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Acute myocardial infarction (AMI) has a high mortality. The single-cell RNA sequencing

(scRNA-seq) method was used to analyze disease heterogeneity at the single-cell level.

From the Gene Expression Omnibus (GEO) database (GSE180678), AMI scRNA-seq

were downloaded and preprocessed by the Seurat package. Gene expression data

came from GSE182923. Cell cluster analysis was conducted. Cell types were identified.

Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses

were performed on hub genes. Drugs were predicted by protein–protein interaction (PPI)

and molecular docking. In total, 7 cell clusters were defined based on the scRNA-seq

dataset, and the clusters were labeled as 5 cell types by marker genes. Hematopoietic

stem cell types as a differential subgroups were higher in AMI than in healthy tissues.

From available databases and PPI analysis, 52 common genets were identified. Based

on 52 genes, 5 clusters were obtained using the MCODE algorithm, and genes in these

5 clusters involved in immune and inflammatory pathways were determined. Correlation

analysis showed that hematopoietic stem cell types were negatively correlated with

ATM, CARM1, and CASP8 but positively correlated with CASP3 and PPARG. This was

reversed with immune cells. Molecular docking analysis showed that DB05490 had the

lowest docking score with PPARG. We identified 5 hub genes (ATM, CARM1, CASP8,

CASP3, and PPARG) involved in AMI progression. Compound DB05490 was a potential

inhibitor of PPAG.

Keywords: acute myocardial infarction, single-cell RNA sequencing, network pharmacology, molecular docking,

therapeutic genes, cellular subpopulations
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INTRODUCTION

Cardiovascular disease (CVD) is a common disease worldwide,
affecting most adults over the age of 60 years. With the
development of society, an improved standard of living, changes
in diet, and environmental changes have led to an increase in
the prevalence of diabetes, hypertension, and hyperlipidemia,
which in turn has resulted in an increased chance of developing
coronary heart disease.

Cardiovascular disease has become the major cause of death
worldwide, accounting for 45% of all deaths, equivalent to more
than 4 million deaths per year in Europe (1). Acute myocardial
infarction (AMI) is an acute medical condition in cardiovascular
medicine that can lead to life-threatening symptoms, such as
malignant arrhythmias, cardiogenic shock, and sudden cardiac
death, and is also one of the major causes of sudden cardiac
death (2, 3). AMI is a disease caused by ischemic heart disease
or its combination with coronary artery disease. It becomes even
more apparent when atherosclerotic plaque ruptures, developing
thrombi completely or partially blocking coronary arteries,
thereby restricting blood flow to the heart (4). AMI is more
common in Europe and the United States. Though the prevalence
is low in China, an increasing trend has been witnessed in recent
years. In the case of AMI in middle-aged and older adult people,
finding risk factors for AMI and improving the accuracy of AMI
prediction is the key to improve the prevention and management
of AMI.

In recent years, increasingly developing sequencing
technologies and bulk RNA-seq are introduced to analyze
gene expression patterns in different populations. At the single-
cell level, single-cell RNA sequencing (scRNA-seq) allows the
exploration of gene expression profiles.

Nowadays, as bulk RNA-seq mainly reflects the average gene
expression of thousands of cells, scRNA-seq is used as a helpful
tool for investigating key biological problems, for instance, cell
heterogeneity. The scRNA-seq has been increasingly employed in
a great range of species, particularly in a variety of human tissues
(both cancerous and normal). These studies have discovered
significant intercellular variability in gene expression (5–7).
Understanding cell-type-specific changes and regulation at the
single-cell level will allow us to decode themolecularmechanisms
underlying the pathophysiological processes leading to AMI.
RNA exerts a critical effect on biological processes (BPs) in cells.
The transcriptome offers important information related directly
to cellular phenotypes. scRNA-seq could characterize individual
cells, while bulk RNA-seq calculates average gene expression
between cells in a certain sample and detects differences between
sample conditions. In one or more samples scRNA-seq can
identify differences between cells and assesses gene expression in
individual cells. However, traditionally, cells are characterized by
morphology or molecules specific to each cell type (8).

The risk of CVD shows great heterogeneity in generally
healthy people and known patients. Low-risk people are usually
only recommended for lifestyle management, while high-risk
people are recommended for lifestyle and drug treatment.
In recent years, more and more studies have shown that
new biomarkers can be used to enhance the evaluation of

cardiovascular risk, For example, Cao et al. (9) reported that a
large number of lncRNAs can be used as potential biomarkers of
CVD. Schmidt et al. (10) found that hepatocyte-specific antisense
oligonucleotides also trigger parallel regulation of plasma
ceramide, revealing that biomarkers predicting cardiovascular
death are controlled by ceramide biosynthesis in hepatocytes.
The natriuretic peptide is used to screen asymptomatic left
ventricular dysfunction (11). Increased ST2 levels can predict
future deaths and heart failure events (12). GDF-15 plays a
role in the evaluation of a variety of CVDs, such as risk
stratification after myocardial infarction (MI), atrial fibrillation,
the prognosis of heart failure, and prediction of bleeding events
during anticoagulant therapy (13). These studies show that the
development of new biomarkers is necessary to understand
and improve the clinical treatment and prognostic evaluation
of CVD.

The purpose of this study is to further identify key molecular
and drug targets for the clinical diagnosis of AMI through
single-cell analysis of the cellular landscape and expression
differences in patients with AMI. The work flowchart is shown
in Supplementary Figure S1.

MATERIALS AND METHODS

Data Download and Processing
The single-cell dataset GSE180678 was obtained from the GEO
(https://www.ncbi.nlm.nih.gov/gds) database, which contained a
total of 1 sample from patients with ischemic cardiomyopathy.
The gene expression profile dataset GSE182923 containing 19
healthy tissues and 19 patients with MI was also downloaded
(14). For the single-cell dataset GSE180678, we first downloaded
the raw data for quality control and data filtering using the
R package Seurat (15). For the expression profile dataset,
we first obtained the annotation information of the probes,
mapped the probes to genes, removed multiple matches,
used the median value as the gene expression when multiple
probes matched to a gene, and finally obtained the gene
expression profile. In addition, MI-related genes were acquired
from the DisGeNET database (http://www.disgenet.org/) and
the Comparative Toxicogenomics Database (http://ctdbase.org/).
We selected the set of genes common to both databases as highly
reliable MI-associated genes.

Dimensionality Reduction Analysis of
Single-Cell Data and Identification of Cell
Subpopulations
To obtain reliable cell subpopulations, we first filtered the
single-cell data using the R package Seurat (15) for data
processing, setting each gene to be expressed in a minimum
of 3 cells, and each cell to express at least 250 genes.
The percentage of mitochondria and rRNA was calculated
by the PercentageFeatureSet function and ensured that each
cell expressed more than 500 genes and <4,000 genes, with
<30% mitochondrial content and at least 100 unique molecular
identifiers (UMIs) per cell. Then, the data were normalized by
log-normalization, and the FindVariableFeatures function was
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FIGURE 1 | Overview of single cells from acute myocardial infarction and healthy tissues. (A) T-distributed Stochastic Neighbor Embedding (tSNE) of 7 cell clusters.

(B) The cell types were identified by marker genes. (C) T-distributed Stochastic Neighbor Embedding of 3 different types (G1, G2/M, and S phase) of sample. (D) The

top five marker genes of five cell types. (E) The distribution of G1, G2/M, S phase, and cell numbers in five cell types. (F) The functional enrichment analysis of Kyoto

Encyclopedia of Genes and Genomes (KEGG) on maker genes of five cell types.
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FIGURE 2 | Identification of differential cell subsets. (A) The abundance of the 5 identified cell types in acute myocardial infarction (19 cases) and healthy tissues (19

cases) from the GSE109048 dataset by the CIBERSORT method. (B) A statistical chart of 5 identified cell types in in acute myocardial infarction (AMI) and healthy

tissues. *p < 0.05; ns, no significance.

used to find highly variable genes. All the genes were scaled
using the ScaleData function, and principal component analysis
(PCA) downscaling was performed. Finally, the cells were
clustered using the FindNeighbors and FindClusters functions
(set Resolution= 0.1) to obtain cell subgroups, and the cells were
annotated by annotation.

Mapping of Cell Subpopulations
The marker genes for each cell subpopulation were identified
using the R package FindAllMarkers function, and the
gene expression profile dataset was re-evaluated using the
CIBERSORT (16) algorithm based on the expression of marker
genes for each cell subpopulation as a background to determine
the components of individual cell subpopulation in different
samples in the expression profile.

Identification of Potential key Genes
Seven genes related to drug activity were first obtained from
the database ChEMBL database (https://www.ebi.ac.uk/chembl/)
(17) and further intersected with MI-related genes. Then, these
genes were mapped to the String (https://cn.string-db.org/)
database (18), and a confidence score of 0.4 was set to obtain
their interactions, and after filtering the nodes with fewer edges
in the network, the potential set of key genes with a high degree
of interaction was finally obtained.

Functional Enrichment Analysis of key
Genes
To elucidate the multiple mechanisms of action of these drugs
on MI at the systemic level, GO BP, cellular component (CC),
molecular function (MF), and KEGG pathway enrichment
analyses were performed using WebGestaltR (19) on the
potential key gene sets. We set p < 0.05 as the significance

threshold, and visualized the most significant top 10 pathways
and GO Term using the R the software package ggplot2.

Protein Interaction Network Analysis
We performed amodule-based network analysis using Cytoscape
(20). Specifically, we obtained gene interaction data from the
String database, set a confidence score of 0.4, and used Cytoscape
to visualize and analyze the topological properties of the network.
We further used the MCODE plugin (21) to find tightly
connected protein clusters in the target network to obtain
network modules.

Immune Infiltration Analysis
Based on the gene expression profile dataset, 10 immune cell
infiltration analyses were performed for each sample using the
R package MCPcounter (22) to obtain 10 immune infiltrating cell
scores for each patient. The Pearson correlation coefficients and
significance of gene expression with immune cells were further
calculated by the R package Hmisc package and visualized using
the R package ComplexHeatmap (23).

Potential Therapeutic Drugs Prediction
For key genes, because drugs targeted by these genes may have a
greater impact on the developmental process of MI, we obtained
drug target datasets from the Drugbank database (https://go.
drugbank.com/). A protein–protein interaction network (PPI)
was based on the String database by setting a threshold score
of 400 to create a drug-PPI network, in which we calculated the
proximity of drugs andMI disease. Here, we were able to calculate
the drug-PPI network with a given S (the set ofMI-related genes),
D (the degree of nodes in the set of B MI-related genes in the
PPI), T (the set of drug target genes), and the distance d(s, t) as
the shortest path between node s and node t (where s ∈ S, the
MI-related genes; t ∈ T, the drug target genes). The formula is
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FIGURE 3 | Identification of hub genes. (A) A Venn diagram of target genes associated with 7 common drugs for myocardial infarction and genes associated with

myocardial infarction (MI). (B) A Venn diagram of target genes associated with 7 common drugs for MI, genes associated with MI, and marker genes of hematopoietic

stem cell. (C) T-distributed Stochastic Neighbor Embedding of MGLL. (D) Protein–protein interaction (PPI) network of 52 genes.

shown below:

d(S,T ) =
1

| T|

∑

t∈T

mins∈S(d (s, t) + ω)

Here,ω referred to the weight of the target gene. If the target gene
was a gene in the set of MI-associated genes, it was calculated by
ω = –ln (D+1 ), otherwise ω = 0.

A simulated reference distance distribution corresponding
to the drug was generated. Briefly, we randomly selected a set
of protein nodes in the network as stimulated drug targets

with the same number of nodes as the target size (denoted
as R). Then, the distance d(S,R) between these simulated drug
targets (representing the simulated drug) and the associated
genes was determined, and the simulated reference distribution
was developed after 10,000 random repetitions. Meanwhile, we
used µd(S,R) and σd(S,R) with references to the mean and standard
deviation (SD) corresponding to the actual observed distance and
converted it to a normalized score, which was proximity degree z:

z (S,T) =
d (S,T) − µd(S,R)

σd(S,R)
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FIGURE 4 | Functional enrichment analysis of hub genes. (A) Hub genes were enriched in biological process. (B) Hub genes were enriched in cellular component. (C)

Hub genes were enriched in molecular function. (D) Hub genes were enriched in KEGG pathways.

We used the random data obtained from the reference to
perform multiple hypothesis testing, and selected drugs with
close distances and false discovery rate (FDR)< 0.001 as the set of
drug candidates related to the genes obtained from the analysis.

Molecular Docking
We used Autodock Vina software for molecular docking. First,
AutoDockTools 1.5.6 (https://autodock.scripps.edu/) was used to
process receptor proteins and small molecule ligands, such as
adding polar hydrogen and adding charge. In molecular docking,
the coordinates of the grid in each direction of XYZ were −10,
18.5, and 13.5, respectively. The length of the grid in each
direction of XYZ was 20 Å. The Lamarckian algorithm was
used to identify the most binding mode of the ligand molecule.
The exhaustiveness was set to 8, the maximum number of
conformations output was set to 10, and the maximum energy
range allowed was set to 3 kcal/mol. Pymol was used for the
processing of the resultant plots. In addition, molecular dynamics
simulations of 100 ns were performed using the Gromacs2019

package (https://manual.gromacs.org) to assess the binding
stability of the receptor-ligand complex. The CHARMm36 force
field was used in the molecular dynamics simulations. The str
files of the ligands were obtained using the CHARMM General
Force Field (CGenFF) program. The system was solventized in
a dodecahedral box in a TIP3P water molecule, and sodium and
chloride ions were added to neutralize the charge of the system
at a concentration of 0.154M. The energy minimization of the
solventized system was performed using the steepest descent
algorithm with a cutoff of 5,000 steps. The bond length of the
covalent bonds was limited using the LINCS algorithm. The
PME algorithm was introduced to calculate overall electrostatic
interactions. Subsequently, NVT and NPT simulations were
performed for 100 ps, at constant temperature (300K) and
pressure (1 bar), with the confined atoms of the compound
equilibrating the system at their initial coordinates. The product
MD ran for 100 ns with a time step of 2 fs. The root mean square
deviation (RMSD) values of the ligands were calculated using the
Gromacs built-in tool.
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FIGURE 5 | Identification of hub clusters. (A) In total, 5 key clusters were identified in the network based on MCODE. (B) The KEGG enrichment analysis of 5 key

clusters.

FIGURE 6 | Identification of key genes in hub clusters. (A) Correlation analysis between key genes and hematopoietic stem cell. (B) Correlation analysis between key

genes and immune score calculated by MCPcounter. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 7 | Density distribution of drugs to related gene sets.

RESULTS

Definition of Clusters and Dimensionality
Reduction Analysis
Single-cell filtration analysis and the PercentageFeatureSet
function yielded 1,124 cells. In Supplementary Figure S2A, UMI
and the amount of mRNA were significantly correlated. After
quality control, the distribution of mRNA/UMI/mitochondrial
content/rRNA content of the samples was uniform
(Supplementary Figures S2B,C). A “ScaleData” function
was performed to scale all genes extracted from the scRNA-
seq dataset GSE180678 and performed PCA dimensionality
reduction to find anchor points (Supplementary Figure S2D).
Clustering analysis of 1,124 cells base on “FindNeighbors”
and “FindClusters” function were classified into 7 clusters
(Figure 1A). These 7 clusters were labeled as 5 cell types by
marker genes (Figure 1B). An overview of 1,124 cells from the
G1 phase, G2/M phase, and S phase of samples is shown in
Figure 1C. Next, the “FindAllMarkers” function was conducted

to screen marker genes of 5 cell types, the top 5 marker genes in
5 cell types are listed in Figure 1D. The G1 phase, G2/M phase,
S phase, and cell numbers were characterized by 5 cell types
(Figure 1E). KEGG enrichment analysis showed that maker
genes of 5 cell types were enriched in different various pathways,
indicting the five cell subtypes obtained based on scRNA-seq
analysis showed significant heterogeneity (Figure 1F).

Screening of Cell Subgroups
To further screen out the subgroups of differences in patients
with AMI, we calculated the abundance of the 5 identified cell
types in AMI (19 cases) and healthy tissues (19 cases) from the
GSE109048 dataset by the CIBERSORTmethod (Figure 2A). The
results showed that hematopoietic stem cell frequency was higher
in AMI than in healthy tissues (Figure 2B).

Identification of Hub Genes in AMI
Through overlap analysis of genes associated with 7 drugs
activity, genes associated with MI in DisGeNET, and genes
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associated with MI in Comparative Toxicogenomics Database,
we found a total of 54 common genes (Figure 3A and
Supplementary Table S1). Moreover, 1 gene of 54 genes
belongs to the marker gene of hematopoietic stem cell types
(Figure 3B). The 1 gene, MGLL, single-cell expression level
was shown in Figure 3C. PPI analysis based on the String
database showed there were 52 common genes used for
the next analysis (Figure 3D). According to the analysis
of network topological properties, it can be observed
that the degree distribution mainly presents the dark rate
distribution, which is in line with the characteristics of a
biological network (Supplementary Figure S3A). The closeness,
betweenness, and eigenvector distributions show that only a
few nodes have high closeness, betweenness, and eigenvector
(Supplementary Figures S3B–D).

Functional Enrichment Analysis of 52
Common Genes
To explore the functional annotation of those genes, we
performed KEGG and GO enrichment analyses. For the GO
functional annotations of genes, 795 terms were enriched in BP (p
< 0.05) and the top 10 annotation results are shown in Figure 4A.
The 2 terms enriched in CC are shown in Figure 4B. In total,
114 terms were enriched in MF, and the top 10 terms enriched
in MF are shown in Figure 4C. The results of the KEGG pathway
enrichment analysis showed a total of 30 pathways were enriched,
and the top 10 annotations are shown in Figure 4D.

Identification of Hub Genes Based on
MCODE
Cytoscape was used to analyze the network based on modules,
and the mature MCODE algorithm was used to find the
closely connected protein groups in the target network. The
results showed that 5 clusters were obtained by the MCODE
algorithm (Figure 5A). KEGG enrichment analysis of genes in
5 clusters showed those genes involved include immune and
inflammatory pathways (Figure 5B). In addition, the correlation
analysis between 5 clusters and hematopoietic stem cell type
using the “Hmisc package” indicated that three genes (ATM,
CARM1, and CASP8) in 5 clusters were negatively correlated
with hematopoietic stem cell type, while genes, CASP3 and
PPARG, were positively correlated with hematopoietic stem
cell type (Figure 6A). Next, correlation analysis of 5 hub
genes (ATM, CARM1, CASP8, CASP3, and PPARG) and
immune cell score calculated by the MCPcounter package
showed that ATM, CARM1, CASP8 were positively, while
CASP3 and PPARG were negatively related to T cells and B
cells (Figure 6B). In addition, we used ssGSEA to analyze the
enrichment scores of each patient in different KEGG pathways,
and calculated the correlation between the expression of
these five genes and the KEGG pathway. We observed ATM,
CARM1, CASP8, CASP3, ACUTE_MYELOID_LEUKEMIA,
and ADIPOCYTOKINE_SIGNALING_PATHWAY_.
There was a significant positive correlation between
pathway, PPARG and ACUTE_MYELOID_LEUKEMIA,
and ADIPOCYTOKINE_SIGNALING_PATHWAY was

TABLE 1 | PPARG drug target list.

Drug Gene

DB04270 PPARG

DB04689 PPARG

DB05490 PPARG

DB05854 PPARG

DB06926 PPARG

TABLE 2 | PPARG molecular docking results.

Compound Score (kcal/mol) Hydrogen

bond

Hydrophobic

bond

DB04270 −9.4 ARG288 ALA292, ARG288,

ILE326, HIS449,

LEU469

DB04689 −9.7 SER289 CYS285,

ARG288, ALA292,

ILE326, TYR327,

MET329, LEU330,

MET364, TYR473

DB05490 −9.9 SER289 PRO227, PHE282,

ARG288, ALA292,

ILE326, TYR327,

MET329, LEU330,

PHE363, HIS449

DB06926 −6.5 GLN283,

HIS323,

TYR327,

TYR473

LEU469, TYR473,

significantly negatively correlated (Supplementary Figure S3E).
The interaction relationship between these five genes was
obtained by using a String database. It can be observed
that most of them have a direct regulatory relationship
(Supplementary Figure S3F). Co-expression analysis shows that
ATM, CARM1, and CASP8 are highly positively correlated, and
PPARG is highly negatively correlated with ATM, CARM1, and
CASP8 (Supplementary Figure S3G).

DB05490 Was Identified as a Potential
Drug Based on Molecular Docking
Based on the above analysis, ATM, CARM1, CASP8, CASP3,
and PPARG were possible key genes associated with AMI.
Drugs targeting these genes may have a greater impact on the
occurrence and progression of AMI. According to previously
described methods, distance, the density distribution of drugs
to related gene sets (Figure 7) identified 5 drugs that may be
correlated with PPARG (Table 1).

To confirm their potential as molecular drugs for treating
patients with AMI, molecular docking of these components
to PPARG was achieved using Autodock Vina software.
Of the 4 compounds, DB05490 had the lowest docking
score (−9.9 kcal/mol, Table 2), which had a hydrogen-
bonding interaction with SER289 (Figures 8A,B). The molecular
dynamics simulation of 100 ns showed that the RMSD of
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FIGURE 8 | Analysis of molecular docking. (A) Binding pattern of PPARG protein and compound DB05490. (B) A two-dimensional (2D) interaction map of PPARG

protein and compound DB05490. (C) Root mean square deviation (RMSD) values for compound DB05490 during a 100 ns molecular dynamics simulation.

compound DB05490 was relatively stable in general, except for
a significant increase in the first 5 ns (Figure 8C), to some
extent, reflecting that compound DB05490 could stably bind
to the active site of PPARG, and then play an inhibitory role
on PPARG.

DISCUSSION

In the past decades, traditional molecular biology studies have
partially revealed the pathological mechanisms of AMI, but
further studies are still needed, and the development of scRNA-
seq technology could provide new insights into the healthy
and pathological heart. In the present study, we found five
major cell types, such as fibroblast, CD8T, hematopoietic
stem cell, monocyte, and macrophages in patients with AMI.
Notably hematopoietic stem cell was present in a significantly
higher proportion of disease samples compared with normal

samples. Earlier Heyde et al. (24) found that increased stem cell
proliferation in atherosclerosis accelerates clonal hematopoiesis
and that increased stem cell proliferation accelerates somatic cell
evolution and expansion of clones with driver mutations. Under
conditions of increased hematopoietic activity, the expansion
of competitively transplanted Tet2-/- cells are accelerated;
thus, increased proliferation of hematopoietic stem cells is an
important factor contributing to the link between CVD and
clonal hematopoiesis. Based on this, we further investigated the
target genes of current first-line AMI therapeutics andMI-related
genes, and we observed that MGLL was highly-expressed in
hematopoietic stem cells and highly interacted with a variety of
MI-related genes, suggesting that MGLL may be a key gene.

Networks facilitate the relationship visualization and analysis
between variables, both linear and non-linear. A variety of
complex systems, such as disease transmission, ecosystems,
and social connections, have been increasingly studied with
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network methods. Network science is a particularly valuable
approach in molecular data analysis (25). Here, we established
disease-specific regulatory networks using a set of MI-associated
genes and target genes of first-line therapeutic agents for MI.
We observed a high degree of interaction between these genes,
and in addition, functional analysis showed that these genes are
involved in the intracellular receptor signaling pathway, serine-
type peptidase activity, endolysosome, and other GO terms. In
addition, these genes were enriched in a great variety of signaling
pathways, for instance, the p53 signaling pathway, NOD-like
receptor signaling pathway, etc. These results suggested that these
genes were involved in the regulation of a variety of important
and complex disease processes, and network module analysis
indicated that these genes can be divided into five modules.
Functional analysis showed that Cluster 1 was closely related to
the estrogen, hedgehog, and toll-like receptor signaling pathways.
Cluster 2 was mainly associated with Alzheimer’s disease.
Cluster 4 was associated with the Renin-angiotensin system.
Cluster 5 was associated with complement and coagulation
cascades, suggesting that each module was involved in a different
biological process.

Network module analysis classified 5 different network
modules, and the genes of these 5 sub-networks were involved
in several different regulatory pathways, such as immune,
and inflammation-related pathways. Further analysis showed
that five of these genes were significantly associated with
hematopoietic stem cells, with ATM, CARM1, and CASP8 being
significantly negatively associated with hematopoietic stem cells
and CASP3 and PPARG being significantly positively associated
with hematopoietic stem cells. Previous studies have shown that
ATM protein kinase plays an important role in the response to
double-stranded DNA breaks in the nucleus, and it is involved in
a large number of cytoplasmic processes and reactions, some of
which may lead to metabolic and cardiovascular complications
when disrupted (26). CARM1 is essential for the activation of
a subset of NF-κB-dependent genes that encode chemokines,
triggering plaque vulnerability, and unstable atherosclerotic
plaques that lead to the onset of the acute coronary syndrome
(ACS) (27). CASP8 can be used as a potential marker for AMI
high-risk prediction (28), and hyperglycemia-related CASP3
predicts diabetes and coronary artery disease events (29).
PPARG is associated with the regulation of processes related to
inflammation, cell differentiation, metabolism, atherosclerosis,
and proliferation (30), which are closely associated with the
development of CVD. In addition, we observed that these five
genes were highly associated with immune infiltrating cells. ATM,
CARM1, and CASP8 were positively associated with T cells and
B cells; CASP3 and PPARG were negatively associated with T
cells and B cells, suggesting significant changes in T cell and
B cell infiltration during the onset and progression of AMI.
We evaluated the expression distribution of these five genes
in normal samples and patients with AMI. Unfortunately, no
significant expression difference was observed between them
(Supplementary Figure S4A), which suggests that these genes
may play a role in the development of AMI disease. Similarly,
it is not ideal to use these genes to establish a diagnostic model

for the identification of AMI. The area under the curve (AUC) is
only 0.6 (Supplementary Figure S4B).

In conclusion, in this study, we systematically investigated
the distribution and clinical relevance of different cellular
subpopulations in AMI, identified abnormal cellular
subpopulations in AMI, evaluated AMI-specific regulatory
networks, and identified five key genes. We determined DB05490
as a potential therapeutic agent in AMI, laying the foundation
for the development of RNA-based therapeutic strategies.
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