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Abstract
The rapid evolution of fertilization proteins has generated remarkable diversity in molecular structure and function.
Glycoproteins of vertebrate egg coats contain multiple zona pellucida (ZP)-N domains (1–6 copies) that facilitate
multiple reproductive functions, including species-specific sperm recognition. In this report, we integrate phyloge-
netics and machine learning to investigate how ZP-N domains diversify in structure and function. The most C-ter-
minal ZP-N domain of each paralog is associated with another domain type (ZP-C), which together form a “ZP
module.” All modular ZP-N domains are phylogenetically distinct from nonmodular or free ZP-N domains.
Machine learning–based classification identifies eight residues that form a stabilizing network in modular ZP-N do-
mains that is absent in free domains. Positive selection is identified in some free ZP-N domains. Our findings support
that strong purifying selection has conserved an essential structural core in modular ZP-N domains, with the relax-
ation of this structural constraint allowing free N-terminal domains to functionally diversify.
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Introduction
Protein structural domains are a major type of molecular
building block that multimerize into higher-order assem-
blies and provide the architectural foundation for nearly
all cellular features, including organelles and extracellular
matrices. Within molecular complexes, structural domains
function as interlocking modules with specific, well-
defined binding surfaces. Consequently, structural pro-
teins commonly experience intense purifying selection to
preserve their 3D conformations, which can lead to ex-
treme sequence conservation between diverse taxa (e.g.,
actin is 89% identical between yeast and humans)
(Rivero and Cvrčková 2007). The modularity of structural
domains makes them prime templates for duplication
within a genome, taking the form of both whole gene du-
plication to produce new paralogs and the formation of
tandem domain arrays within a single gene (Rivera and
Swanson 2022). Redundancy of duplicated domains can
relax purifying selection to allow for diversification and
neofunctionalization, as is observed for the mechanosensi-
tive tandem domains of cadherins in the inner ear
(Jaiganesh et al. 2018). However, little is known as to
how positive selection can shape structural domain diver-
sification within rapidly evolving systems.

Within animal genomes, many of the fastest evolving
genes are associated with fertilization (Swanson and
Vacquier 2002). Although often considered paradoxical,
reproductive proteins evolve at extraordinary rates in
part due to differences in male and female optimal mating

rates that can drive sexual arms races, especially in gamete
recognition proteins that initially mediate sperm–egg in-
teractions (Wilburn and Swanson 2016; Wilburn et al.
2019). Fertilization of an egg by multiple sperm will fail
to form a zygote—a phenomenon known as pathological
polyspermy—and oocytes possess multiple reproductive
barriers to modulate the rate of sperm entry (Frank
2000; Carlisle and Swanson 2021). One such barrier in ver-
tebrate oocytes is an elevated glycoprotein envelope with
clade-specific names: the zona pellucida (ZP) in mammals,
the chorion in fishes, and the vitelline membrane in am-
phibians, reptiles, and birds (Wilburn and Swanson
2018). Named after the mammalian version, all vertebrate
egg coat proteins contain a pair of immunoglobulin-like
domains, ZP-N and ZP-C, that together form a polymeriza-
tion unit called a ZP module (Jovine et al. 2002; Wilburn
and Swanson 2017; Bokhove and Jovine 2018). The last
common ancestor of vertebrates possessed six paralogous
genes (zp1, zp2, zp3, zp4, zpd, and zpax) that experienced
clade-specific birth and death events. Consequently, the
egg coat of eachmajor vertebrate class has a different com-
position of ZP module–containing proteins (Conner et al.
2005; Wong and Wessel 2005; Goudet et al. 2008; Meslin
et al. 2012; Shu et al. 2015; Wassarman and Litscher
2016; Killingbeck and Swanson 2018). ZP modules are
also found in nonreproductive proteins that form extracel-
lular matrices, such as uromodulin (UMOD), which pro-
tects against urinary pathogens (Brunati et al. 2015;
Bokhove et al. 2016; Devuyst and Pattaro 2018) and
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tectorin alpha (TECTA), which function in inner ear organ-
ization (Bokhove et al. 2016; Kim et al. 2019).

Although both ZP-N and ZP-C are immunoglobulin-like
domains with a core β-sandwich (Bokhove and Jovine
2018), they are evolutionarily distinct domains that have
low amino acid sequence identity, unique disulfide pat-
terns, and variable loop structures (Lin et al. 2011).
Independent ZP-C domains outside of the ZP module
have been identified in Caenorhabditis elegans (Weadick
2020), and four of the egg coat proteins (ZP1, ZP2, ZP4,
and ZPAX) contain additional ZP-N domains independent
of the ZP-N/ZP-C pair in the ZP module (fig. 1A). We do
not know of nonreproductive proteins that contain dupli-
cated ZP-N domains. We refer to ZP-N domains in the ZP
module as “modular” and the N-terminal repeats as “free”
domains. As ZP-N domains can form asymmetric dimers
through their β-sandwich edges (Jovine et al. 2002;
Bokhove and Jovine 2018; Litscher and Wassarman
2020), they have been considered the major driver of ZP
module polymerization. Although free ZP-N domains
may similarly function as polymerization units, recent
structural studies support that theymay have acquired no-
vel functions: the free ZP-N domains of ZP1 form intermo-
lecular cross-links important for an egg coat structure
(Nishimura et al. 2019), whereas N-terminal domains in
ZP2 (Avella et al. 2013, 2014) and ZP4 (Dilimulati et al.
2022) have been implicated in sperm–egg binding. The
functional diversification of duplicated ZP-N domains
seems to play an important role in the evolution of
species-specific interactions. Despite their functional sig-
nificance, the evolutionary history of ZP-N domains within
and between these many paralogous proteins has not been
examined. Our combination of phylogenetic and machine
learning approaches addresses how a complex history of
whole gene and tandem domain duplications followed
by structural adaptation produced the current diversity
of ZP proteins.

Results and Discussion
We investigated the evolutionary history of vertebrate
ZP-N domains by extracting a total of 2,405 ZP-N domain
sequences from ZP module–containing genes of 247 spe-
cies with both reproductive (zp1, zp2, zp3, zp4, zpax, and
zpd) and nonreproductive (umod, tecta, cuzd1) functions
(supplementary table S1, Supplementary Material online).
Although modular and free ZP-N sequences were found to
share little sequence identity beyond four conserved cyst-
eine residues that form stabilizing disulfide bonds,
both domain types were highly similar in a 3D structure
(fig. 1A). As such, we used a structure-based sequence
alignment (Pei et al. 2008) to perform phylogenetic ana-
lysis. Maximum likelihood–based phylogenies indicated
that the free ZP-N domains formed a single clade distinct
from the ZP-C-associated modular ZP-N domains (fig. 1B),
and this separation was robust to amino acid substitution
matrices (LG, WAG, and JTT) (supplementary fig. S1,
Supplementary Material online). The topology of the

modular ZP-N clade was broadly consistent with previous-
ly published gene trees based on the complete ZP module
with both ZP-N and ZP-C (Claw and Swanson 2012; Feng
et al. 2018). The topology of the free ZP-N clade supported
that the initial duplication gave rise to the first repeat of
the tandem array shared by ZP1, ZP2, ZP4, and ZPAX,
which was followed by lineage-specific repeat expansions
of free ZP-Ns in ZP2 and ZPAX (fig. 1C). Free ZP-Ns have
only been identified in proteins associated with the egg
coat.

The phylogenetic separation of modular and free ZP-N
domains using a structure-based alignment suggests im-
portant structural differences between the two domain
types, but their high sequence divergence has complicated
a manual identification of such characteristics. Machine
learning methods have been applied to various aspects
of protein biology such as function prediction (Yang
et al. 2018; Bonetta and Valentino 2020) and the classifica-
tion of membrane-bound proteins (Guo et al. 2019). Here,
we used a machine learning–based classification strategy
to identify what structural features distinguish free and
modular types of ZP-N domains. We applied a logistic re-
gressionmodel to the structurally aligned ZP-N domain se-
quences, where the probability of being a modular versus
free ZP-N type was estimated for each of the 20 amino
acids at each position in the alignment. Given the large
number of parameters in this model (9,321), we combined
elastic net regularization and cross-validation to identify
the most parsimonious model (i.e., the fewest nonzero
parameters) within the 95% confidence interval of the
highest-scoring model (fig. 2A and B). Through this regu-
larization strategy, we identified eight modular-associated
and two free-associated residues that were sufficient to
predict whether a given ZP-N sequence was modular or
free with 100% accuracy (fig. 2B). The greater number of
modular-associated residues and their greater probabilistic
weight suggest a greater sequence conservation of modu-
lar domains (fig. 2B). A further examination of individual
clades of modular and free ZP-Ns demonstrates the sub-
stantial sequence conservation of our residues identified
by machine learning (fig. 2C).

An examination of the residues associated with either
ZP-N type in the context of 3D structures suggests differ-
ences in both function and quaternary structural dynam-
ics. ZP-N monomers have an immunoglobulin-like
β-sandwich fold with the 4- and 3-membered β-strands
connected by a disulfide bridge on each edge of the mol-
ecule. Biochemical and crystallographic studies support
that modular ZP-N domains form asymmetric dimers
through the molecular edge that includes the most N-
and C-terminal β-strands (Jovine et al. 2006; Bokhove
et al. 2016). Free ZP-N domains do not appear to dimerize
through this N/C-terminal edge and have experienced
functional diversification of the outer edge of the molecule
to perform additional protein binding functions (Raj et al.
2017; Nishimura et al. 2019). When the modular-
associated sites were mapped onto their respective struc-
tures, we observed that modular-associated residues
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formed an integrated network of mostly hydrophobic
stabilizing contacts that interlocked between the
β-sheets around the outer edge of the molecules (fig. 2D,
supplementary fig. S2, Supplementary Material online).
The phylogenetic clustering of free ZP-N domains
(fig. 1C), along with molecular dynamics, supports the
loss of dimerization activity along the free ZP-N lineage,
which could have facilitated their evolution of new binding
partners (supplementary fig. S3, Supplementary Material
online). The stabilizing contacts along the outer edge of
the modular ZP-N domains are consistent with these do-
mains principally having structural roles, whereas in free
domains, this edge has diversified to allow functional in-
novation. A further subdivision of free ZP-N domains by
their major clades (the first repeat vs. internal repeats in
ZP2 and ZPAX) largely supports our initial findings
(supplementary fig. S4, Supplementary Material online).
Consequently, our sequence-based machine learning clas-
sifier identified conserved residues underlying structural
differences between the two domain types that have im-
plications on their respective functions.

The difference in the relative conservation of modular
domain structures motivated an additional analysis of
the sequence evolution of these ZP-N domains. Here, we

focused on mammalian ZP genes (zp1, zp2, zp3, zp4,
umod, tecta, and cuzd1) due to both higher genomic as-
sembly quality and to avoid synonymous substitution sat-
uration that may occur when considering greater
phylogenetic breadth (Anisimova and Liberles 2012).
Measures of sequence diversity within and between
ZP-N groups reveal that modular domains are less diverse
overall, and that free ZP-Ns are just as dissimilar to one an-
other as they are to modular domains (fig. 3A).

These findings motivated molecular evolutionary ana-
lyses on 12 mammalian ZP-N domains, and only ZP2-N1
and ZP2-N2 showed evidence of positive selection
(supplementary table S2, Supplementary Material online).
These were notably the two domains with the lowest
within-group similarity (diagonal of fig. 3A). Positively se-
lected sites in ZP2-N1 were far from the homodimerization
edge and physically closer to the network of modular-
biased residues (fig. 3B). Analyses that detect positive se-
lection in free ZP-Ns may reveal complementary informa-
tion to the high conservation of residues in modular
ZP-Ns. Protein regions associated with structural stability
in modular domains may rapidly evolve in free domains
that gain a new binding interface. Positively selected sites
also constituted a substantial portion of the solvent

FIG. 1. Phylogenetic analysis of ZP-N domain duplication history. (A) A structural alignment of mouse ZP2-N1 and ZP3-N highlights the broad
structural conservation of these two classes of ZP-N domains (RMSD=�4.7 Å) despite only �18% amino acid sequence identity. The protein
schematics summarize the ZP proteins included in this analysis. (B) Phylogenetic analysis (Kozlov et al. 2019) of ZP-N sequences (shown as a
maximum likelihood tree) supports an ancestral separation between free and modular ZP-N domains (�78% support). (C ) A summary of
ZP-N domain evolution based on the gene tree in (B). The ancestral protein contained a ZP module with a C-terminal ZP-N and ZP-C domains,
and duplication of the ZP-N produced the most N-terminal domain found in ZP1, ZP4, ZP2, and ZPAX. Later duplication events within ZP2 and
ZPAX gave rise to multiple additional ZP-N domains between ZP-N1 and the ZP module.
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FIG. 2.Machine learning–based inference of sequence features that distinguish modular and free ZP-N domains. A logistic regression model with
elastic net regularization was trained on the ZP-N multiple sequence alignment generated as part of the phylogenetic analysis, with the data
partitioned for training and testing (75% and 25%, respectively), with five-way cross-validation of the training data employed to estimate
the error distribution of the score function. We defined our optimal model as the most parsimonious model (i.e., the fewest parameters) within
the estimated 95% confidence interval of the unregularized model. (A) The space of regularization hyperparameters was explored during model
optimization, plotted as a 3D surface (left). The score is the negative mean-squared error, and the dots correspond to the 2D cross-section shown
on the right, with the blue line denoting the intersection between the lower confidence limit of the unregularized model to its intersection with
the score as a function of regularization strength. (B) Comparison of the unregularized and optimal logistic regression models as LOGO plots
with the height of each amino acid at each position corresponding to its parameter weight, with colored amino acids denoting parameters
retained in the regularized model (orange for modular; green for free). Each parameter weight approximating the logs odd ratio for a modular
domain prediction, when a residue is present at that position. (C ) Sequence LOGOs were constructed for individual clades within the phylogeny.
They emphasize the conservation of residues within the modular ZP-N clade. There is also greater conservation of a characteristic ZP-N disulfide
bond in the most N-terminal ZP-Ns compared with other free domains. (D) Mapping highly predictive sites onto ZP-N protein models suggest
differences in structural properties between free and modular domains. The available crystal structure ZP3-N (3d4c) was used and modeled as a
dimer for spatial context. Modular-associated sites are generally buried along the outer edge of the homodimer.
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exposed surface area (34% in ZP2-N1 and 24% in ZP2-N2),
potentially facilitating their evolution of novel functions
and protein interactions. The rapid evolution of ZP2-N1
is consistent with its role in species-specific sperm recogni-
tion (Avella et al. 2014) and may reflect sexual coevolution
with its sperm receptor (whose identity is currently un-
known). Remarkably, these positively selected sites cluster
near a region associated with species-specific sperm pro-
tein binding in free invertebrate ZP-N domains (Raj et al.
2017). However, based on expansion and retraction of
loop lengths outside the core β-sandwich, we believe
that these invertebrate free ZP-N domains evolved inde-
pendently of the free ZP-N domains of vertebrates, sug-
gesting that the expansion of ZP-N arrays for
species-specific sperm recognition is a convergent phe-
nomenon that has arisen multiple times throughout meta-
zoan evolution. Previously, positive selection in ZP3 had
been detected in certain mammalian clades (Swanson
et al. 2001; Turner and Hoekstra 2006). However, selective
pressures related to reproduction (e.g., mating system) can
vary across taxa, and this can affect why a broad search of
Boreoeutherian mammals did not detect positive selection

in ZP3 when compared with previous analyses on lim-
ited taxon data sets. Similar observations have been
made in the fertilization proteins Izumo and Juno
(Grayson 2015).

In summary, our combined phylogenetic, machine
learning classification and positive selection analyses illu-
strated a clear distinction between modular and free
ZP-N domains. These two classes of domains experienced
different evolutionary trajectories, as modular ZP-Ns likely
retained a conserved structural role, whereas free ZP-Ns
neofunctionalized to serve different reproductive func-
tions. These findings are of relevance to the evolution of
species specificity in fertilization, as the ZP-N domain ex-
pansion of ZP2 provided substrates to evolve novel
species-specific interactions. Structural changes within
free ZP-Ns could result in a dimerization edge and the evo-
lution of a new sperm binding loop. As these domains are
coopted into a reproductive context, coevolution (Clark
et al. 2009; Hart et al. 2018) and sexual conflict (Gavrilets
and Waxman 2002) with sperm proteins could contribute
to their rapid evolution. This reflects the evolutionary dy-
namics that drive the structural diversification and neo-
functionalization of duplicated domains. Our combined
phylogenetic and machine learning approach outlined
here can be applied to other essential gene families with
complex duplication histories.

Materials and Methods
Multiple Sequence Alignment
Sequences for multiple ZP-N containing proteins were cu-
rated from the Ensembl database (release 104) (Howe et al.
2021). Sequences were preliminarily labeled as one of the
ZP genes of interest based on PSI-BLAST e-value scores
(Altschul et al. 1997). Sets of orthologous genes were
aligned with multiple alignment using fast fourier trans-
form (MAFFT) (Katoh and Standley 2013) and then
trimmed to individual ZP-N domains. Groups of ortholo-
gous ZP-N domains were deemed “orthogroups.”
Sequences with ambiguous characters were removed,
and then sets of orthologous ZP-N sequences were rea-
ligned with MAFFT. A full multiple sequence alignment
was generated by concatenating orthogroup alignments
together using a representative paralog alignment: individ-
ual representative sequences were selected from each
orthogroup and aligned using the structural-based
PROMALS tool (Pei et al. 2008). This approach was used
because of the low sequence identity but the high struc-
tural similarity between paralogous Z-N domains. A cus-
tom script was used to algorithmically add gaps to
orthogroup alignments to form a full multiple sequence
alignment. For phylogenetics, CD-Hit was used to remove
highly clustered and highly similar sequences (.90% iden-
tity) (Li and Godzik 2006; Fu et al. 2012), in order to im-
prove computing speed, and also because this study was
not concerned with very recent evolutionary splits. A full
data set was used for machine learning training because

FIG. 3. Amino acid diversity and tests of positive selection in modular
and free ZP-N domains. (A) A heatmap showing the within-group
and between-group mean phylogenetic distances for the ortholo-
gous groups of ZP-N domains (Kumar et al. 2018). (B) Positively se-
lected sites in mammalian ZP2-N1 and ZP2-N2 were identified
through maximum likelihood analysis and mapped onto protein
models (4wrn for ZP2-N1 and an AlphaFold prediction for
ZP2-N2) (Yang 2007).
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such methods are less computationally strained by large
alignments and can gain greater sensitivity with a high
depth of taxonomic sampling.

Phylogenetics
Maximum likelihood phylogenies were built using
RAxML-NG (Kozlov et al. 2019), and multiple different
amino acid substitution matrices were tested (LG+G,
JTT+G,WAG+G), to evaluate the robustness of the dee-
pest phylogenetic divide. The maximum likelihood tree
was selected from 100 replicate runs using different start-
ing trees. Nodal support was calculated with transfer boot-
strap expectation (Lemoine et al. 2018), a modified form of
bootstrapping that is more effective at detecting deep
phylogenetic relationships in data sets with a large number
of taxa. Sequence labels were initially based on BLAST re-
sults but later refined based on phylogenetic clustering
(e.g., ZP1-N1, ZP2-N1, ZP4-N1).

Machine Learning
A basic machine learning algorithm using mean-squared re-
gression and regularization was coded in Python to distin-
guish the two free and modular groups of ZP-N domains.
Logistic regression models are well suited for these classifi-
cations, because their outputs are bounded between 0
and 1, which can be interpreted as a probability that a given
domain is modular (Bewick et al. 2005). The multiple se-
quence alignment was identical to that used for phylogen-
etic analysis. The alignment was split into a testing (25%)
and training set (75%), and logistic regression modeling
with cross-validation was performed on the training set
using five-way cross-validation. The final model scores
were based on performance in the testing data set.

For machine learning analysis, aligned ZP-N sequences
were one-hot encoded: each position in the sequence
was converted into a vector of 20 digits, corresponding
to the 20 amino acids. The value was set to 1 for the entry
in the vector corresponding to that residue, and all other
values were set to 0. Gapped sites were set to a vector of 20
0’s. Thus, the classifier was trained using (1+ 20n) features
(there is an additional intercept term), where n is the align-
ment length. Each of these features had a parameter asso-
ciated with it, and the value of the parameter indicated
how informative that feature was, and whether it sup-
ported a modular ZP-N or free ZP-N classification. There
were a large number of possible parameters in this model
(9,321 including the intercept), which introduced a risk for
“overfitting” (Hawkins 2004) and, thus, motivated our
regularization strategies.

To determine the minimal number of highly inform-
ative parameters, elastic net regularization was employed
to penalize overparameterization and reduce overfitting
(Zou and Hastie 2005). In our sci-kit learn implementation
(Pedregosa et al. 2011), both the strength of regularization
and the L1/L2 penalty ratio between the two penalty types
were optimized by grid search. The highest-scoring model
was identified according to the negative mean-squared

error scoring metric. In order to choose a suitable sparse
model (i.e., fewest nonzero parameters), we adapted the
one standard error rule common in machine learning
(Hastie et al. 2009), where the sparsest model that is still
within one standard error of the highest-scoring model
is selected. For this analysis, we used 95% confidence inter-
vals (�1.96 standard errors) to identify the sparsest model
(fewest nonzero parameters) that was not statistically dif-
ferent from the highest-scoring model sampled. Raw par-
ameter values were plotted in the style of sequence
LOGO plots (Schneider and Stephens 1990). The sum of
the raw parameter values for matching amino acids in
the alignment (and the intercept term) was equivalent
to the log odds that a given sequence was classified as
modular. For the sake of simplicity, each parameter was
described as the log odds associated with a particular resi-
due. In addition to the initial binary classification (free vs.
modular), our analysis was repeated using a three-way
multiclassification (first N-terminal, internal, and modu-
lar). This procedure used alignments, hyperparameter
grid searching, and regularization strategies in the same
manner as the binary classification.

Sequence Divergence and Positive Selection Analyses
Our analyses of sequence divergence and positive selection
were performed on a set of Boreoeutherian mammals, and
we used the mammalian ZP-N domains coming from zp1,
zp2, zp3, zp4, umod, tecta, and cuzd1. Boreoeutherian se-
quences were mined from Ensembl (Howe et al. 2021)
and were included in these analyses if they were present
in 10 or more of these ZP-N domain orthogroups.
Phylogenetic distances both within and between the
orthogroups were calculated in MEGA using Poisson esti-
mation with a gamma distribution of variation between
sites (Kumar et al. 2016, 2018).

Evidence of positive selection was measured using PAML
analyses (Yang et al. 2005, 2007) on the same sets of ZP-N
domains from the sequence divergence estimation. A likeli-
hood ratio test between a model allowing positive selection
(M8) and a neutral model (M8a) was used to determine
which domains showed evidence of positive selection.
Likelihood ratio tests were performed by comparing M8
and M8a, using a χ2 distribution with one degree of free-
dom. We also performed a Benjamini–Hochberg P-value
correction to account for multiple testing (Benjamini and
Hochberg 1995). Positively selected sites were visualized
on a published crystal structure (ZP2-N1) (Raj et al. 2017)
or the alpha-fold predicted structure (Jumper et al. 2021)
when this did not exist (ZP2-N2). Sites were labeled if
they had a posterior probability of being positively selected
.75% according to Bayes Empirical Bayesian analysis.

Visualization and Other Methods
When protein structures were not available, Alpha-Fold2
tertiary structure prediction was used (Jumper et al.
2021), and 3D protein structures were visualized using ei-
ther pymol (Schrödinger 2015) or ChimeraX (Pettersen
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et al. 2004). Docking simulations of homodimerization for
ZP2-N1 and ZP3-N were performed using Rosetta 3.5
(Chaudhury and Gray 2008; Sircar et al. 2010). Briefly,
each template structure was energy-minimized in
Rosetta using the relax function, each structure was dupli-
cated, aligned to the dimeric ZP-N structure of UMOD
(PDB 4wrn), 10,000 independent docking simulations
were performed, and interface scores were analyzed for
the top 5% lowest energy structures.

Supplementary Material
Supplementary data are available atMolecular Biology and
Evolution online.
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