (6.17) 0.41 (6.15) 0.28 (6.77) 0.41 (5.12)

Obs-Short (n = 38) UNB 0.44 (0.84) 0.31 (0.96) 0.33 (0.97) 0.31 (1.05) 0.28 (0.9)

OPT 0.38 (3.65) 0.59 (3.82) 0.54 (3.65) 0.49 (3.74) 0.56 (3.98)

FRB 0.18 (1.94) 0.1 (3.21) 0.13 (3.8) 0.21 (2.61) 0.15 (4.52)

Obs-Long (n = 33) UNB 0.53 (0.77) 0.5 (0.89) 0.29 (0.91) 0.32 (0.7) 0.32 (0.65)

OPT 0.29 (4.5) 0.42 (3.52) 0.37 (3.65) 0.42 (3.72) 0.37 (4.04)

FRB 0.18 (0.78) 0.08 (2.66) 0.34 (2.42) 0.26 (2.49) 0.32 (2.98)

Average

Response (n = 69) 0.24 (3.19) 0.14 (3.72) 0.09 (4.38) 0.08 (4.13) 0.05 (4.42)

Observational (n = 71) 0.48 (1.99) 0.40 (2.56) 0.31 (2.65) 0.31 (2.61) 0.30 (2.92)

** (**) ** (**) ** (**) ** (**) ** (**)

Note. Obs = observational-training; Resp = response-training; Short = short feedback processing time; Long = long feedback processing time;

UNB = unbiased boundary model; OPT = optimal boundary model; FRB = free boundary model. Note. Significance of comparisons across training

conditions is reported below proportions for average training conditions (** p < .01).

https://doi.org/10.1371/journal.pone.0179256.t004
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label feedback was provided during test blocks. Our analyses were based on the data from the

test blocks, which provided a snapshot over time of base-rate sensitivity.

Along with classification, during training blocks participants also completed a secondary

working memory task (the widely-used Sternberg memory-scanning task thought to occupy

working memory resources). After feedback offset for each classification trial, the working

memory task began either immediately (short delay condition) or after a few seconds (long

delay condition). The short delay condition was intended to disrupt learners’ ability to con-

sciously reason about the categorization feedback just received for that trial.

Based on much previous research, response training is thought to engage implicit learning

mediated by the basal ganglia. With observational training, performance of this learning sys-

tem has been shown to be disrupted (e.g., [25, 26]). If base-rate sensitivity from direct experi-

ence does rely on implicit learning, as we hypothesize, then performance should be disrupted

in observational conditions, but should proceed normally in response conditions. On the

other hand, the explicit learning system is thought to rely on working memory. Thus, the sec-

ondary working memory task tests influence of the explicit learning system on base-rate sensi-

tivity from experience. If the explicit system contributes to base-rate sensitivity, then limiting

feedback processing with rapid onset of the secondary task (which utilizes working memory)

should diminish performance. Longer feedback processing time should produce larger crite-

rion values if the explicit system is involved in developing base-rate sensitivity.

Implicit and explicit contributions to base-rate sensitivity

Our results support the conclusion that implicit learning is involved in developing base-rate

sensitivity from experience in perceptual classification. In both experiments, criterion values

were reliably larger (i.e., closer to optimal) in the response conditions than in the observational

conditions. This was true for criterion values derived from signal detection analysis as well as

decision bound modeling analysis. Accuracy rates were also higher in the response conditions,

as should be expected [8, 33]. Participants in observational conditions barely adjusted their

decision criterion values away from an unbiased criterion reflecting insensitivity to base-rates.

Modeling analysis, which provides a statistical test for each individual participant, indicated

that a significantly greater proportion of data sets in the observational condition than in the

response condition were best accounted for by a model assuming an unbiased decision crite-

rion. This was particularly clear for participants in Experiment 2.

Our results also suggest that explicit learning plays a limited role in learning base-rates

from experience in perceptual classification tasks. We found no main effect of feedback pro-

cessing time in any condition (in all cases Bayes Factor values favored the null hypothesis).

However, we did find some interesting patterns related to feedback processing time through-

out our results.

Fig 4 might give the impression that base-rate sensitivity was slightly greater in long- than

in the short-feedback processing conditions in Experiment 1. However, this difference was

never close to significant in any block of response training conditions (minimum p-value was

.25). In Experiment 2, there were significant effects of feedback processing time in blocks 2 &

3, but the trends were in opposite directions over these blocks. By the end of training (blocks 4

& 5) there were no significant differences based on processing time.

The modeling results indicate some impact of the feedback processing time manipulation

in response conditions. In both Experiments 1 and 2, the results indicate participants were

more likely to use an unbiased decision criterion in the long feedback processing condition

(collapsed across blocks: Experiment 1 z = 3.43, p< .01; Experiment 2 z = 2.34, p< .01). This

pattern of results may seem counterintuitive, but makes sense in the context of earlier research
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into COVIS predictions. Several other studies have shown that disruption of processing in the

explicit system may actually help the implicit system function better [32, 44, 45].

The modeling and signal detection results together constitute an additional manipulation

check on the feedback processing-time manipulation. The modeling results from both experi-

ments suggest that the delay manipulation was sufficient to affect performance in response

conditions (but not observational conditions). In the response conditions—in which implicit

learning was engaged—longer feedback processing time led more participants to fail to adjust

their criterion at all (indicated by the higher percentage of subjects best fit by the unbiased

model).

It also appears that the baseline training in Experiment 1 may have interfered with criterion

adjustment on subsequent unequal base-rate trials. Experiment 2 indicates that participants

can begin showing base-rate sensitivity early in training. This interference only affected perfor-

mance in response training conditions. Given that the baseline phase involves response train-

ing (i.e., engages the implicit system which learns associatively over time), it makes sense that

the unbiased criterion learned in that phase may be resistant to rapid change and require sig-

nificant re-training before change is evident. Notably, removal of this impediment in Experi-

ment 2 did nothing to increase base-rate sensitivity in the observational training conditions, in

early blocks or otherwise.

One could argue that a more direct test of the explicit system’s contribution to base-rate

learning would be to provide learners with a summary of base-rates throughout classification

training. This seems unlikely to help, though, given the literature showing the limits of sum-

mary information on base-rate sensitivity. However, it makes sense to examine the extent to

which summary information combines with direct experience to help—or perhaps even hin-

der—base-rate sensitivity. If the explicit learning system does not significantly contribute

when the implicit system is engaged (as we conclude from our response training conditions)

then adding summary base-rate information likely will not improve sensitivity either. It would

be particularly interesting to see if summary information aids learning in observational condi-

tions when the implicit learning system is disrupted but the explicit system remains intact. We

are conducting this research currently.

An alternative account of our results could be that differences existed in motivation level

between response and observational conditions; participants might simply have been bored in

observational conditions. There are several reasons to doubt this explanation. First, response

accuracy in the secondary task was high in both response and observational training condi-

tions, suggesting that participants were engaged across blocks of trials. Second, in recent work

[17] we disrupted implicit learning by delaying classification feedback (participants responded

on each trial) and again found larger criterion values when implicit learning was supported.

Third, in previous studies comparing response and observational training using 2-dimensional

categories, observational training performance was undiminished relative to response training

in conditions where explicit learning should succeed. In these studies, if participants were less

motivated during observational training, it did not affect performance (e.g., [25, 26]). Finally—

and perhaps most compelling—the results of our Experiment 2 show clear differences between

criterion placement in response and observational conditions as early as the first block of trials.

And there were no baseline trials in this experiment. It seems unlikely that observational learn-

ing participants had lower motivation from the very beginning of training blocks.

Links to neuroscience of categorization

The studies reported here are important for several reasons. A great deal of time and effort has

gone into understanding acquisition and use of base-rate knowledge, reflecting the importance
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of this information to decision making. Most of this research focuses on base-rate summaries

provided for explicit reasoning. Our results suggest that engaging the appropriate learning sys-

tem may be important for base-rate sensitivity in classification judgments. And although some

have speculated that base-rate sensitivity from experience entails implicit learning, this

assumption has received little empirical testing (although see [17]). This is important because

the many classification studies showing base-rate sensitivity gained from experience do not

necessarily indicate implicit learning. However, regarding sensitivity to base-rates through

direct-experience classification, our results do support the assumption that implicit learning is

involved.

Furthermore, the current work underscores the relevance of base-rate influence to cognitive

neuroscience research into category learning. The present studies were motivated by the obser-

vation that category learning from experience may or may not involve implicit learning. We

must point out that, although the assumptions of COVIS suggest that base-rate sensitivity

might rely on basal-ganglia mediated implicit learning, the theory does not specifically make

this prediction; its predictions focus on dimensional rule learning. However, more recent

work in this area makes a distinction between category rule learning and criterion learning.

With 2-dimensional category structures, the participant must determine which dimension(s)

to include in the categorization rule (i.e., rule learning). Once that is determined, the learner

must still discover the most optimal placement of the decision criterion. In the case of our

1-dimensional stimuli, the rule itself would be considered a verbalizable rule; the domain of

the explicit learning system. However, our results suggest that criterion placement itself may

require a nonverbalizable implicit learning process, particularly in the case of unequal category

base-rates. In this regard, the current results correspond to recent computational neuroscience

work arguing for associative learning of criterion placement [43]. It is clear from our current

results that participants were limited in their criterion adjustment in response to base-rates

when implicit learning was disrupted.
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