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Heart sound signals can be used for 
emotion recognition
Cheng Xiefeng1, Yue Wang1, Shicheng Dai1, Pengjun Zhao2 & Qifa Liu1,3

This article studies whether heart sound signals can be used for emotion recognition. First, we 
built a small emotion heart sound database, and simultaneously recorded the participants’ ECG for 
comparative analysis. Second, according to the characteristics of the heart sound signals, two emotion 
evaluation indicators were proposed: HRV of heart sounds (difference between successive heartbeats) 
and DSV of heart sounds (the ratio of diastolic to systolic duration variability). Then, we extracted linear 
and nonlinear features from two emotion evaluation indicators to recognize four kinds of emotions. 
Moreover, we used valence dimension, arousal dimension and valence-arousal synthesis as evaluation 
standards. The experimental results demonstrated that heart sound signals can be used for emotion 
recognition. It was more effective to achieve recognition results by combining the features of HRV and 
DSV of heart sounds. Finally, the average accuracy of four emotion recognitions on valence dimension, 
arousal dimension and valence-arousal synthesis was up to 96.875%, 88.5417% and 81.25%, 
respectively.

Emotion recognition can provide a scientific basis for monitoring of emotional health and screening for 
emotion-related physiology and mental disease. Emotions are not only expressed through psychological behav-
ioral performance, but also through a series of physiological changes1. These physiological changes are not subjec-
tively controlled by humans. Thus, physiological signals can more objectively reflect the true feelings of subjects2. 
Currently, many kinds of physiological signals have been successfully applied to emotion recognition, including 
electrocardiogram (ECG), galvanic skin response (GSR), electroencephalogram (EEG), respiratory suspended 
particulate (RSP) and blood volume pulse (BVP)3–5. For example, Jang et al.6 showed that the differences in 
physiological responses among emotions were significant for heart rate (HR), skin conductance level (SCL) and 
skin conductance response (SCR). These physiological signals, especially ECG effectively reflect the relationship 
between the heart beating and emotion changes. Researchers have performed much work on emotion recognition 
based on ECG, and heart rate variability (HRV) extracted from an ECG is now recognized as one of the important 
evaluation indicators of emotion recognition7,8.

Heart sound signals and ECG signals are different manifestations of cardiac activity. Both can effectively 
reflect the beating of the heart and changes in emotion9. Compared with the ECG signal, the acquisition process 
of the heart sound signal is more comfortable and convenient. Currently, ECG collection devices on the market 
need to directly touch the surface of the body, which may be affected by perspiration, stratum corneum and 
cross-infection. The shoulder-worn heart sound collector used in this paper is easy to wear and does not directly 
touch the body10; thus the above problems are avoided, and the comfort of the test is maximized. Moreover, under 
natural conditions, the shoulder-worn heart sound collector can collect emotion heart sound signals for a long 
time. In addition, an ECG can reflect the chronotropic and variable conduction of the heart but cannot reflect the 
inotropic ability of the heart. Heart sound signals can not only reflect the chronotropic and variable conductivity, 
but also reflect the inotropic ability of the heart11. Thus, emotion recognition based on heart sounds has irreplace-
able significance.

However, whether heart sounds can be used for emotion recognition has not yet been verified by experiments; 
thus, this paper makes a pertinent study on heart sounds. First, we formulated an experimental plan to construct 
an emotion heart sound database and then simultaneously recorded the test ECG for comparison. Second, with 
reference to the definition of HRV and according to the characteristics of the heart sound signals, two emotion 
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evaluation indicators were proposed as follows: heart sound HRV (HS HRV) and heart sound DSV (HS DSV). 
The two indicators are defined as follows:

Definition 1. The HS HRV (heart rate variability based on heart sound signals) is a minor difference between 
successive intervals of heart sound signals.

Figure 1 shows the correlation between heart sounds and ECG. The HRV extracted from the ECG is shown in 
Fig. 1 as rr1, rr2, and rr3. Heart sound waveforms continuously change in S1 and S2 intervals, and the intervals of 
heart sound signals cannot be determined by simple peak detection. Therefore, we define intervals of heart sound 
as the adjacent midpoints of S1 as follows:

= + −RR S S(i 1) (i) (1)i M M

where = … −i N1, 2, 1 and N is the number of heart sound cycles, RRi is the ith interval of heart sound signals 
(shown in Fig. 1 as RR1, RR2, and RR3), SM(i) is the ith midpoint of S1, and SM(i + 1) is the i + 1 midpoint of S1.

Definition 2. The HS DSV (ratio of the diastolic to systolic duration variability based on heart sound signals) 
is a minor difference between the successive ratio of the diastolic duration to the systolic duration. In the ith cycle, 
the ratio of diastolic to systolic duration is as follows:

=DS D
S (2)i

i

i

where = ... −i N1, 2, 1, N is the number of heart sound cycles, Di is the ith diastolic duration and Si is the ith 
systolic duration.

Extracting linear and nonlinear features from HS HRV and HS DSV achieved the emotion recognition of 4 
basic emotions (relaxed, happy, sad, angry) on valence dimension, arousal dimension or valence-arousal synthesis

Emotion Recognition System Based on Heart Sound
Figure 2 shows the block diagram of the emotion recognition system based on HS HRV and HS DSV. The system 
mainly consists of heart sound, ECG synchronous acquisition module, signal preprocessing module and emotion 
recognition module.

Signal acquisition.  We built shoulder-worn emotion heart sounds and ECG acquisition platforms and 
simultaneously collected the heart sound and ECG signals from the shoulder-worn heart sound collector and 
the ECG collector.

Signal preprocessing. 

	(1)	 A Butterworth low pass filter was used to eliminate the background noise in heart sounds and ECG signals.
	(2)	 A heart sound preselecting and segmentation algorithm based on the template selection was used to auto-

matically calculate HS HRV and HS DSV, using the following formula:

Segmentation results of heart sound signals were recorded in two arrays (thb, tha), and the array length 
was 2N (N is the number of heart sound cycles). In thb, odd numbered points represent the starting of S1, and 
even-numbered points represent the starting of S2. In tha, odd numbered points represent the ending of S1, and 
even-numbered points represent the ending of S2. Thus, the midpoint of S1 is expressed as SM(i) as follows:

= − +
− − −S b a b(i) th (2i 1) th (2i 1) th (2i 1)

2 (3)M

According to formula (1), the i th interval of heart sound is:

= + −RR S S(i 1) (i) (4)i M M

Figure 1.  The correlation between heart sounds and ECG (a) heart sound signals (b) ECG signals.
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According to formula (2), the i th ratio of diastolic to systolic duration is:

=
+ −
− −

DS b b
b

th (2i 1) th (2i)
th (2i) th2(2i 1) (5)i

This paper also uses the HSMM-based heart sound segmentation algorithm proposed by Liu et al.12 to seg-
ment the heart sound signal. Compared with the segmentation algorithm based on template selection in this 
paper, the segmentation results are basically the same. Figure 3 shows the segment result.

Therefore, relevant data on heart sound signals can be obtained.

Establish an emotion heart sound database.  The emotion heart sound data were further processed as 
follows:

	(a)	 Each sample of heart sounds were 300 seconds, and was divided into 2 segments; thus, 48 samples in the 
relaxed emotion were divided into 96 segments, 16 samples in the happy emotion were divided into 48 
segments, 16 samples in the sad emotion were divided into 48 segments, 16 samples in the angry emotion 
were divided into 48 segments.

	(b)	 Preprocessing of emotional heart sounds filtered out the data interfered by noise, such as laughter, crying 
and talking. Then, we accurately segmented the heart sound that passed preselecting, and only the heart 
sound signals with a segmentation accuracy of 100% remained in the database. In addition, to ensure the 
independence between each emotion heart sound, only one segment of a heart sound from the same sam-
ple eventually remained. Therefore, the emotion heart sound database eventually provided 43 segments 
heart sound in the relaxed emotion, 21 segments heart sound in the happy emotion, 18 segments heart 
sound in the sad emotion, 14 segments heart sound in the angry emotion for a total of 96 segments.

	(c)	 We retained the corresponding 96 segments of the synchronized acquisition ECG signals for comparison.

Figure 2.  Overall block diagram of the emotion recognition system based on heart sound.

Figure 3.  Results of the heart sound segmentation.
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Emotion recognition.  Feature extraction, feature selection and emotion recognition (cross-validation of 
5-fold lines) for HS HRV, HS DSV and ECG HRV. (The features for HS HRV, HS DSV and ECG HRV are shown 
in Table 1 in the appendix).

Feature Comparison of Emotion Heart Sound and ECG
After extracting linear and nonlinear features from HS HRV, HS DSV and ECG HRV in the 96 segments emotion 
heart sound signals. According to the numerical distribution of various features and the distribution of figures, 
the representation results of three emotion evaluation indicators were different, but the overall representation 
results were consistent. Using the Lagged Poincaré Plot (LPP) as an example, Fig. 4 shows the LPP for HS HRV, 

Signal Source Indicator Valence(%) Arousal(%)
Valence-arousal 
Synthesis (%)

ECG HRV 89.5833 82.2917 72.9167

Heart Sound

HRV 94.7917 90.625 80.2083

DSV 94.7917 86.4583 78.125

HD 96.875 88.5417 81.25

Table 1.  A comparison of the average accuracy rate of each indicator.

Figure 4.  The LPP for HS HRV, HS DSV and ECG HRV for different emotions. Relaxed (b) Happy (c) Sad (d) 
Angry.
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HS DSV and ECG HRV for different emotions. Figure 4(a) shows the comparison of the LPP under the three 
indicators for the relaxed emotion. The points in the figure are evenly distributed and noticeably change with the 
lag dimension M. Figure 4(b) shows the comparison of the LPP for the three indicators for the happy emotion. 
The points under the figure are densely distributed and noticeably change with the lag dimension M; Fig. 4(c) 
shows the comparison of the LPP for the three indicators for the sad emotion. The points in the figure are evenly 
distributed, are mainly focused on the middle section, and change slowly with the lag dimension M; Fig. 4(d) 
shows the comparison of the LPP for the three indicators for the angry emotion. The points in the figure are the 
most concentrated, and change slowly with the lag dimension M.

A previous study5 conducted on emotion recognition based on ECG HRV determined that in ECG HRV in 
LPP, the points are evenly distributed in the low arousal dimensions (relaxed and sad emotion states), and the 
points are densely distributed in the high arousal dimension (happy and angry emotion states). This result was 
consistent with the regularity of HS HRV, HS DSV and ECG HRV in this paper, indicating that the emotions of 
the subjects were fully stimulated when heart sound signals and ECG signals were recorded. The HS HRV and 
HS DSV are effective emotion evaluation indicators, and heart sounds can be used for emotion recognition. In 
addition, another previous study13 concluded that HRV indices showed significant differences between happy 
and sad emotion states.

Features extracted from the LPP contain rich information, and some of the figure features extracted from 
HS DSV had more effective representation than HS HRV and ECG HRV. For example, feature SD12 (The ratio 
between SD1 and SD2) as follows:

=SD SD
SD

12 1
2 (6)

SD1 represents the length of the short half axis of the LPP fitted with an ellipse (the major axis of the ellipse 
extends along a 45° direction), and SD2 represents the length of the long half axis of the LPP.
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Figure 5 shows that SD12 changes with lag dimension M during the sessions. Figure 5(a) shows SD12 curves 
of HS HRV, HS DSV and ECG HRV from the same subject during 3 sessions in the relaxed emotion state. The 
distribution of SD12 curves of the three indicators has similarities during three sessions in a relaxed emotion 
state; however, compared with the other two indicators, the HS DSV is more concentrated. Thus, the HS DSV has 
a more noticeable representation of the same emotion. Figure 5(b) shows the SD12 of HS HRV, HS DSV and ECG 
HRV from the same subject during 4 sessions in different emotions.

During 4 sessions, SD12 curves with low arousal dimension (relaxed and sad emotion states) are higher than 
SD12 curves with high arousal dimension (happy and anger emotion states), and HS DSV is more clearly sepa-
rated than the other two indicators. Thus, HS DSV is more notable for the representation of different emotions.

A previous study5 found that with the increase of arousal, the degree of separation between the arousal emo-
tion and corresponding neutral emotion increases. This was consistent with the SD12 of HS HRV, HS DSV and 
ECG HRV in this paper. In high emotional arousal dimensions (happy and angry emotion states), the SD12 is 
lower; however, in low emotional arousal dimensions (relaxed and sad emotion states), the SD12 is higher. This 
result showed that emotions of the subjects were fully stimulated when heart sound signals and ECG signals were 
recorded, proving that HS HRV and HS DSV are effective emotion evaluation indicators and that heart sounds 
can be used for emotion recognition.

More feature comparisons of emotion heart sound and ECG are shown in the appendix.

Experiment Platform
Shoulder-worn emotion heart sounds and ECG acquisition platforms are shown in Fig. 6. The hardware devices 
of the platforms included shoulder-worn heart sound collector, an ECG signal collector, an RM6240 multichannel 
biosignal recorder, two servers, three monitors, a pair of headphones and a mouse.

The shoulder-worn heart sound collector is an Ω-type wearable device for collecting human heart sound 
signals. The device is made of lightweight elastic material and is formed as an Ω-shaped frame, which is similar 
to the outline of the human shoulder to chest. Thus, the top of the Ω-shaped frame can be conveniently placed on 
the left shoulder, and the heart sound sensor can be in a fixed position on the chest end. In addition, the elastic 
pressure generated by the Ω-shaped frame elastic material can make the heart sound sensor close to the apex of 
the human body to obtain the best heart sound10.

The software system, including preprocessing, feature extraction, feature selection, recognition of heart sound 
and ECG signals, was written by the author using MATLAB 2012a.

Sixteen (12 males and six females) healthy, outgoing and optimistic college students and graduate students 
aged 18 to 26 participated in the experiment. All participants passed the Eysenck Personality Test in advance, and 
their spirits were normal. The Self-reports from volunteers showed that they had no history of hearing and visual 
impairments, and they did not suffer from any cardiovascular or chronic diseases. The heart sound collection 
experiment on volunteers was approved by the Biological and Medical Ethics Committee of the Dalian University 
of Technology. The volunteers were informed on the content, the purpose and the precautions of the experiment, 
and informed consent was signed in advance. However, volunteers were not informed what kind of materials they 
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Figure 5.  Feature SD12 changes with lag dimension M during the sessions. (a) SD12 of HS HRV, HS DSV and 
ECG HRV from the same subject during 3 sessions in the relaxed emotion state. (b) SD12 of HS HRV, HS DSV 
and ECG HRV from the same subject during 4 sessions in different emotions.

Figure 6.  Emotion heart sounds and ECG acquisition platform.

https://doi.org/10.1038/s41598-019-42826-2
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would hear and/or see. Volunteers remained static during the experiment to avoid affecting the ECG collection. 
To reduce the interference of external sounds on heart sound signals, sound signals were received via headphones.

In this paper, we selected video and music materials to stimulate different emotions. The stimuli material 
for the relaxed emotion states was music, and the stimuli material for the rest of the emotions were videos. 
Emotion-stimuli material consisted of 6 sessions. The timeline is shown in Fig. 7, and the white squares, slashed 
squares, grid squares and dotted squares represent relaxed, happy, sad and angry emotions respectively. After 
a sufficient amount of rest, according to the timeline, volunteers were scheduled to watch videos or to listen 
to music. All audios and videos were selected from international affective picture system (IAPS), international 
affective digitized sounds (IADS) and Chinese affective digital sounds. The relaxed emotion state was stimulation 
with light music for 4 minutes and 30 seconds; The happy emotion state was stimulation with the variety show 
called “The Ellen Show” for 6 minutes and 33 seconds; The sad emotion state was stimulation with a movie clip of 
the Tangshan earthquake for 3 minutes and 28 seconds and stimulation with the public service advertising called 
“A Father’s journey” for 5 minutes and 4 seconds; The angry emotion state was stimulation with the movie clip of 
“Tokyo Trial” for 6 minutes and 58 seconds. After each session, volunteers were required to complete a feedback 
questionnaire, and their heart sound and ECG signals were recorded throughout the experiment.

Recognition Results and Analysis
According to the HS HRV, HS DSV, ECG HRV and HRV and DSV of heart sound (HS HD), we created 
79-dimensional, 75-dimensional, 79-dimensional,154-dimensional original feature matrixes. Then, we used 
genetic algorithm (GA) to optimize the SVM classifier to select the optimal feature subset for emotion recog-
nition. The emotion recognition system recognizes emotions on the valence dimension, emotional arousal and 
valence-arousal synthesis. The results are in the sections below:

On valence dimension.  According to Russell’s circumplex model of emotions14, sad and angry emotions are 
in the low valence dimension, while relaxed and happy emotions are on high valence dimension; thus, 32 samples 
were on the low valence, 64 samples were on the high valence. The GA optimized SVM classifier was used for 
feature selection. To reduce the contingency of selecting the optimal feature subsets, we repeated the feature selec-
tion operations 30 times. Figure 8 shows the adaptation function evolution curve of each indicator when selecting 
features for emotion recognition on different valence dimensions by GA. The solid line is the best fitness, and the 
dotted line is the average fitness. Lines in black, blue, green and red are HS HRV, HS DSV, ECG HRV and HS HD. 
With the evolution of feature subsets, the classification accuracy rate was continuously improved and tended to 
be stable. The searched highest recognition rate corresponded to the optimal feature subset of the experiment. If 

Figure 7.  Timeline for different emotions.

Figure 8.  Adaptation function evolution curve of each indicator when selecting features for emotion 
recognition on different valence dimensions by GA.

https://doi.org/10.1038/s41598-019-42826-2


8Scientific Reports |          (2019) 9:6486  | https://doi.org/10.1038/s41598-019-42826-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

this recognition rate ranked in the top 20% in 30 iterations, this feature subset was involved in the calculation of 
the weight coefficient, which determined the optimal feature subset for valence recognition.

Finally, using the optimal feature subset as the input of the optimized SVM classifier, we obtained results from 
emotional recognition on different valences. In Fig. 9, lines in black, blue, green and red correlate with the average 
accuracy rate (cross-validation of 5-fold lines) for HS HRV, HS DSV, ECG HRV and HS HD. With the evolution 
of parameters c and g, the average accuracy rate was continuously improved and tended to be stable. The highest 
accuracy rate corresponding to the parameters c and g constituted the best valence recognition model.

On emotional arousal.  According to Russell’s circumplex model of emotions14, relaxed and sad emotion 
states are in the low emotional arousal dimension, while happy and angry emotion states are in the high emo-
tional arousal dimension. Thus, 61 samples were on low arousal dimension, 35 samples were on high arousal 
dimension. The GA optimized SVM classifier was used for feature selection. The feature selection operations were 
repeated 30 times. In one of these operations, Fig. 10 shows the adaptation function evolution curve of each indi-
cator when selecting features for emotion recognition on different emotional arousal by GA; the solid line is the 
best fitness, and the dotted line is the average fitness. Lines in black, blue, green and red correspond to HS HRV, 
HS DSV, ECG HRV and HS HD, respectively. With the evolution of feature subsets, the classification accuracy 

Figure 9.  The average accuracy rate curve of each indicator for different valence emotion recognition.

Figure 10.  Adaptation function evolution curve of each indicator when selecting features for emotion 
recognition on different arousal dimensions by GA.

https://doi.org/10.1038/s41598-019-42826-2


9Scientific Reports |          (2019) 9:6486  | https://doi.org/10.1038/s41598-019-42826-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

rate was continuously improved and tended to be stable. The searched highest recognition rate corresponded to 
the optimal feature subset of the experiment. If this recognition rate ranks in the top 20% in 30 iterations, this 
feature subset was involved in the calculation of the weight coefficient, which determined the optimal feature 
subset for arousal recognition.

Finally, using the optimal feature subset as the input of the optimized SVM classifier, we obtained the results 
of the emotion recognition on different arousal states. In Fig. 11, lines in black, blue, green and red represent the 
average accuracy rate (cross-validation of 5-fold lines) for HS HRV, HS DSV, ECG HRV and HS HD, respectively. 
With the evolution of parameters c and g, the average accuracy rate was continuously improved and tended to be 
stable. The highest accuracy rate corresponded to the parameters c and g constituted the best arousal recognition 
model.

Valence-arousal synthesis.  According to Russell’s circumplex model of emotions14, four emotions 
(relaxed, happy, sad, angry) are distributed in different quadrants of the model; thus, this model is a kind of 
valence-arousal synthesis recognition system. There were 43, 21, 18, and 14 samples in the four emotions of 
relaxed, happy, sad and angry, respectively. In one of these operations, Fig. 12 shows the adaptation function 
evolution curve of each indicator when selecting features for emotion recognition on valence-arousal synthesis 

Figure 11.  The average accuracy rate curve of each indicator for different arousal emotion recognition.

Figure 12.  Adaptation function evolution curve of each indicator when selecting features for emotion 
recognition on valence-arousal synthesis by GA.
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by GA; the solid line is the best fitness, and the dotted line is the average fitness. Lines in black, blue, green and red 
correspond to HS HRV, HS DSV, ECG HRV and HS HD, respectively. With the evolution of feature subsets, the 
classification accuracy rate was continuously improved and tended to be stable. The searched highest recognition 
rate corresponded to the optimal feature subset of the experiment. If this recognition rate ranked in the top 20% 
in 30 iterations, this feature subset was involved in the calculation of the weight coefficient, which determined the 
optimal feature subset for valence-arousal synthesis recognition.

Finally, using the optimal feature subset as the input of the optimized SVM classifier, we obtained the results 
of the emotion recognition for 4 kinds of emotions. In Fig. 13, lines in black, blue, green and red represent the 
average accuracy rate (cross-validation of 5-fold lines) for HS HRV, HS DSV, ECG HRV and HS HD. With the 
evolution of parameters c and g, the average accuracy rate was continuously improved and tended to be stable. 
The highest accuracy rate corresponded to the parameters c and g constituted the best valence-arousal synthesis 
model.

Conclusions
The performance of four kinds of emotion recognition indicators on valence dimension, emotional arousal and 
valence-arousal synthesis, the average accuracy rate of each indicator was compared and is shown in Table 1.

As shown in Table 1, (1) the three indicators have noticeable advantages in the recognition of emotions on 
different valence dimensions, and the average accuracy rate in different valence dimensions was higher than that 
in different emotional arousal and valence-arousal syntheses. (2) The results were not a simple linear relationship 
between the features of indicators; it is impossible to divide different emotions in different quadrants, as shown in 
Russell’s circumplex model of emotions. Thus, the average accuracy rate in valence-arousal synthesis was lower 
than that in valence dimension and emotional arousal. (3) According to the experimental results, the specificity 
and sensitivity of the performed classification is 0.9796 and 0.9932, respectively. (4) Heart sound signals can 
be used for emotion recognition, and HS HRV and HS DSV were effective emotion evaluation indicators. The 
average accuracy rate for HS HRV was higher than HS DSV and ECG HRV. In the selection of experimental data, 
we all selected the noticeable part of the heart sound signal during the process of the emotion change and then 
compared this heart sound signal with the ECG signal from the same segment. This result may be the main reason 
for the higher accuracy in the heart sound than in the ECG.

Although the average accuracy rate for the HS DSV was lower than that for the HS HRV, when combining the 
features of HRV and DSV together to recognize emotions, the average accuracy rate was higher than two indica-
tors alone. This result showed that the HS HD had the best representation results, and the proposal of the DSV 
indicator had an important role, while traditional ECG signals were not achieved.

In summary, (1) heart sound signals can be used for emotion recognition; (2) combining the features of HRV 
and DSV together can achieve better recognition results, and the proposal of the DSV indicator has an important 
mean.
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