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Abstract: Alterations in the expression level of the MYC gene are often found in the cells of various
malignant tumors. Overexpressed MYC has been shown to stimulate the main processes of oncogen-
esis: uncontrolled growth, unlimited cell divisions, avoidance of apoptosis and immune response,
changes in cellular metabolism, genomic instability, metastasis, and angiogenesis. Thus, controlling
the expression of MYC is considered as an approach for targeted cancer treatment. Since c-Myc is
also a crucial regulator of many cellular processes in healthy cells, it is necessary to find ways for
selective regulation of MYC expression in tumor cells. Many recent studies have demonstrated that
non-coding RNAs play an important role in the regulation of the transcription and translation of this
gene and some RNAs directly interact with the c-Myc protein, affecting its stability. In this review, we
summarize current data on the regulation of MYC by various non-coding RNAs that can potentially
be targeted in specific tumor types.

Keywords: MYC; miRNAs; lncRNA; circRNA; cancer

1. Introduction

The MYC family of proto-oncogenes consists of three genes—C-MYC, L-MYC, and N-
MYC [1]. The name of the family was coined after the discovery of homology between the
human gene C-MYC, overexpressed in various tumors, and the oncogene v-Myc, carried
by the avian myelocytomatosis virus (myelocytomatosis) [2]. Subsequently, homologs of
c-Myc were discovered for humans: N-Myc [3], and L-Myc [4]. This review focuses on the
most studied proto-oncogene of this family, C-MYC (or simply MYC).

C-Myc is an extraordinary transcription factor, as it has been shown to affect the
expression of up to 15% of all genes in the human body [5]. It controls the expression of
genes involved in a wide range of cellular processes, such as transcription, translation,
cell cycle [6,7], cell adhesion [8], and others. Along with other factors of the MYC family,
C-Myc has an important role in mammalian embryogenesis, especially in the development
of cartilage, the liver, the thymus, submandibular glands, and brown adipose tissue [9–11].
This factor is also crucial for the normal development and activation of various populations
of lymphocytes [12–14]. To regulate transcription, c-Myc forms a heterodimer with the
transcription factor Max. Together, they can bind to a conserved E-box sequence (CACGTG)
to activate or enhance the transcription of various genes. Moreover, c-Myc can bind to other
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transcription factors, such as TBP [15] or ETS2 [16], to DNA methyltransferases, such as
Dnmt3a [17], or to histone-modifying enzymes, for example, ASH2L [18]. Overexpression
of the MYC gene in various types of tumors is associated with an unfavorable prognosis.
In particular, this correlation has been shown for Burkitt’s lymphoma [19,20], small cell
lung cancer [21], breast cancer [22], and colorectal cancer [23].

Cancer is one of the central topics of modern science and many distinctive features
inherent in the development of human cancers are well known. It is characterized by a
tendency for rapid uncontrolled growth, an unlimited number of cell divisions, evasion of
apoptosis and the immune response, metastasis, abnormal cellular metabolism, genomic
instability, and stimulation of angiogenesis [24] (Figure 1).
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Figure 1. The impact of MYC proto-oncogene on the hallmarks of cancer development. Schematic
representation of c-Myc’s effect on pivotal genes involved in carcinogenic pathways. Arrows indicate
an increase (green) or a decrease (red) in gene expression in response to MYC expression (see text for
description and references).

Disruption of the cell division mechanism is one of the main characteristics of malig-
nant tumors. Many studies have demonstrated a correlation between the expression of the
MYC gene and the rate of cell proliferation [25–29] (Figure 1). C-Myc controls the expres-
sion of a number of key cell cycle regulators by stimulating or suppressing the expression
of certain miRNAs. Thus, an increase in the level of c-Myc activates the synthesis of a
number of positive regulators of proliferation: cyclins D and E, cyclin-dependent kinases
CDK4 and 6, negative regulators of cell division, an inhibitor of cyclin-dependent kinase
1B (CDKN1B), and retinoblastoma protein (RB1). C-Myc also suppresses the expression
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of cyclin-dependent kinase inhibitor 1A (CDKN1A) [30]. In addition, c-Myc activates
the expression of the MINA53 gene (Myc-induced nuclear antigen 53), the product of
which stimulates the rapid growth of human glioblastoma, leukemia, and stomach can-
cer cells [31–33]. MINA53 is able to participate in the activation of gene expression by
regulating the methylation status of histone H3K9me3 and it is also involved in the AP-1
signaling pathway, which is closely related to cell proliferation [31]. The expression of the
ID1 gene is also regulated by c-Myc. In breast [34] and lung cancer cells [35], ID1 has been
demonstrated to increase the rate of cell growth by regulating the expression of cyclins.
Moreover, high levels of c-Myc stimulate the expression of thymidylate synthase (TS),
inosine monophosphate dehydrogenase 2 (IMPDH2), and phosphoribosyl pyrophosphate
synthetase 2 (PRPS2) by binding to their regulatory sequences. The expression levels of TS,
IMPDH2, and PRPS2 positively correlate with the synthesis of nucleotides. In melanoma
cells, it has been shown that cell proliferation is linked with the expression of TS, IMPDH2,
and PRPS2 [36].

Healthy somatic cells have a limited number of divisions, while cancer cells are
characterized by the ability to replicate endlessly. C-Myc has been shown to activate the
expression of telomerase reverse transcriptase protein (TERT), which lengthens telomeres,
allowing cells to divide an unlimited number of times [37] (Figure 1).

C-Myc is also involved in the regulation of genomic stability, the disturbance of which
is another characteristic feature of tumor development (Figure 1). MYC expression has
been shown to be associated with the reduced expression of telomeric repeat-binding
factor 2 (TRF2) [38,39]. Knockout of TRF2 genes leads to DNA damage on telomeres
and chromosomal aberrations [40]. Overexpression of MYC can also cause an increase in
the amount of reactive oxygen (ROS) in cells, which can damage DNA and increase the
frequency of mutations [41]. This may happen due to the stimulation of expression of a
number of mitochondrial genes and, in general, the process of mitochondrial biogenesis, as
well as a negative effect on the level of the enzyme superoxide dismutase (SOD), which
eliminates ROS [42,43]. At the same time, the high expression of MYC contributes to the
survival of cells with multiple DNA damage by activating their repair systems. C-Myc
has been shown to bind to the promoter region of the NBS1, KU70, RAD51, BRCA2, and
RAD50 genes, which are involved in the repair of double-stranded breaks [44].

The resistance of cells to chemotherapeutic agents is a serious obstacle to the successful
treatment of cancer patients. It has been found that an increased expression of the MYC
gene is associated with the resistance of cells to a number of drugs. The effect of c-Myc on
the expression of DNA repair factors is one of the possible reasons for the survivability of
cells with a high level of this transcription factor during treatment with chemotherapeutic
DNA-damaging drugs and short-wave radiation [45,46]. Thus, the suppression of MYC
expression in lung cancer [47], melanoma [48], ovarian cancer [49], and bladder cancer
cells [50] increases the sensitivity of the tumor to cisplatin. Additionally, in breast cancer
cells resistant to the estrogen agonist tamoxifen, as well as to doxorubicin and paclitaxel,
increased expression of the proto-oncogene MYC has been found [51].

Another important indicator of the development of cancer and a possible explanation
for its resistance to chemotherapy is the evasion of cells from apoptosis. In this process, the
role of c-Myc is ambiguous (Figure 1). C-Myc has been shown to regulate the expression of
the prothymosin alpha (PTMA) gene, which is responsible for cell proliferation in many
types of cancer. PTMA suppresses the expression of the BAX and BAD genes, which stimu-
late mitochondrial apoptosis. When MYC expression is suppressed or PTMA promoter
mutations occur at the c-Myc binding site, the cells become sensitive to sorafenib [52].
Additionally, c-Myc suppresses the expression of a number of miRNAs, which control
anti-apoptotic genes BCL-2 and MCL1 [30]. At the same time, the increased expression of
the MYC gene in the cell activates the ARF–Mdm2–p53 tumor suppressor pathway, which
leads to the activation of apoptosis and, as a result, the suppression of tumor growth [53].
In the case of faulty apoptosis mechanisms in the cell, for example, sustained mutations in
p53 or ARF, overexpression of MDM2, and changes in the regulatory pathways of BCL-2
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and NF-kB [54,55], high expression of MYC does not lead to the death of tumor cells. It
is also worth mentioning that a high level of MYC expression increases the resistance of
myeloma cells to bortezomib by activating the pentose phosphate pathway. C-Myc has
been shown to interact with the long non-coding RNA PDIA3P which enhances binding to
the promoter of the G6PD gene involved in this metabolic pathway [56].

In addition to the pentose phosphate pathway, c-Myc also affects other cellular
metabolic pathways (Figure 1). For tumor cells, the so-called Warburg effect is typical,
which causes a suppression of pyruvate oxidation in mitochondria and an increase in the
intensity of glycolysis and, consequently, this stimulates lactate production. This alteration
can be explained by the necessity for rapid proliferation during oxygen deficiency and
the possible adaptation of cells to cytotoxic agents, the effect of which is associated with
oxygen metabolism [57]. C-Myc has been shown to regulate the expression of the glucose
transporter gene GLUT1 by binding to the E-box sequence in its promoter. C-Myc is also
able to activate the expression of monocarboxylate transporters (MCT1 and MCT2), which
are responsible for the transport of the main product of oxygen-free metabolism, lactate [58].
C-Myc stimulates the expression of most glycolytic enzymes genes, including hexokinase
II (HK2), pyruvate kinase m2 (PKM2), enolase 1 (ENO1), glyceraldehyde-3-phosphate
dehydrogenase (GAPDH), and lactate dehydrogenase A (LDHA) [59,60]. Additionally,
c-Myc plays a significant role in changing the metabolism of a number of amino acids:
glutamine, proline, and branched-chain amino acids by activating glutaminase (GLS),
P5C reductase (P5CR), and branched-chain aminotransferase (BCAT) expression [60,61].
Alterations in metabolism lead to the release of lactate, succinate, and glutamine by tumor
cells, which contribute to the attraction of macrophages to the tumor and their polarization
into the immunosuppressive phenotype M2 [62].

Active growth of solid tumors is impossible without interaction with the microen-
vironment, in particular, without the ability to avoid an immune response. In a series of
experiments, it was shown that c-Myc regulates the expression of immune checkpoints
in cells [63] (Figure 1). Suppression of c-Myc reduces the expression of the innate immu-
nity regulator CD47 and the adaptive immunity checkpoint PD-L1, thus enhancing the
antitumor immune response [64]. CD47 is known to interact with the signaling regulatory
protein α SIRPa on the macrophage surface, preventing phagocytosis of the body’s cells
by macrophages. The PD-L1 ligand interacts with the PD-1 receptor on the surface of
T-lymphocytes, suppressing their activity [65]. Moreover, some data suggest that Myc is
able to down-regulate the expression of HLA class I in various cancers [66].

Tumor metastasis is another hallmark of cancer development. The cell undergoes
an epithelial–mesenchymal transition in order for the cancer cells to spread and further
consolidate in different parts of the body. Many experimental groups have shown a
link between c-Myc regulation and cellular metastasis [67] (Figure 1). In clear cell renal
cell carcinoma, PIM1-mediated phosphorylation of c-Myc activates transcription factors
ZEB1, ZEB2, Snail1, Snail2, and Twist, which further trigger the epithelial–mesenchymal
transition program and increase the likelihood of tumor metastasis [68]. Additionally,
c-Myc promotes expression of miR-9-5p which controls the leukemia inhibitory factor
receptor (LIFR) and suppressor of cytokine signaling 5 (SOCS5). LIFR inhibits metastasis
through the Hippo/YAP pathway, and SOCS5 inhibits cell migration by inhibiting the
JAK/STAT pathway [30,69,70]. A correlation between MYC expression and metastasis
was also shown in non-small cell lung cancer [71], breast cancer [72], and gallbladder
cancer [73].

For effective growth, cancer cells activate the mechanisms of angiogenesis (Figure 1).
In the normal state, cells that do not receive enough oxygen can induce the expression
of VEGF, which stimulates the development of new blood vessels. This mechanism is
often used by cancer cells to vascularize the tumor. It was found that in leukemia cells,
c-Myc binds to the VEGFA promoter sequence and thereby increases its expression [74].
The same mechanism of c-Myc’s influence on VEGFC expression was found in cells of
pancreatic neuroendocrine tumors [75]. The promoting effect of c-Myc on the expression of
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VEGF family factors was also shown in non-small cell lung cancer [71]. Moreover, c-Myc
stimulates the expression of miRNAs that control the synthesis of a number of angiogenesis
inhibitors: members of the TGF-β signaling pathway (TGF beta receptor 2 (TGFBR2) and
mothers against decapentaplegic homolog 4 (SMAD4)), thrombospondin 1 (THBS1), and
connective tissue growth factor (CTGF) [30,76,77].

As can be seen from the above data, c-Myc is involved in almost all mechanisms of
oncogenesis of various types of tumors. At the same time, it should be noted that a small
change in MYC expression (sometimes less than two-fold) is often enough to change the
processes of oncogenesis [78–80]. For effective and long-term suppression of the expression
of this proto-oncogene, it is necessary to know in detail the mechanisms that control the
transcription of this gene, the stability of its mRNA and its translation, as well as the factors
responsible for the stability of the Myc factor itself [25,46,81] (Figure 2).
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The bromodomain-containing protein 4 (BRD4) is a universal transcription regulator
which also controls the transcription of the MYC proto-oncogene (Figure 2). Inhibition of
BRD4 by thienotriazolodiazepine JQ1 in colorectal cancer cells reduces MYC expression
and inhibits cell proliferation [82]. A similar effect is observed in retinoblastoma cells,
where BRD4 inhibition induces cell cycle arrest and apoptosis [83]. In neuroblastoma, lung
carcinoma, colon adenocarcinoma, and melanoma cells, dual PI3K/BRD4 inhibition by
SF2523 contributes to a decrease in c-Myc levels and markedly inhibits the growth and
metastasis of cancer cells [84,85]. Another bromodomain-containing protein, bromodomain
PHD transcription factor (BPTF), can activate MYC expression. It has been shown that
suppression of BPTF transcription and the use of BPTF inhibitors lead to a decrease in the
expression of the MYC gene [86,87].

Proteins that interact directly with the c-Myc protein can also affect its gene transcrip-
tion. In lung and breast cancer cells, a correlation was shown between the expression of
the ZNF121 and MYC genes: during the siRNA-mediated knockdown of ZNF121, MYC
expression decreased and, accordingly, when ZNF121 was overexpressed, MYC expression
increased [88,89] (Figure 2). Among other things, suppression of the ZNF121 gene reduced
the rate of proliferation in breast cancer cells [89].

It has been shown that in human fibroblasts, FOXO3a binds to the region in the c-MYC
promoter, and this interaction activates the transcription of the c-MYC gene [90]. On the
other hand, the interaction of the promoter of this gene with the proteins of the SMAD
family leads to the suppression of expression of the MYC gene [91,92].
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IGF2BP1/2/3 (mRNA-binding proteins of insulin-like growth factor 2) are able to bind
to many mRNAs, including the c-Myc mRNA, recognizing the GG(m6A)C sequence, and
by this binding, it stabilizes the mRNA. It has been shown that suppression of IGF2BP1/2/3
expression in cervical cancer and liver cancer cells leads to a decrease in the amount of
c-Myc protein, as well as to a decrease in the rate of proliferation [93] (Figure 2).

AU-rich element RNA-binding protein 1 (AUF1) binds to AU-rich mRNA regions
and triggers the mRNA degradation process. It has been shown that the suppression of
AUF1 does not lead to a change in the level of MYC mRNA, but reduces the amount of
c-Myc protein in cells, which suggests that AUF1 may affect the translation of this mRNA
(Figure 2). In addition, suppression of AUF1 led to a decrease in the rate of proliferation in
leukemia, colon cancer, and cervical cancer cells [94,95].

C-Myc is a short-lived protein, so the mechanisms responsible for its stability and
degradation play an important role in tumor development. In tumors with a high level
of c-Myc, improper functioning of the mechanisms of its ubiquitination can be observed.
It is important to note that different types of ubiquitin ligases have different effects on
the stability of this transcription factor (Figure 2). For example, ubiquitin ligase FBXW7
and E3 ubiquitin ligase adapter SPOP promote the degradation of c-Myc [96,97], while
ubiquitin ligases SKP2 and HUWE1, on the contrary, improve the stability of this protein.
In multiple myeloma, suppression of HUWE1 expression leads to a decrease in c-Myc
levels and inhibition of tumor growth [98]. Enzymes deubiquitinating c-Myc have also
been shown to affect its stability. Thus, suppression of USP28 and USP36 reduces the
c-Myc level and suppresses cell proliferation [99,100]. Glycosyltransferase OGT has been
shown to enhance cell proliferation by stabilizing the c-Myc protein by combining it with
β-N-acetylglucosamine [101]. Increased OGT expression was found in many tumors,
including prostate [102], breast [103], lung, and colon cancers [104]. Lowering the level of
OGT mRNA leads to a decrease in c-Myc protein in prostate cancer cells [102]. Another
protein, cancer inhibitor of protein phosphatase 2A (CIP2A), has increased expression
levels in colorectal cancer [105], stomach cancer [106], prostate cancer [107], and multiple
myeloma [108]. CIP2A has been shown to prevent the degradation of the c-Myc protein by
inhibiting the activity of phosphatase PP2A. Phosphatase PP2A dephosphorylates c-Myc
at serine 62, which is necessary for ubiquitination by ubiquitin ligase FBXW7 and initiation
of degradation [109] (Figure 2).

A more detailed understanding of the regulation of MYC expression in cancer cells
opens up new targets for drug discovery and new approaches in the treatment of cancer. Re-
cently, many groups of scientists have confirmed that non-coding RNAs play an important
role in regulating cellular processes, blocking or activating the transcription and translation
of this gene, or interacting with the c-Myc protein directly. In tumor cells, shifts in the
expression of many non-coding RNAs may be involved in tumor development [110,111].
It is important that the expression of some RNAs is specific to certain types of cancer.
This makes non-coding RNAs a convenient target for suppressing tumor development
with minimal possible impact on healthy cells [112]. Among other things, non-coding
RNAs have shown themselves to be a promising marker for the diagnosis of oncogenic
diseases [113]. This diagnostic method is convenient, as non-coding RNAs can be easily
detected in the cells and biological fluids of the patient. For example, the detection of
lncRNA PCA3 in urine is widely used as a marker of prostate cancer [114]. Similarly, the
lncRNA AA174084 in gastric juice is a potential biomarker for the early diagnosis of gastric
cancer [115].

In this review, we will examine in more detail the effect of miRNAs, long non-coding
RNAs, and circular RNAs on the expression of the MYC proto-oncogene in various types
of cancer.

2. miRNAs

MicroRNAs (miRNAs) are a class of small, endogenous, single-stranded non-coding
RNA molecules. They act as a sequence-specific tool that is widely used in nature to
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regulate gene expression. At the moment, several dozens of miRNA variants that affect the
expression of the MYC gene have been analyzed. Most of these miRNAs bind directly to
the mRNA of the MYC gene [30]. Others affect its level by regulating genes that control
the stability of the c-Myc protein. For example, miR-375-3p suppresses the expression
of the CIP2A gene, the product of which is involved in the stabilization of c-Myc due to
the phosphorylation of Ser62 [116]. Another example in mouse hepatoma cells is miR-24
regulating the OGT gene that increases the stability of the c-Myc protein by combining
with β-N-acetylglucosamine [117].

As described above, high expression of the MYC gene is characteristic of many types
of cancers. In this regard, it is not surprising that in tumors, the levels of most miRNAs that
control the expression of the MYC gene are often reduced. The possibility of using miRNA
complementary to the MYC gene sequence is being considered as a targeted therapy for can-
cer [118,119]. The use of miRNA leads to a reduced survival rate of tumor cells of different
types of cancer, suppression of their reproduction, and migration [120–123]. It is important
to note that for some miRNAs that bind to the mRNA of the MYC gene, a protective effect
for tumor cells was also revealed. Thus, it was shown that Hodgkin’s lymphoma cells can
have a high level of miR-24-3p, which limits the expression of CDKN1B/P27kip1 and MYC
genes and also protects cells from apoptosis [124]. On the other hand, a reduced level of
miR-24-3p is observed in breast cancer and nasopharyngeal carcinoma cells, increasing the
metastatic potential of tumor cells [125,126]. In another study, it was found that hepato-
cellular carcinoma cells with a lower level of miR-17-5p have greater metastatic activity,
but a lower survival rate compared to cells of this tumor with more highly expressed
miRNA [127]. Several studies have shown that the expression of many miRNAs differs
significantly both in normal human tissues and in different types of tumors [128,129]. Thus,
to study the possibility of using miRNA in therapy, it is necessary to take into account
which RNAs control c-Myc levels in different types of cancer and their mechanisms.

2.1. miRNAs Controlling the Expression of the MYC Gene in Various Types of Cancer

For various types of cancer, the role of miRNAs of the let-7 family in regulating the
expression of the MYC gene has been described (Table 1; Figure 3). A decreased level of
these miRNAs in tumor cells is associated with a negative prognosis in patients with acute
myeloid leukemia [130], breast cancer [131], stomach cancer [132], liver cancer [133], and
neuroblastoma [134]. The expression level of let-7 is inversely correlated with the metastatic
activity of prostate cancer [135]. Overexpression of miRNA of the let-7 family leads to the
suppression of the proliferation of cells of breast [136–138], liver [139,140], lung [141], and
colon cancers [142,143], and B-cell lymphomas [144–146]. The cancer-fighting qualities
of the let-7 miRNA family are also explained by their effect on the expression of other
proto-oncogenes: K-RAS, HMGA2, and cyclin D1 and D2 [147]. However, in some cases,
members of let-7 miRNA family can stimulate the development of a tumor, for example, a
high level of let-7g stimulates the progression of osteosarcoma [148].

Table 1. miRNAs that control the expression of the MYC gene in tumors of various human organs.

Cancer MiRNA Alteration in Cancer
Mechanistically

{Association with the Altered
Level of this RNA in Tumor Cells}

References

Acute myeloid
leukemia

let-7 Down-regulated {Poor prognosis} [130]

miR-155 Down-regulated Inhibits cancer cell proliferation [149]

Bladder cancer miR-147 Down-regulated Inhibits cancer cell proliferation [150]
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Table 1. Cont.

Cancer MiRNA Alteration in Cancer
Mechanistically

{Association with the Altered
Level of this RNA in Tumor Cells}

References

Burkitt lymphoma

let-7a
let-7b

miR-98
Down-regulated Reverses MYC-induced growth [120]

miR-34b-5p
let-7c Down-regulated G1 arrest [151]

let-7-5p
miR-132-5p
miR-125b-1

miR-154

Down-regulated Inhibits cancer cell proliferation [121]

Breast cancer

miR-17-5p
miR-20a-5p Down-regulated Inhibits cancer cell proliferation [152]

miR-34b-3p Down-regulated {Associated with metastasis
development} [153]

miR-145-5p Down-regulated {Poor prognosis} [154]

miR-21-5p
miR-98-5p

let-7
Down-regulated Suppresses cancer cell growth [136]

let-7 Down-regulated {Poor prognosis} [131]

let-7 Down-regulated Inhibits cancer cells proliferation [137,138]

Colon cancer

miR-34b-3p Down-regulated {Associated with metastasis
development} [153]

miR-145-5p Down-regulated {Poor prognosis} [154]

let-7 Down-regulated Suppresses cancer cell growth [142,143]

miR-33b
miR-93 Down-regulated Inhibited cell proliferation,

migration, and invasion [155]

Colorectal cancer

miR-320b Down-regulated Inhibits cancer cell proliferation [156]

miR-182-5p Down-regulated Inhibits cancer cell proliferation [156]

miR-182a-5p Down-regulated Inhibits cancer cell proliferation [157]

miR-200b-3p Down-regulated Inhibits cancer cell proliferation [158]

Diffuse large B-cell
lymphoma miR-34b-5p Down-regulated Inhibits cancer cell proliferation [159]

Gastric cancer

miR-212-3p Down-regulated Inhibits cancer cell proliferation [160]

miR-429 Down-regulated Inhibits cancer cell viability,
proliferation, and attachment [123]

let-7 Down-regulated {Poor prognosis} [132]

miR-494-3p Down-regulated Inhibits cancer cells proliferation [145]

miR-155-5p Down-regulated Inhibits cancer cell growth and
invasion [144]

miR-33b-5p Down-regulated Inhibited cell proliferation,
migration, and invasion [161]

miR-25-5p Up-regulated Inhibits cancer cell apoptosis [162]
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Table 1. Cont.

Cancer MiRNA Alteration in Cancer
Mechanistically

{Association with the Altered
Level of this RNA in Tumor Cells}

References

miR-34a Down-regulated Inhibits cancer cell growth and
invasion [163]

miR-561-3p Down-regulated Inhibits cancer cell growth and
invasion [164]

miR-590-3p Down-regulated Inhibits cancer cell proliferation [165]

miR-150-5p Down-regulated Inhibits cell proliferation and
migration [166]

miR-145
miR-1304 Down-regulated Inhibits cell proliferation [167]

miR-449c-5p Down-regulated Inhibits cell proliferation and
migration [168]

miR-125 Down-regulated Inhibits cell proliferation [169]

Glioma

miR-29b-1 Down-regulated Inhibits cancer cell proliferation [170]

miR-33b-5p Down-regulated Inhibits cancer cell proliferation [171]

miR-135a-5p Down-regulated Inhibits cancer cell proliferation [172]

Head and neck
carcinoma

miR-34b-3p Down-regulated {Associated with metastasis
development} [153]

miR-34a-5p Down-regulated Attenuates tumor growth and
metastasis [173]

Hodgkin Lymphoma miR-24-3p Up-regulated Protects cancer cells from apoptosis [124]

Liver cancer

let-7g Down-regulated Inhibits proliferation of
hepatocellular carcinoma cells [139]

let-7 Down-regulated {Poor prognosis} [133]

miR-148a-5p
miR-363-3p Down-regulated G1 arrest [174]

miR-744-5p Down-regulated Inhibits cancer cell proliferation [175]

Liver cancer

miR-599 Down-regulated Inhibits cancer cell proliferation,
migration, and invasion [176]

miR-320a Down-regulated Inhibits tumor proliferation and
invasion [177]

let-7 Down-regulated Inhibits cancer cell proliferation [140]

miR-9
miR-185-5p Up-regulated Inhibits cancer cell proliferation and

survival [178]

miR-17-5p Down-regulated Represses invasiveness and
metastasis, increases survival [127]

miR-122-5p Down-regulated Inhibits cancer cell proliferation [179]

miR-526b Down-regulated Inhibits cancer cell proliferation [180]
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Table 1. Cont.

Cancer MiRNA Alteration in Cancer
Mechanistically

{Association with the Altered
Level of this RNA in Tumor Cells}

References

Lung cancer

miR-34b-3p Down-regulated {Associated with metastasis
development} [153]

let-7a-5p Down-regulated Inhibits the growth of lung cancer [141]

miR-145-5p Down-regulated Inhibits cancer cell proliferation [181]

miR-487b-3p Down-regulated Inhibits cancer cell growth and
invasion [182]

miR-449c-5p Down-regulated Inhibits cancer cell proliferation [183]

miR-451a Down-regulated Reverses EMT to
mesenchymal–epithelial transition [146]

miR-34a-5p Down-regulated Inhibits cancer cell proliferation [184]

miR-199a-5p Down-regulated Inhibits cancer cell proliferation [185]

miR-4302 Down-regulated Inhibits cancer cell proliferation and
invasion [88]

miR-586-5p Up-regulated Enhances cancer cell proliferation [59]

Medulloblastoma miR-33b-5p Down-regulated Inhibits cancer cell proliferation [186]

Melanomas miR-34b-3p Down-regulated {Associated with metastasis
development} [153]

Myeloma miR-126-5p Down-regulated Inhibits cancer cell proliferation [187]

miR-29a-3p Down-regulated Inhibits cancer cell viability

Nasopharyngeal
carcinoma

miR-184 Down-regulated Blocks cell growth and survival [188]

miR-24-3p Down-regulated Suppresses metastasis [125]

Neuroblastoma let-7 Down-regulated {Worse overall survival} [134]

Oral squamous cell
carcinoma

miR-145-5p Down-regulated Inhibits cancer cell proliferation [189,190]

miR-526b-5p Down-regulated Inhibits cancer cell proliferation [191]

Prostate cancer

miR-34c-5p Down-regulated Inhibits cancer cell proliferation [192]

miR-145-5p Down-regulated Inhibits cancer cell proliferation [193]

let-7 Down-regulated Higher in non-metastatic tumors [135]

miR-34
let-7 Down-regulated {Poor prognosis} [194]

miR-3667-3p Down-regulated Inhibits cancer cell proliferation [195]

miR- 449a Down-regulated Enhances cancer cell radiosensitivity [196]

miR- 33b Down-regulated Inhibits cancer cell proliferation [197]

miR-184 Down-regulated Inhibits cancer cell proliferation [198]

Renal cell carcinoma miR-34a-5p Down-regulated Suppresses malignant
transformation [199]

T-cell acute
lymphoblastic

leukemia

miR-451a
miR-709 Down-regulated Inhibits cancer cell proliferation [200]

Thyroid cancer
let-7f-5p Down-regulated Inhibits cancer cell proliferation [201]

miR-33a-5p Down-regulated Inhibits cancer cell proliferation [202]

The expression, stability, and activity of miRNAs of the let-7 family are regulated
by various factors. The most interesting is the regulatory loop with the MYC gene. An
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increase in the level of c-Myc boosts the expression of the LIN28A and LIN28B genes,
whose products trigger the degradation of the let-7 family miRNAs [203] (Figure 3). Thus,
artificially expressed miRNAs can lead to stimulation of the endogenous production of let-7
by suppressing the MYC expression. It has also been shown that the level of miRNAs of this
family increases in breast cancer cells in response to estrogen. It is assumed that this effect
serves to limit the stimulation of MYC expression by the same hormone [136]. Another
way to regulate miRNA activity is to inactivate them by binding to long non-coding RNAs,
so-called competing endogenous RNAs (ceRNA). Thus, ceRNA H19 couples with let-7b
in breast cancer cells, activating epithelial–mesenchymal transition processes [137], and
CCAT1 RNA binds miRNA of the let-7 family in hepatocellular carcinoma cells, stimulating
their proliferation and migration [140]. The role of ceRNA will be described more precisely
in the next section.
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MiR-34 is another miRNA family that controls the expression of the MYC gene in
various tumor types (Table 1). Reduced expression of miRNAs of this family in tumor
cells is associated with increased metastatic activity in patients with prostate cancer [194],
as well as breast, lung, and colon cancers, melanoma, and head and neck tumors [153].
An artificial increase in the expression of these miRNAs leads to suppression of the pro-
liferation of gastric [163] and prostate [192] cancers, head and neck tumors [173], and
B-cell lymphoma [204] and also suppresses the tumor transformation of kidney epithelial
cells [199]. It has been shown that the tissue-specific factor gastrokine-1 stimulates the
expression of miR-34a in gastric cancer cells, suppressing the expression of proto-oncogenes
MYC (Figure 3) and RhoA, which leads to a decrease in the ability of cells to migrate and
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invade [163]. Stimulation of miRNA miR-34a expression occurs when the tumor repressor
p53 is activated [184]. Activation of p53 also leads to an increase in the expression of another
miRNA, miR-145-5p, which also controls the expression of the MYC gene [154] (Figure 3).
These data demonstrate that the stimulation of the expression of miR-34a and miR-145-5p
is significant in the antitumor activity of p53 in various types of cancer. Overexpression of
miR-145-5p considerably suppresses the proliferation of breast and colon cancer cells [154],
lung cancer cells [181], prostate cancer cells [193], gastric cancer [167], and oral squamous
carcinoma cells [189].

2.2. miRNAs That Control the Expression of the MYC Gene in Breast Cancer Cells

The influence of miRNAs of other families on the expression of the MYC gene has
been shown in certain types of tumors. Thus, for breast cancer, in addition to the previously
described let-7, miR-34, miR-145-5p, and miR-24-3p, a contribution to the regulation of
MYC expression was shown for several other miRNAs with more distinct tissue specificity
(Table 1). For example, in addition to let-7, two other miRNAs that control the expression
of the MYC gene are involved in coordinating the response to estrogen in breast cancer
cells: miR-21-5p and miR-98-5p [136]. The expression of miRNAs miR-17-5p and miR-
20a-5p that suppress the MYC gene is activated in breast cancer cells by the c-Myc factor,
which demonstrates their participation in the negative regulation of the expression of this
factor [152] (Figure 3).

2.3. miRNAs That Control the Expression of the MYC Gene in the Cells of Tumors of the
Digestive System

For gastric cancer, many miRNAs have been found that control the expression of
the MYC gene (Table 1). In addition to the previously described let-7, miR-145, and miR-
34, the expression of this proto-oncogene is controlled by miRNAs miR-212-3p, miR-429,
miR-125, miR-494-3p, miR-155-5p, miR-33b-5p, miR-25-5p, miR-150-5p, miR-1304, miR-
590-3p, miR-449c-5p, and miR-561-3p [115,122,152,160–162,164–166,168,169]. In tumor
cells, the levels of most of these miRNAs, with the exception of miR-25-5p, are lower
than in normal tissue, and artificially increasing their expression leads to suppression of
tumor cell proliferation and their ability to invade neighboring tissues. On the contrary,
miR-25-5p RNA is hyperexpressed in gastric adenocarcinoma cells compared to normal
tissue. Increased expression of this RNA is associated with a higher survival rate of cancer
cells [162] (Figure 3).

MiR-33b and miR-93 have been shown to reduce MYC expression in bowel cancer cells
(Table 1). Suppression of the activity of these miRNAs leads to an increase in the ability
of the tumor to grow and form metastases [155]. Four other miRNAs that control MYC
expression were also found in cells of this type of cancer: miR-200b-3p, miR-182-5p, miR-
182a-5p, and miR-320b (Figure 3). The expression of all these RNAs is reduced in tumor
cells, and their overexpression suppresses the proliferation of rectal cancer cells [156–158].

Regulation of MYC gene expression by miRNAs of the miR-320 family has been
shown for liver cancer cells. Increased expression of miR-320a inhibits the ability of
hepatocellular carcinoma cells to grow invasively [177]. MiRNA let-7, miR-148a-5p, miR-
363-3p, miR-744-5p, miR-599, miR-9, miR-185-5p, miR-526b, miR-17-5p, and miR-122-5
are also involved in regulating the expression of the MYC proto-oncogene in liver cancer
cells (Table 1). Constitutive overexpression of these miRNA suppresses the proliferation
of cancer cells and their ability to invade [127,133,140,174–176,178–180]. For three of these
RNAs, miR-148a-5p, miR-363-3p, and miR-122-5, negative feedback was shown with the
expression of the MYC gene (Figure 3). Thus, c-Myc has been shown to directly inhibit
the activity of these RNA promoters in liver cancer cells [174,179]. It is worth noting
that unlike miR-148a-5p and miR-122-5, which directly interacts with the mRNA of the
MYC gene, miR-363-3p suppresses the expression of ubiquitin-specific protease 28, that
stabilizes the c-Myc protein [174]. For miRNAs miR-17-5p, miR-9, and miR-185-5p, positive
feedback was shown with MYC gene expression; transcription factor c-Myc stimulates
transcription of these miRNAs in liver cancer cells [133,178] (Figure 3). Interestingly, in
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contrast to miR-17-5p, the expression levels of miR-9 and miR-185-5p in tumor cells are
higher than in normal tissues [178]. A high level of miRNA suppressing MYC expression
can be combined with a high level of transcription of this proto-oncogene in tumor cells
due to ceRNA, which binds and inactivates certain miRNAs. Therefore, earlier in the
liver cells, an increased level of RNA CCAT1, which binds to miRNA of the let-7 family,
was detected [140]. A specific ceRNA, Linc00176, was also found for miRNAs miR-9 and
miR-185-5p. Its enhanced expression level disrupts the reverse regulation of MYC gene
expression in hepatocellular carcinoma cells, creating conditions for consistently high MYC
expression. For this reason, this ceRNA can be considered as an important target for the
development of therapy [178].

2.4. miRNAs That Control MYC Gene Expression in Lung Cancer Cells

An intriguing study was devoted to the negative effect of cigarette smoke on the
expression of miR-487b-3p in lung cancer cells. This RNA suppresses the expression of
a number of proto-oncogenes, including MYC, and its constitutive expression leads to a
decrease in the proliferation and ability of lung cancer cells to invade [182]. In addition to
the RNA families let-7, miR-34, and miR-145 mentioned in other sections, the expression
of the MYC gene in lung cancer cells is also controlled by miR-199a-5p, miR-449c-5p, and
miR-451a (Table 1). As expected, the expression levels of these RNAs in tumor cells are
lower than in normal tissue, and a constitutive increase in their expression level leads to
impaired proliferation and mesenchymal–epithelial transition of tumor cells [146,183,185].
Some miRNAs affect the expression level of the MYC gene by affecting the mRNA of
factors that regulate the transcription of this oncogene. Thus, miR-4302 interacts with
ZNF121 mRNA, lowering the level of the factor that activates the transcription of the MYC
gene. The binding of this RNA by circRNA-103809 in lung cancer cells leads to an increase
in the ability of the tumor for invasive growth [88] (Figure 3).

2.5. miRNAs That Control the Expression of the MYC Gene in Prostate Cancer Cells

In addition to the RNA families let-7, miR-34, and miR-145 mentioned before, the
expression of the MYC gene in prostate cancer cells is controlled by miR-3667-3p and
miR-33b (Table 1). The expression of the latter in tumor cells is suppressed by the cullin-4B
protein, the mutation of which is characteristic of different cancer types [195,197] (Figure 3).
Recently, it has also been found that the expression of miR-449a in prostate cancer cells
increases in response to ionizing radiation at a dose of 4–8 Gy and, by suppressing the
expression of the MYC gene, increases the sensitivity of these cells to radiation. Increasing
the expression of such RNAs can be used to enhance the effectiveness of tumor radiother-
apy [196]. In prostate cancer cells, dysregulation of MYC expression was also found due to
an increased level of ceRNA MYU, which is able to bind to miRNA miR-184 [198] (Figure 3).
The same miRNA is involved in the regulation of c-Myc levels in nasopharyngeal cancer
cells. MiR-184 has been shown to inhibit MYC expression and tumor cell proliferation in
response to increased levels of the tumor suppressor PDCD4 [188].

2.6. miRNAs That Control MYC Gene Expression in Blood Cancer Cells

Besides the RNA families let-7 and miR-34, the expression of the MYC gene in Burkitt
lymphoma cells is controlled by miR-132-5p, miR-125b-1, miR-154, and mir-98 (Table 1).
The expression of these miRNAs is suppressed in tumor cells, and their constitutive
expression inhibits the proliferation of lymphoma cells [120,121]. In other types of blood
cancers, specific miRNAs involved in the regulation of MYC gene expression have also
been discovered. For example, a low level of the miRNAs miR-451a and miR-709 has
been shown to have an important role in the development of acute T-cell leukemia [200].
Suppression of the expression of two other miRNAs that control the level of the MYC proto-
oncogene, miR-126-5p and miR-29a-3p, is necessary for the survival and reproduction
of myeloma cells [187,205] (Table 1). The expression of miR-126-5p in myeloma cells is
suppressed by histone methyltransferase MMSET, the level of which can be increased in
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tumor cells as a result of a translocation between chromosomes 4 and 14 [187] (Figure 3).
Additionally, in acute myeloma cells, it has been revealed that the lncRNA CCAT1 binds to
miR-155, which leads to an increase in the level of MYC expression [149]. The use of these
miRNAs and their analogs for tumor therapy is not yet common practice, but the level
of expression of some miRNAs can be regulated using low-molecular-weight substances.
For example, PRIMA-1Met causes an increase in the expression of miR-29a-3p in multiple
myeloma cells, which leads to a decrease in the level of c-Myc and reduces the survival
rate of tumor cells [205] (Figure 3).

2.7. miRNAs That Control the Expression of the MYC Gene in the Cells of Tumors of the
Nervous System

In glioma cells, the level of c-Myc is controlled by miR-29b-1, the expression of which
is suppressed by neurotensin (Figure 3). Decreased expression of the neurotensin receptor
restored the level of this miRNA and suppressed the proliferation of tumor cells [170].
In patients with glioma, there is an inverse correlation between survivability and the
expression of another RNA, miR-135a-5p, which suppresses the expression of the MYC
gene [172] (Table 1). In the cancers of the nervous system, glioma and medulloblastoma,
miRNA miR-33b-5p disturbs the regulation of MYC expression [171,186]. When searching
for small molecules as anti-cancer drugs, it was found that lovastatin can increase the
expression of miR-33b-5p in medulloblastoma cells [186] (Figure 3).

2.8. miRNAs That Control the Expression of the MYC Gene in Thyroid Tumor Cells

Another RNA of the miR-33a family, miR-33a-5p, is involved in the regulation of
MYC expression in thyroid cancer. Suppression of the expression of this miRNA may be
associated with the activity of the XB130 protein, and inhibition of this factor led to stunted
growth of tumor cells [202] (Figure 3).

3. lncRNA

Long non-coding RNAs can control the level of active factor c-Myc at different levels:
(1) at the level of transcription, by attracting transcription factors to the MYC gene regula-
tory sequence; (2) at the level of mRNA stability of this gene, by recruiting specific miRNA;
(3) at the level of protein stability and by regulating the efficiency of c-Myc binding to
DNA regulatory sequences (Figure 4). Several lncRNAs have been shown to be involved
in regulatory loops associated with MYC gene expression in different tumor types. For
example, the lncRNA c-Myc inhibitory factor (MIF), found in B-cell lymphoma cells, is
synthesized with the participation of c-Myc factor, but by binding miR-586 it activates the
expression of ubiquitin ligase E3, which promotes the degradation of c-Myc factor. In-
creased expression of MIF lncRNA suppresses the proliferation of lung cancer and cervical
cancer cells [59]. Another lncRNA involved in a regulatory loop with the MYC gene is the
ovarian adenocarcinoma-amplified lncRNA OVAAL. This lncRNA stimulates the activity
of the MAPK cascade, including ERK kinase, which stabilizes c-Myc factor by phospho-
rylating it at serine 62. OVAAL RNA expression, in turn, is stimulated by c-Myc factor.
Increased levels of this lncRNA promote the survival and proliferation of melanoma and
colon cancer cells [206]. The expression of an antisense lncRNA of glutaminase (GLS-AS)
can be suppressed in some tumor types, and this correlates with high levels of glutaminase.
This enzyme can interact with c-Myc, increasing its stability. Interestingly, c-Myc factor
itself suppresses GLS-AS expression [207] (Figure 4).
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3.1. lncRNAs Controlling MYC Gene Expression in Different Tumor Types

Several lncRNAs are currently known to regulate MYC gene expression in various
tumor types (Table 2). Of these, the most studied is the ceRNA colon cancer-associated
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transcript-1 (CCAT1) whose increased expression was first detected in colon cancer cells
in 2011 [208]. This lncRNA has been shown to stimulate tumor growth, vascularization,
and metastatic activity [209]. Increased expression of CCAT1 was also found in leukemia,
lung, gastric, liver, gallbladder, kidney, prostate, and ovarian cancer cells. CCAT1 lncRNA
stimulated cell survival, proliferation, and migration in these tumors [149,208,210–215].
Thus far, two main mechanisms of action of this RNA on MYC gene expression are known.
Firstly, CCAT1 is involved in the spatial proximity of its locus (MYC-515), located 515 kb
before the MYC promoter, and the enhancer (MYC-335), located 335 kb before the afore-
mentioned promoter. This interaction enhances the transcription of this proto-oncogene
in tumor cells [216]. Secondly, as mentioned in the previous section, CCAT1 protects the
MYC gene mRNA by binding miRNAs let-7 and miR-155 [140,149] (Figure 4).

Table 2. lncRNAs that control the expression of the MYC gene in tumors of various human organs.

Cancer lncRNA Alteration in Cancer
Mechanistically

{Association with the Altered
Level of this RNA in Tumor Cells}

References

Acute myeloid
leukemia CCAT1 Up-regulated Promotes cancer cell proliferation

and survival [149]

Bladder cancer

GClnc1 Up-regulated Promotes cancer cell proliferation,
metastasis, and invasiveness [217]

GHET1 Up-regulated {Predicts an unfavorable survival} [218]

NEAT1 Up-regulated Promotes cancer cell proliferation,
invasion, and survival [219]

PVT1a Up-regulated Promotes cancer cell proliferation
and invasion [220]

Breast cancer

EPIC1 Up-regulated Promotes cancer cell proliferation
and survival [221]

GHET1 Up-regulated {Predicts an unfavorable survival} [218]

FGF13-AS1 Down-regulated Suppresses cancer cell proliferation,
migration, and invasion [222]

LINC01638 Up-regulated {Predicts a poor outcome} [97]

Linc-RoR Up-regulated Suppresses cancer cell proliferation [223]

Cervical cancer MIF Down-regulated Suppresses cancer cell proliferation [59]

Cholangiocarcinoma EPIC1 Up-regulated Promotes cancer cell proliferation [224]

Chronic myeloid
leukemia NEAT1 Up-regulated Promotes cancer cell proliferation

and survival [225]

Colon cancer

CCAT1 Up-regulated Promotes cancer cell proliferation,
migration, and invasion [213]

CCAT2 Up-regulated
Promotes metastatic progression
and chromosomal instability in

colon cancer
[226]

Linc-RoR Up-regulated Promotes cancer cell proliferation [223]

PVT1a Up-regulated Promotes cancer cell proliferation
and invasion [227]

THOR Up-regulated Promotes cancer cell proliferation
and migration [228]

AUF1 Up-regulated Promotes cancer cell proliferation [223]

EPIC1 Up-regulated Promotes cancer cell proliferation
and invasion [229]
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Table 2. Cont.

Cancer lncRNA Alteration in Cancer
Mechanistically

{Association with the Altered
Level of this RNA in Tumor Cells}

References

Colorectal cancer

GHET1 Up-regulated Promotes cancer cell proliferation [230]

GLCC1 Up-regulated Promotes cancer cell survival and
proliferation [231]

LINRIS Up-regulated Promotes cancer cell proliferation [232]

NEAT1 Up-regulated Promotes cancer cell proliferation
and survival [233,234]

SNHG3 Up-regulated Promotes cancer cell proliferation [157]

OVAAL Up-regulated Promotes cancer cell proliferation [206]

CMPK2 Up-regulated Promotes colorectal cancer
progression [235]

Diffuse large B-cell
lymphoma NEAT1 Up-regulated Promotes cancer cell proliferation

and survival [159]

Endometrial
adenocarcinoma NEAT1 Up-regulated Promotes cancer cell proliferation,

invasion, and migration [236]

Gallbladder cancer CCAT1 Up-regulated Promotes cancer cell proliferation
and survival [214]

Gastric cancer

CCAT1 Up-regulated Promotes cancer cell proliferation,
migration, and invasion [237]

GHET1 Up-regulated Promotes cancer cell proliferation [238]

HOXC-AS1 Up-regulated Promotes cancer cell proliferation
and metastasis [165]

Glioma DANCR Up-regulated Promotes cancer cell proliferation [171]

Head and neck cancer
GHET1 Up-regulated {Predicts an unfavorable survival} [218]

PCAT-1 Up-regulated Promotes cancer cell proliferation [239]

Hepatocellular
carcinoma PVT1a Up-regulated Promotes cancer cell proliferation

and invasion [240]

Liver cancer

CCAT2 Up-regulated Promotes cancer cell proliferation
and invasion [241]

GHET1 Up-regulated {Predicts an unfavorable survival} [218]

Linc00176 Up-regulated Promotes cancer cell proliferation [178]

Lung cancer

CCAT1 Up-regulated Promotes cancer cell proliferation
and survival [209,242]

EPIC1 Up-regulated Promotes cancer cell proliferation [243]

GHET1 Up-regulated {Predicts an unfavorable survival} [218]

LINC01123 Up-regulated Promotes cancer cell proliferation [185]

MIF Down-regulated Suppresses cancer cell proliferation [59]

PVT1a Up-regulated Promotes cancer cell proliferation
and invasion [244]

PVT1b Down-regulated Suppresses cancer cell proliferation [245]

Medulloblastoma DANCR Up-regulated Promotes cancer cell proliferation [171]
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Table 2. Cont.

Cancer lncRNA Alteration in Cancer
Mechanistically

{Association with the Altered
Level of this RNA in Tumor Cells}

References

Melanoma
OVAAL Up-regulated Promotes cancer cell proliferation [206]

THOR Up-regulated Promotes cancer cell proliferation [246]

Multiple myeloma PDIA3P Up-regulated Enhances cancer cell proliferation
and drug resistance [56]

Nasopharyngeal
carcinoma THOR Up-regulated Promotes cancer cell proliferation [247]

Esophageal cancer

CCAT2 Up-regulated Promotes radiotherapy resistance [248]

GHET1 Up-regulated {Predicts an unfavorable survival} [218]

AUF1 Up-regulated Promotes cancer cell proliferation [249]

Oral cancer Linc-RoR Up-regulated {Associated with tumor recurrence
and poor therapeutic response} [190]

Osteosarcoma

CCAT2 Up-regulated Promotes cancer cell proliferation
and invasion [250]

GHET1 Up-regulated {Predicts an unfavorable survival} [218]

THOR Up-regulated Promotes cancer cell proliferation [251]

Ovarian cancer

EPIC1 Up-regulated Promotes cancer cell proliferation
and survival [252]

CCAT1 Up-regulated Promotes cancer cell proliferation
and survival [215]

CCAT2 Up-regulated Promotes cancer cell proliferation
and invasion [253]

Pancreatic cancer
GHET1 Up-regulated {Predicts an unfavorable survival} [218]

GLS-AS Down-regulated Suppresses cancer cell proliferation [207]

Prostate cancer

CCAT1 Up-regulated Promotes cancer cell proliferation
and survival [211]

NAT6531
NAT7281 Down-regulated [254]

PCAT-1 Up-regulated Promotes cancer cell proliferation [195]

PCGEM1 Up-regulated Promotes cancer cell proliferation
and survival [255]

MYU Up-regulated Promotes cancer cell proliferation [198]

Renal cancer
CCAT1 Up-regulated Promotes cancer cell proliferation

and survival [212]

FILNC1 Down-regulated Inhibits tumor development [256]

Renal cell carcinoma THOR Up-regulated Promotes cancer cell proliferation [257]

Retinoblastoma THOR Up-regulated Promotes cancer cell proliferation [258]

Squamous cell
carcinoma NEAT1 Up-regulated {Worse overall survival} [259]

Uterine cervical
cancer CCAT2 Up-regulated Progression of uterine cervical

cancer [260]

Another lncRNA from the same family, CCAT2, also increases c-Myc levels in colon
cancer cells, but by recruiting the transcription factor TCF7L2 to the MYC gene pro-
moter [226]. It was shown that the expression level of this lncRNA in ovarian cancer cells
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can be suppressed by vitamin D metabolites, which reduces the ability of tumor cells for
invasive growth [253] (Figure 4). Additionally, high levels of CCAT2 lncRNA enhance
the ability of osteosarcoma and hepatocellular carcinoma cells to invade and prolifer-
ate [241,250] and improve the resistance to radiotherapy of esophageal cancer cells [248].
The more common rs6983267(G) polymorphism variant of the CCAT2 gene has been shown
to be associated with increased MYC gene expression levels and accelerated cervical cancer
progression [260].

Another lncRNA affecting MYC expression in various tumor types is NEAT1, which
forms specific nuclear structures called paraspeckles. These structures are involved in
the maturation and retention of different types of RNA in the nucleus [261]. Elevated
NEAT1 levels are associated with suppression of miR-34b activity and increased MYC gene
expression in B-cell lymphoma cells [159]. In addition, NEAT1 is involved in the activation
of histone acetylation in the MYC gene promoter region, activating its function [233]. It is
worth noting that NEAT1 expression is in turn repressed by the c-Myc factor, which creates
a negative regulatory loop [159] (Figure 4). Constitutive repression of NEAT1 lncRNA ex-
pression decreases proliferation capacity, reduces survival, and increases chemotherapeutic
drug sensitivity in chronic myeloid leukemia [225], diffuse B-cell lymphoma [159], bladder
cancer [219], uterine cancer [236], and rectal cancer [233,234].

Another lncRNA whose expression correlates positively with MYC expression is
THOR. This lncRNA interacts with the insulin-like growth factor 2 mRNA-binding pro-
tein (IGF2BP1). The THOR–IGF2BP1 complex increases the mRNA stability of several
proto-oncogenes, including the MYC gene [246] (Figure 4). Suppression of this lncRNA’s
expression leads to decreased proliferation and migration ability of colon cancer cells [228].
High THOR expression accelerates tumor transformation of retinoblastoma cells [258] and
growth of osteosarcoma, nasopharyngeal, and renal tumors [247,251,257].

GHET1 lncRNA also increases the stability of MYC gene mRNA through interaction
with IGF2BP1 protein (Figure 4). Suppression of this lncRNA expression in gastric and
colorectal cancer cells leads to reduced c-Myc levels and suppression of tumor cell prolifera-
tion [230,262]. High levels of GHET1 lncRNA expression in tumor cells are associated with
poor prognosis in patients with lung, breast, head and neck, nasopharyngeal, stomach, liver,
pancreatic, bowel, bladder, and osteosarcoma cancers [218]. High levels of expression of
LINRIS lncRNA have been detected in colon cancer cells. This lncRNA stabilizes IGF2BP2,
another member of this family of proteins, that extend the lifespan of MYC mRNA [232]
(Figure 4).

Amplification of the locus containing the MYC gene has been observed in many
tumor types. Moreover, the same locus contains several genes encoding lncRNAs. The
expression of one such lncRNA, PVT1a, was shown to be up-regulated in 98% of tumors
with amplification of the locus containing the MYC gene. Moreover, suppression of this
lncRNA expression in such cells resulted in reduced MYC expression levels and suppressed
proliferation [227]. It was found that PVT1a lncRNA can interact with the c-Myc factor,
preventing its degradation. Suppression of this lncRNA’s expression has been shown to
reduce the ability of lung, colon, and bladder cancer cells to proliferate, migrate, and grow
invasively [220,227,244,263]. Recently, it was also shown that PVT1a lncRNA stimulates
invasive growth of hepatitis B virus-infected liver cancer cells through stimulation of MYC
gene transcription; this lncRNA blocks histone methyltransferase EZH2, which inhibits
MYC promoter activity through methylation of lysine 27 on histone H3 [240] (Figure 4).

While searching for potentially oncogenic lncRNAs, EPIC1 RNA was found. This
lncRNA interacts directly with the c-Myc protein and stimulates binding of this transcrip-
tion factor to the promoters of genes controlling the cell cycle. It has also been shown
that lncRNA EPIC1 can moderately enhance the Myc–Max interaction [221] (Figure 4).
In addition to binding to the c-Myc factor, EPIC1 lncRNA is a potential regulator of the
AKT-mTORC1 signaling pathway. The mTOR-specific inhibitor rapamycin is used for
the therapy of some types of cancer, but cases of resistance to this drug have been de-
scribed [264]. EPIC1 knockdown makes resistant breast and ovarian cancer cells sensitive
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to rapamycin [252]. High expression of EPIC1 lncRNA accelerates proliferation of lung
cancer cells [243] and cholangiocarcinoma cells [224] and enhances invasive growth of
colon cancer cells [229].

3.2. lncRNAs Controlling MYC Gene Expression in Digestive Tumors

Several other lncRNAs controlling the level and stability of c-Myc factor in tumor
cells were found for digestive system cancers (Table 2). For example, Linc-RoR lncRNA
stabilizes MYC gene mRNA in colon cancer cells by controlling its interaction with AU-rich
element RNA-binding protein 1 (AUF1) and heterogeneous nuclear ribonucleoprotein I (hn-
RNPI) [223]. The expression of this lncRNA was also elevated in esophageal tumors [249].
In oral squamous cell cancer cells, Linc-RoR lncRNA binds miRNA miR-145-5p, blocking its
binding to MYC gene mRNA [190] (Figure 4). A similar mechanism has been described for
other lncRNAs whose increased expression is associated with high levels of c-Myc in cancer
cells of the digestive system. For example, in gastric cancer cells, the ceRNA HOXC-AS1
binds miR-590-3p [165], in colon cancer cells the ceRNA SNHG3 suppresses miR-182-5p
activity [157], and ceRNA Linc00176 blocks the binding of miR-9 and miR-185-5p to MYC
mRNA in hepatocellular carcinoma cells [178] (Figure 4). Enhanced expression of CMPK2
lncRNA, which stabilizes far upstream element (FUSE)-binding protein 3 (FUBP3) and
promotes its binding to the MYC gene regulatory element, was also found in colon cancer
cells, resulting in activation of transcription of the MYC proto-oncogene [235]. Under con-
ditions of glucose deficiency in rectal cancer cells, GLCC1 lncRNA expression is activated,
which activates the interaction of the transcription factor c-Myc with the heat shock protein
Hsp90, which prevents ubiquitination and degradation of this factor [231] (Figure 4).

3.3. lncRNAs Controlling MYC Gene Expression in Urinary Tumor Cells

Increased expression of GClnc1 lncRNA is an indicator of lower survival chances in
bladder cancer. High levels of GClnc1 significantly promoted cell proliferation, metastasis,
and tumor invasiveness [217]. GClnc1 binds to LIN28B and activates this protein, and
LIN28B, as described in the previous section, is involved in degrading the miRNA of the
the miR-let-7 family that controls MYC gene expression (Figure 4).

For lncRNA FILNC1, the ability to bind to the previously mentioned AUF1 pro-
tein, which controls the stability of many cellular mRNAs, including MYC, was shown
(Figure 4). FILNC1 lncRNA expression in renal cancer cells is stimulated under conditions
of ATP deficiency and leads to suppression of MYC expression and decreased tumor cell
survival. Low levels of FILNC1 lncRNA in renal tumor cells are associated with a negative
prognosis [256].

3.4. lncRNAs Controlling MYC Gene Expression in Prostate Cancer Cells

An interesting mechanism for regulating MYC oncogene expression was found in
prostate cancer cell culture by switching the expression of three overlapping lncRNAs,
NAT6531, NAT6558, and NAT7281. The scenario in the cell in this case is determined by
the work of histone deacetylases. Their high activity promotes the transcription of only
NAT6531 lncRNA. This lncRNA is a substrate for DICER nuclease, which slices it to form
small RNAs that bind to MYC gene RNA and act as miRNA (Figure 4). Weak suppression
of deacetylase activity increases the acetylation of histone H3 at the locus described, which
blocks the transcription of NAT6531 and activates the transcription of lncRNA NAT6558.
NAT6558 lncRNA does not form a loop that interacts with DICER nuclease and is not
a source of small RNAs that decrease the half-life of MYC gene mRNA. When histone
deacetylases are completely repressed, the longest lncRNA of this group, NAT7281, is
synthesized and the transcription of NAT6531 and NAT6558 is blocked. Expression of
NAT7281 leads to a strong suppression of MYC gene transcription [254] (Figure 4). Another
lncRNA has been shown to be involved in the regulation of MYC gene expression in
prostate cancer cells. PCGEM1 is a prostate-specific lncRNA that is up-regulated in various
tumors of this organ and stimulated by androgens. This lncRNA interacts directly with
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the promoter region of the MYC gene, stimulating its transcription [255]. MYC expression
was also found to be up-regulated in prostate cancer cells by elevated levels of ceRNA
MYU which binds miR-184. Suppression of MYU RNA expression resulted in decreased
levels of MYC expression and suppression of tumor cell proliferation [198]. Another
ceRNA found in prostate tumors, PCAT-1, binds miR-3667-3p (Figure 4). Suppression of
expression of this ceRNA results in reduced MYC expression and suppression of cancer
cell proliferation [195].

3.5. lncRNAs That Control MYC Gene Expression in Breast Cancer Cells

Increased expression of LINC01638 lncRNA has been detected in breast cancer tissues
compared to normal tissue. This lncRNA promotes the proliferation of breast cancer
cells with a triple-negative phenotype. LINC01638 has been shown to interact with c-
Myc and protect it from SPOP-mediated ubiquitination and degradation [97] (Figure 4).
Reduced lncRNA levels of FGF13-AS1 have been detected in breast cancer cells and highly
metastatic breast cancer cell lines. FGF13-AS1 inhibits tumor cell proliferation, migration,
and invasion. This lncRNA binds specifically to the IGF2BP family of proteins and disrupts
the interaction between IGF2BP and MYC mRNA. It leads to a decrease in the lifetime of
MYC mRNA and, consequently, a lower level of the corresponding factor. Importantly,
the c-Myc factor itself suppresses the expression of FGF13-AS1 [222] (Figure 4). Thus,
any suppression of the expression or activity of this transcription factor can activate the
FGF13-AS1 lncRNA-mediated regulatory mechanism, enhancing the suppression of MYC
gene expression.

3.6. lncRNAs That Control MYC Gene Expression in Lung Cancer Cells

Several new lncRNAs affecting c-Myc factor expression have been found in lung cancer
cells (Table 2). LINC01123 lncRNA in lung cancer cells forms a positive LINC01123/miR-
199a-5p/MYC regulatory loop with c-Myc factor (Figure 4). Such regulatory loops may
be a prospective target for therapeutic action, as suppression of the expression of this
lncRNA inhibits the ability of cancer cells to proliferate [185]. An alternative isoform of
the previously described PVT1 lncRNA, PVT1b, was also found in lung cancer cells. This
isoform is synthesized under the influence of tumor suppressor p53 and, unlike the PVT1a
isoform described above, suppresses the expression of the MYC gene (Figure 4). Increased
expression of the PVT1b isoform in cancer cells slows down tumor growth [245].

3.7. lncRNAs Controlling MYC Gene Expression in Myeloma Cells

One important role of c-Myc factor in oncogenesis, as was mentioned earlier, is the
formation of drug resistance in tumor cells. The role of PDIA3P lncRNA in this process
has been demonstrated in multiple myeloma cells. This lncRNA interacts with the c-Myc
factor and enhances its stimulatory effect on the glucose-6-phosphate dehydrogenase gene
promoter (Figure 4), high levels of which allow for reducing the toxic effect of bortezomib
on myeloma cells [56].

3.8. lncRNAs Controlling MYC Gene Expression in Medulloblastoma Cells

In nervous system tumors, gliomas and medulloblastomas, the regulation of MYC
gene expression was found to be impaired by the binding of miR-33b-5p ceRNA DANCR
(Figure 4). Suppression of this ceRNA’s expression leads to decreased levels of c-Myc factor
and slows down cancer cell proliferation [171].

4. Circular RNA

A new type of RNA, circular RNA (circRNA), has been discovered relatively recently.
This RNA type is characterized by a closed-loop structure and is, therefore, more resistant
against the action of nucleases than linear RNA molecules. CircRNA is formed by splicing,
so the same gene can be transcribed to both linear and circular RNA molecules. Due to
the absence of a 5’-end and hence no cap structure, most circRNAs in eukaryotes are non-
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coding. However, circRNAs can perform a number of functions described for lncRNAs:
they bind miRNAs, interact with regulatory sequences of the genome, and bind to proteins,
altering their functions [265,266].

The role of circRNA in the development of various types of tumors has not been
studied as well as for lncRNA and miRNA (Tables 1–3). In this section, we focus on
the variety of mechanisms by which they affect c-Myc factor formation, function, and
degradation. Some circRNAs bind miRNAs in different types of tumors. For example,
increased expression of the cyclic isoform of the aforementioned PVT1 RNA, circPVT1,
has been observed in leukemia, gastric, and colon cancer cells. This circRNA can activate
MYC gene expression by binding miR-125 and miR-145 (Figure 5). Increased circPVT1
levels are associated with accelerated proliferation and increased tumor cell viability [267].
Similarly, circRNA_103809 enhances the ability of lung cancer cells to invasively grow by
binding miR-4302, which suppresses ZNF121-dependent expression of the MYC gene [88]
(Figure 5). For another RNA, circCCDC66, the ability to up-regulate MYC gene expression
in colon cancer cells through the binding of miR-33b and miR-93 was shown (Figure 5).
High levels of this circCCDC66 promote tumor growth and metastasis [155]. Additionally,
high levels of this circRNA promote the development of gastric cancer [268]. Two other
circRNAs, circLMTK2 and circ-PRMT5, have been shown to bind miR-150-5p, miR-145, and
miR-1304 and increase MYC gene expression in gastric cancer cells (Figure 5). Suppression
of the expression of these circRNAs reduces the proliferation and migration of tumor
cells [166,167] A circRNA, circ_0068307, was also found to stimulate MYC gene expression
and bladder cancer cell proliferation by binding miR-147 [150].

Table 3. CircRNAs that control the expression of the MYC gene in tumors of various human organs.

Cancer circRNA Alteration in Cancer Mechanistically References

Bladder cancer

CircCDYL Down-regulated Suppresses cell growth and
migration [269]

circNR3C1 Down-regulated Suppresses cancer cell growth [270]

circ_0068307 Up-regulated Promotes cancer cell migration
and proliferation [150]

Breast cancer circ-Amotl1 Up-regulated Stimulates tumor growth [271]

Colon cancer

circPVT1 Up-regulated Promotes cancer cell
proliferation [267]

circCTIC1 Up-regulated Promotes cancer cell
proliferation [272]

circCCDC66 Up-regulated Promotes cancer cell
proliferation and migration [155]

Gastric cancer

circLMTK2 Up-regulated Promotes cancer cell
proliferation [166]

Circ-PRMT5 Up-regulated Promotes cancer cell
proliferation [167]

circ-NOTCH1 Up-regulated Promotes cancer cell migration
and proliferation [168]

circPVT1 Up-regulated Promotes cancer cell
proliferation [267]

circHECTD1 Up-regulated Promotes cancer cell
proliferation [273]

circCCDC66 Up-regulated Promotes cancer cell
proliferation [268]
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Table 3. Cont.

Cancer circRNA Alteration in Cancer Mechanistically References

Glioblastoma circ-FBXW7 Down-regulated Suppresses cancer cell growth [274]

Leukemia circPVT1 Up-regulated Promotes cancer cell
proliferation [267]

Liver cancer circ_0091581 Up-regulated Stimulates tumor growth [180]

Lung cancer circRNA_103809 Up-regulated Stimulates cancer cell
proliferation and invasion [88]

Osteosarcoma CircECE1 Up-regulated Promotes cancer cell migration
and proliferation [275]

Squamous cell
carcinoma circUHRF1 Up-regulated Promotes cancer cell

proliferation [191]

Thyroid cancer
circ-ITCH Down-regulated Suppresses cancer cell

migration and proliferation [276]

circRNA_102171 Up-regulated Promotes cancer cell migration
and proliferation [277]

In some cases, circRNAs form regulatory loops with the MYC gene. For example,
in gastric cancer cells, circ-NOTCH1 RNA is involved in the regulation of MYC gene
expression. The expression of this circRNA is stimulated by c-Myc factor, while the
RNA itself stabilizes MYC gene mRNA by binding miRNA miR-449c-5p [168] (Figure 5).
Similarly, in oral squamous cell carcinoma cells, c-Myc factor activates the expression of
circUHRF1 RNA, which in turn binds miR-526b, increasing the stability of this factor’s
mRNA [191].

Some studies are able to trace longer chains of interactions linking circRNA and c-Myc
factor activity. Thus, in gastric cancer cells, it was shown that the RNA circHECTD1 binds
miR-1256, thus activating expression of the USP5 gene which in turn leads to stabilization
of β-catenin which activates expression of the MYC gene. Another RNA affecting β-
catenin activity is circRNA_102171. This RNA binds to the β-catenin-interacting protein
CTNNBIP1, resulting in increased β-catenin activity and MYC gene expression in thyroid
cancer cells (Figure 5). High levels of this circRNA stimulate tumor growth and the
process of metastasis formation [277]. One more RNA which suppresses β-catenin activity
in thyroid tumor cells is circ-ITCH. This circRNA binds miR-22-3p and increases the
expression of CBL ubiquitin ligase, which suppresses β-catenin activity. Increased levels of
circ-ITCH also suppress tumor growth and metastasis [276].

In addition to miRNA binding, circ-ITCH RNAs can influence MYC expression
through direct interaction with the gene promoter. In colon cancer cells, circCTIC1 RNA
binds BPTF and attracts it to the MYC gene promoter (Figure 5). High levels of this circRNA
enhance MYC gene transcription and cancer cell proliferation [272]. In contrast, another cir-
cRNA, circNR3C1, inhibits the interaction of the BRD4 protein with the MYC gene promoter
and suppresses the expression of this gene and bladder tumor cell proliferation [270].

CircRNA is also able to influence the stability and activity of the c-Myc factor itself. For
example, the circRNA angiomotin-like1 (circ-Amotl1) binds to c-Myc factor and promotes
its stabilization and transport to the nucleus. Increased expression of this RNA in breast
cancer cells enhances tumor growth [271]. Another RNA, circECE1, also interacts with
c-Myc protein and inhibits its ubiquitination and degradation (Figure 5). Its increased level
is associated with activation of osteosarcoma cell proliferation and migration processes, as
well as increased oxygen-free metabolism [275]. CircRNAs have also been found to decrease
the stability of the c-Myc factor. CircCDYL RNA does not affect the mRNA level of the
MYC gene, but it decreases the level of the corresponding protein, apparently decreasing
its stability. High levels of this circRNA suppress bladder cancer cell proliferation and
migration [269].
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In rare cases, circRNA can work by means of encoded polypeptides. For example,
circ-FBXW7 encodes the FBXW7-185 protein that binds to ubiquitin-specific peptidase 28
(USP28 protein). This protein interaction causes accelerated degradation of the peptidase
and disrupts the stabilization of the c-Myc factor by this enzyme (Figure 5). Increased
expression of circ-FBXW7 in glioblastoma cells suppresses their proliferation [274].
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5. Conclusions

Numerous data in this review demonstrate that c-Myc plays an important role in the
development of a wide variety of cancers. According to current reports, MYC expression
levels are elevated in approximately 70% of human tumors [278,279]. However, there
are still no drugs widely available in clinical practice which aim at suppressing the ex-
pression or activity of this oncogene [280]. Typically, low-molecular-weight compounds
that specifically block the activity of the target protein are developed to block oncogene
activity. However, the c-Myc molecule is not an enzyme and lacks the “pockets” to which
low-molecular-weight inhibitors are usually matched [280,281]. To date, several molecules
have been found that disrupt the binding of c-Myc and its partner Max, and stimulate
c-Myc degradation by facilitating its phosphorylation by threonine 58 and subsequent
ubiquitination [282]. A study of these molecules in animal models showed that the use
of these inhibitors resulted in the enrichment of the tumor with cells with high PD-L1
expression, indicating the need for simultaneous use of c-Myc and PD-1 inhibitors [282].
Due to the high rate of change in c-Myc levels, prolonged and continuous exposure to
these transcriptional factor inhibitors is required to effectively suppress its expression. The
narrow therapeutic window of currently developed drugs makes it difficult to use them
for tumor therapy [280].

An alternative approach to suppress c-Myc levels is the use of siRNA analogs. Two
studies of such molecules currently exist, but both have been halted due to sponsor re-
jection (NCT02110563; NCT0231405). The use of RNA- and DNA-based drugs has been
underdeveloped until recently due to low stability, difficulties in targeted delivery, and
possible side effects [283]. However, the widespread use of RNA- and DNA-based vaccines
against SARS-CoV2 could significantly advance the use of RNA- and DNA-containing
drugs. The use of nuclease-protected siRNA analogs and single-stranded DNA comple-
mentary to target RNA may be an effective way to reduce the expression of certain genes
in the long term [284]. However, in the case of the MYC gene, the question of the optimal
sequence selection for the annealing therapeutic molecule arises. Known natural miRNAs
that inhibit c-Myc synthesis may have additional targets, which may vary for different cell
types. In addition, the set of lncRNAs and circRNAs capable of blocking certain miRNAs
may differ in different cell types. When selecting a target, it is also important to consider
positive and negative regulatory loops. As one of the solutions, a more long-lasting effect
can be achieved by simultaneously blocking several RNAs involved in different regulatory
loops.

This review describes different types of RNA that control MYC gene expression in
different tissues and tumor types (Tables 1–3; Figure 6). Especially noteworthy is the diver-
sity of different types of RNAs controlling the expression of this proto-oncogene in cells
of digestive system cancers (Tables 1–3; Figure 7). Using tissue-specific regulatory RNAs
rather than MYC gene mRNA as targets provides a potential opportunity to selectively
influence c-Myc expression in cells of a particular tumor type. This may allow for creating
a drug with a more selective effect and, consequently, a wider therapeutic window. It
is worth noting that the studies on the role of different RNAs in the regulation of MYC
expression in different cell types are not exhaustive, and some of the mentioned RNAs may
function in a wider range of tissues and tumors than is currently known.

Thus, the information provided in this review indicates the possibility of developing
a specific diagnosis and treatment for different tumor types. Since suppression of MYC
expression can reduce cell resistance to chemotherapy and radiotherapy, the use of tumor-
specific MYC inhibitors can be applied to create effective anti-tumor therapy options.
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believed to be tissue specific but new roles can potentially be discovered.
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