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Abstract.	 Over the past few decades, the luteolytic dose of prostaglandin F2α (PGF2α) and its analogs, used to 
synchronize estrus for fixed-time insemination in dairy cattle, have remained unchanged. Given the beneficial 
effects of PGF2α on a young corpus luteum and on multiple ovulations in a fixed-time insemination protocol, and its 
therapeutic abortive effects on multiple ovulations in pregnant cows, we propose the use of a double PGF2α dose 
or two PGF2α treatments 24 hours apart. Ultrasonography procedures serve to identify luteal structures and may 
therefore help to determine the best PGF2α dose to improve the fertility of high-producing dairy cows.
Key words:	 Additional corpora lutea, Cloprostenol, Double ovulation, Fixed-time artificial insemination (FTAI), Twin 
pregnancy

 (J. Reprod. Dev. 67: 1–3, 2021) 

Introduction

In the 1970s, there were extensive reports 
of prostaglandin F2α (PGF2α) and its analogues 
being luteolytic in cattle, with the degree of 
fertility of the induced estrus similar to that 
achieved in previous studies [1, 2] or higher 
than that of naturally occurring estrus [3]. 
Traditionally, the use of these substances was 
based on shortening the luteal phase. This 
meant that a treatment was only effective in 
the presence of a functional corpus luteum 
(CL), and if done within 5–16 days of a nor-
mal estrous cycle [4], which is approximately 
60% of a population cycling at random. The 
dose-response effect for luteolytic agents 
synchronizing estrus was also established in 
the 1970s: PGF2α, 25 mg; cloprostenol, 500 
µg; and fenprostalene, 1 mg [1, 2]. These 
luteolytic doses remained unchanged with the 
development of different estrus synchroniza-
tion protocols within the last 50 years of dairy 
cattle rearing. This would appear to mean that 
the success of treatment with luteolytic prod-

ucts has reached a plateau. However, higher 
metabolic clearance rates of steroid hormones 
and alterations in reproductive endocrinology 
have been linked to the process of high milk 
production [5–7]. Consequently, exogenous 
prostaglandins are likely to be exposed to a 
rapid metabolism or a less significant response 
excluding increased milk production. In 
fact, although endogenous PGF2α entering 
the pulmonary circulation is enzymatically 
inactivated in the lungs [8], biliary excretion 
is a major route of elimination of clopros-
tenol [9]. The question therefore arises as to 
whether one should accept current levels of 
success or, alternately, introduce new findings 
leading to the modification of prostaglandin 
dose. Moreover, while an important body 
of literature shows that the recommended 
PGF2α dose is still sufficient, some clini-
cal reflections based on our experimental 
studies and extensive field-scale experience 
are provided to: 1) emphasize the features 
of current synchronization protocols for 
fixed-time artificial insemination (FTAI), 2) 

highlight the challenge of multiple ovulations 
associated with high milk production, and 3) 
improve the control of pregnancies.

Breeding synchronization 
protocols in dairy herds

Increased herd size combined with inten-
sive milking and feeding, poor detection of 
estrus, and increased post-partum anestrus, 
make individual animal monitoring very dif-
ficult. These are cogent reasons why breeding 
synchronization protocols for FTAI have 
become routine components of the reproduc-
tive management of dairy herds. For example, 
the PGF2α-based ovulation synchronization 
protocol, denoted “Ovsynch,” is extensively 
applied for FTAI of lactating dairy cows 
[10, 11]. The Ovsynch method consists of a 
gonadotrophin-releasing hormone (GnRH) 
treatment given at random stages of the 
estrous cycle (to synchronize a follicular 
wave), followed by PGF2α seven days later 
(to stimulate the luteolytic effect on a CL). A 
second dose of GnRH is administered 36–48 h 
after PGF2α treatment (in order to synchronize 
ovulation) and the cows are inseminated 
16–20 h later without detection of estrus 
[10, 11]. However, about 60% of cows ovulate 
after the first GnRH treatment and form a new 
CL so that the CL age at PGF2α treatment is 
about 5–6 days [12]. This is why incomplete 
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luteal regression after treatment, with a single 
dose of PGF2α, during an Ovsynch protocol 
decreases fertility. Another reason for the 
insufficient results of the Ovsynch protocol 
is that it should not begin at random stages 
of the estrous cycle. For example, Ovsynch 
applied in the last third of the estrous cycle 
is not sufficient to ensure synchronization of 
estrus and ovulation in each animal treated 
[13].

A meta-analytical assessment was recently 
performed with the objective of evaluating 
the effects of adding a second PGF2α treat-
ment 24 h after the first, during the Ovsynch 
protocol, on luteal regression and reproductive 
performance in lactating dairy cows [14]. An 
additional PGF2α treatment yielded an increase 
of 11.6% on luteal regression and 4.6% on 
pregnancies per insemination [14]. The fact 
that 1.5 [15] or 2 [16] doses of d-cloprostenol 
favored luteolysis when administered to 
cows with a 5- to 6-day-old CL, reinforces 
these results. Furthermore, a double dose of 
PGF2α administered 3.5 days post-ovulation 
resulted in partial luteolysis in 78% of treated 
animals, and full luteolysis in the remaining 
22% [17]. In the latter study, partial luteolysis 
occurred when the progesterone concentration 
decreased by 12 h of treatment and finally 
increased to values similar to that of untreated 
controls during the luteal phase. Whereas, full 
luteolysis occurred when the progesterone 
concentration decreased below 1 ng/ml within 
48 h of treatment and remained < 1 ng/ml until 
a new ovulation cycle [17]. As noted above, 
the threshold age for a responsive CL was set 
at five days [4]. However, with regards to a 
repeated administration of PGF2α, the second 
dose may just overcome the time problem of 
a refractory CL instead of dose dependence.

Research continues on methods of 
synchronization, and opinions vary on the 
best method available. Five-day P4-based 
protocols with either two PGF2α treatments 
24 hours apart [18–21], or a double dose 
of PGF2α [20], have provided results that 
compare favorably with those observed for 
longer protocols. Therefore, an increased dose 
of PGF2α, or a second treatment with PGF2α 
24 h after the first, should be recommended 
in FTAI protocols.

Control of pregnancy

Therapeutic abortion may be required 
during normal pregnancies (accidental 

breeding of a very young heifer) or abnormal 
pregnancies (fetal mummification, hydram-
nios, or hydro-allantois). It should be noted 
here that there also exists the problem of 
multiple ovulations. The significance of the 
double ovulation effect in high producers 
at insemination may be over 20% [21–25]. 
Because double ovulation has been linked 
to higher fertility [22, 26]; once a cow is 
pregnant the percentage of cows with two 
or more CL should be higher. In effect, in a 
recent study on 2173 pregnant cows in their 
third lactation or more [27], 1119 (51.5%) 
had at least two CL: 422 (19.4%) carrying 
singletons and 697 (32.1%) carrying twins. 
Twin pregnancies are not desirable for the 
economy of dairy cattle. With an economic 
burden estimated up to $225 per pregnancy 
in the U.S.A., the use of PGF2α for inducing 
abortion may be a suitable option upon a 
diagnosis of twins [28].

The CL of pregnancy appears essential 
for maintaining pregnancy prior to 165 
days of gestation [29] and a single PGF2α 
treatment consistently induces abortion until 
approximately 150 days of gestation, gener-
ally without complications [30]. However, a 
double PGF2α dose between days 40 and 120 
of gestation resulted in abortion of all treated 
cows, in contrast to a single or lower dose, 
which were either less effective or totally 
ineffective [31]. In the latter study, only one 
single CL was present for each pregnancy, 
suggesting that a double dose is better than a 
single PGF2α dose for terminating pregnancy. 
It is likely that a double dose of PGF2α is 
sufficient to induce abortion in cows with two 
CL. However, future studies should assess 
this assertion or establish a dose-response 
protocol in double-ovulating pregnant cows. 
In pregnancies in which the number of CL 
exceeds the number of embryos, this ad-
ditional CL has proven to be a very strong 
factor favoring pregnancy maintenance [32].

Concluding remarks

The decline in the reproductive perfor-
mance of high-producing dairy cows has 
been observed in the last few decades. 
This decline has been partly related to 
the high metabolism of steroid hormones 
and subsequent alterations to reproductive 
endocrinology, which is linked to increased 
milk production. Under these circumstances, 
PGF2α-based FTAI protocols have become 

increasingly common. However, up to 60% 
of cows have a young CL while undergoing 
PGF2α treatment, thereby reducing fertility. 
Furthermore, the number of cows with two 
or more CLs that are beginning treatment 
according to FTAI protocols is increasing, as 
is the case for pregnant cows. Consequently, 
the impact of multiple CLs reinforces the 
idea of a growing need to increase the 
luteolytic dose. There are dose-dependent 
studies showing that a lower dose of PGF2α 
still works within FTAI protocols [15] or on 
pregnant cows [33]. However, we concur 
that the treatment of two PGF2α treatments 
administered 24 hours apart in the FTAI 
protocols, or a double dose of PGF2α given 
to cows with a young CL and to pregnant 
cows for therapeutic abortion, should be 
recommended. Furthermore, ultrasonography 
procedures may help in identifying luteal 
structures, thereby deciding the PGF2α dose 
and improving the results in high-producing 
dairy cows.
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