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Abstract 

Fungi can cause devastating invasive infections, typically in immunocompromised patients. 

Treatment is complicated both by the evolutionary similarity between humans and fungi and by 

the frequent emergence of drug resistance. Studies in fungal pathogens have long been slowed by 

a lack of high-throughput tools and community resources that are common in model organisms. 

Here we demonstrate a high-throughput transposon mutagenesis and sequencing (TN-seq) 

system in Cryptococcus neoformans that enables genome-wide determination of gene 

essentiality. We employed a random forest machine learning approach to classify the 

Cryptococcus neoformans genome as essential or nonessential, predicting 1,465 essential genes, 

including 302 that lack human orthologs. These genes are ideal targets for new antifungal drug 

development. TN-seq also enables genome-wide measurement of the fitness contribution of 

genes to phenotypes of interest. As proof of principle, we demonstrate the genome-wide 

contribution of genes to growth in fluconazole, a clinically used antifungal. We show a novel 

role for the well-studied RIM101 pathway in fluconazole susceptibility. We also show that 5’ 

insertions of transposons can drive sensitization of essential genes, enabling screenlike assays of 

both essential and nonessential components of the genome. Using this approach, we demonstrate 

a role for mitochondrial function in fluconazole sensitivity, such that tuning down many essential 

mitochondrial genes via 5’ insertions can drive resistance to fluconazole. Our assay system will 

be valuable in future studies of C. neoformans, particularly in examining the consequences of 

genotypic diversity. 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.07.28.605507doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.28.605507
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 

Human fungal pathogens are a serious human health risk, causing approximately 3.8 million 

deaths a year (1). Fungal infections are frequent in immunocompromised patients, particularly in 

conjunction with the HIV/AIDS epidemic. While the number of severely immunocompromised 

HIV patients has declined in recent years with the advent of HAART therapy, HIV management 

remains difficult in resource-limited areas and HIV-related illness remains the leading cause of 

death in Sub-Saharan Africa. Even in resource-rich areas, HIV is still a significant challenge. In 

the US, up to 1 in 13 individuals who were at one point virally suppressed experience viral 

rebound (2). Other sources of immunocompromise are also on the rise as solid organ transplants 

and the accompanying immunosuppression become more common. In combination, we face 

continued threats from fungal diseases. 

In addition, treating fungal infections is highly challenging. On an evolutionary scale, fungal 

pathogens are more closely related to their human hosts than almost every other infectious 

disease, except animal pathogens like parasitic worms. This high relatedness makes fungi strong 

tractable models for human biology, as many aspects of mammalian biology are conserved in 

fungi. A drawback of this conservation is that many potential inhibitors of fungal growth are 

unacceptably toxic to humans because they inhibit shared biological pathways (3). As a result, 

we have only five classes of antifungal drugs available to treat invasive diseases: azoles, 

echinocandins, polyenes, the nucleoside analog 5FC, and a relatively new drug ibrexafungerp. 

Two of these five classes, echinocandins and ibrexafungerp, target the same gene (FKS1). Most 

of these drugs target biology unique to fungi. For example, azoles, such as fluconazole, inhibit 

the essential activity of Erg11, which is responsible for part of the biosynthesis of ergosterol, a 
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fungal analog of cholesterol not found in humans. The paucity of antifungal drugs means that 

when resistance emerges or when a species is intrinsically resistant to an antifungal drug, there 

are few therapeutic alternatives.  

Among the most dangerous fungal pathogens are species from the Cryptococcus pathogen 

species complex (4). Cryptococcus neoformans is the most common source of infections within a 

pathogenic species complex composed of at least 7 different species of pathogens (5). The vast 

majority of the approximately 147,000 annual deaths from Cryptococcosis (1) are caused by 

infections with C. neoformans and occur in Sub-Saharan Africa in conjunction with the 

HIV/AIDS epidemic (1). C. neoformans rarely infects immunocompetent individuals. In 

immunosuppressed individuals, infection typically begins in the lungs as fungal pneumonia and 

can then disseminate through the bloodstream into the brain to cause fungal meningitis. 

Cryptococcal meningitis is uniformly fatal if left untreated. 

Treating Cryptococcal meningitis is complicated by the fact that Cryptococcus neoformans is 

intrinsically resistant to both echinocandins and ibrexafungerp (6,7). Multidrug resistance is not 

common because invasive fungal pathogens, including C. neoformans, are generally acquired 

from environmental reservoirs. Infections do not typically transmit from patient to patient or 

even from a patient back into an environmental reservoir. This means that multidrug resistance 

has not typically accumulated over time the way it does in many other pathogens. However, 

agricultural drug exposure may select for resistance within the environmental reservoir. For 

example, agricultural exposure to azoles may be contributing to the increasingly common azole 

resistance in the human fungal pathogen Aspergillus fumigatus (8,9). It remains to be seen 

whether Cryptococcus will similarly acquire azole resistance, but a strong possibility exists.  
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Collectively, we have an urgent need to develop new and synergistic therapies to treat fungal 

diseases (10). In Cryptococcus, this effort has been hampered both by a lack of available 

experimental tools and by a poor understanding of the essential gene set. Essential genes, 

particularly those not conserved in humans, are the ideal set of genes for targeted design of novel 

antifungals. Past systematic efforts to define essential genes in Cryptococcus by taking 

advantage of diploid genetics have scaled poorly, resulting in relatively small numbers of defined 

essential genes (11). In contrast, most inferences of essentiality were drawn from the 

ability/inability to obtain gene deletions during the construction of two Cryptococcus systematic 

deletion collections (12). However, absence from a deletion collection can be explained by 

transformation failure rather than essentiality. In addition, many large-scale deletion collections 

are prone to errors, even in organisms with large communities iteratively fixing them (13). One 

study using the Cryptococcus collection found 14 of 82 tested strains that were hits in a separate 

CRISPR-based screen failed to produce the correct diagnostic digest pattern that would indicate 

proper deletion of the relevant gene (14). Using these data to predict essentiality across the 

genome is thus likely to be error prone.  

One alternate approach to determine essentiality is an approach called transposon mutagenesis 

sequencing or TN-seq. TN-seq was originally developed in bacteria (15–18) and more recently 

has been applied to fungi, including S. pombe (19–22), S. cerevisiae (23–25), and C. albicans 

(26) among others. This approach inserts one transposon randomly into the genome in each cell 

within a pool. Insertions into essential genes kill the cells, which are thus removed from the pool. 

Insertions into non-essential genes are tolerated and can be identified using a high throughput 

sequencing approach (Figure 1A). In pools with millions of cells and in organisms with 

relatively small genomes, TN-seq can generate saturated maps of genome function. TN-seq has 
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been used broadly to identify essential genes, with some studies using machine learning to 

predict essentiality of the entire gene set based on an initial subset of confidently assigned genes 

(26,27).  

Further, once a TN-seq insert library has been generated, that library can be selected and 

resequenced to quantitatively measure the contribution of the remaining nonessential genes to a 

given phenotype. In eukaryotes, this approach has powered analysis of contributions to 

heterochromatin formation (20), sexual reproduction (22), general fitness (21), and chemical 

genetics (23,28). Similar approaches have been explored using CRISPR in Cryptococcus, but 

thus far limitations in effective guide RNAs and resulting low insert densities have limited the 

statistical power in comparison to TN-seq (14).  

Here we have developed a TN-seq system for Cryptococcus neoformans using a modified Ds 

(dissociation) transposon mobilized by the Ac (activator) transposase from maize. This 

transposon acts using a cut and paste mechanism and was originally identified by Barbara 

McClintock (29). The Ds transposon has been adapted for multiple fungal TN-seq systems 

(25,26). We generated a dense insertion library and applied a machine learning model to predict 

essentiality across the genome. Further, we have selected this library using fluconazole to 

identify modifiers of drug susceptibility. We demonstrate that inserts into regulatory regions of 

predicted essential genes can sensitize a strain to drug treatment without altering wildtype 

fitness. To our knowledge, this is the first use of TN-seq to query essential gene function in 

fungi. In sum, we demonstrate that TN-seq enables both identification and analysis of essential 

genes for their role in drug susceptibility in Cryptococcus neoformans. 
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Results 

To determine the set of essential genes in Cryptococcus neoformans, we developed a TN-seq 

assay to generate random insertional mutations across a pool of cells (Figure 1A-B). Because 

many of the existing fungal TN-seq systems utilized plasmid systems that were unavailable in 

Cryptococcus, we based our approach on a previous TN-seq method in Candida albicans (26), 

with some modifications. In our previous work with a Hermes transposon-based TN-seq system 

in Schizosaccharomyces pombe (22), we observed that transposon insertions (~2.6 kb) were not 

tolerated within the introns of essential genes. The largest described intron in S. pombe is only 

819 nucleotides (30), suggesting that the spliceosome is unlikely to capable of splicing sequences 

as large as a transposon insertion. In fact, extension of a functional artificial intron from 36 bases 

to larger sizes, including both 350 and 252 base introns, showed that increased length introns 

often fail to splice at all in S. pombe (31).  

Introns are even slightly smaller in Cryptococcus neoformans, with a mean length of 65 bases 

(32). There is also a bias towards RNAi silencing of genes with longer introns (33). With the 

assumption that a transposon inserted into an intron would disrupt gene function in 

Cryptococcus, we integrated a Ds transposon carrying a neomycin resistance cassette into the 

first intron of the URA5 gene in the H99 C. neoformans type strain. This insertion disrupts the 

gene, but gene function is generally restored when the transposon is excised during transposition, 

even if excision is imperfect (ie. reading frame does not need to be maintained during repair) 

(Fig 1C). These features allow us to select both against transposon movement (on media 

containing 5-FOA) and for transposon excision (on media lacking uracil). The ability to select 
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against transposon movement enabled us to grow large cultures prior to triggering transposition 

to avoid jackpot events (i.e. clonal expansion of a limited number of independent mutations).  

To mobilize the Ds transposon, we integrated a codon-optimized version (designed using 

Optimizer (34)) of the Ac transposase under the control of the GAL7 promoter at the neutral safe 

haven locus (35). We generated a transposon insertion library by selecting transposition events 

on media containing galactose but lacking uracil so that the transposase could be induced but 

cells could only grow if they regained the ability to produce their own uracil after transposition 

(Figure 1C, see methods).  

To identify and quantify transposon insertion sites, we amplified the boundaries between 

transposon insertions and the genome using PCR and sequenced them using Illumina sequencing 

(modified from (22), see Methods). We integrated random barcodes during the sequencing 

library preparation, enabling us to eliminate PCR duplicates and more accurately measure 

transposon insertion frequency within a pool (as in (21)). We mapped only reads containing 

PCR-amplified Ds fragments to the Cryptococcus genome. We identified 18,417,912 reads 

mapping to 1,750,772 unique sites in the genome including coding sequences of 6,190 of the 

6,975 total annotated genes or 92.5 unique insert sites per kb, on average.  

We observed some insertional bias in transposon location. Insertions near the original Ds site in 

URA5 were much more common than those in distant locations, suggesting that the transposon 

was more likely to insert into locations spatially near the original excision site (Supplemental 

Figure 1A). This was previously observed in the SATAY TN-seq system of S. cerevisiae, which 

also uses an Ac/Ds transposon system (23). We also observed some preference for insertion 

within the upstream regions of genes (Supplemental Figure 1B). These biases were much 
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stronger in genes we predicted to be essential (see below) than in those we predicted to be 

nonessential, suggesting that at least a portion of the bias resulted from selection rather than bias 

in the location of insertion (Supplemental Figure 1B). Despite these biases, even after 

discounting inserts on the chromosome containing URA5 (Chromosome 8), we retained 

1,322,416 unique inserts or 75.5 inserts per kb on average. Of these remaining inserts, 37% were 

genic (40 inserts per kb) and 63% were intergenic (159 inserts per kb). Because the mean gene 

length in this region (including introns) was 1,906 bases, on average we would still expect 76 

insert sites per typical gene, giving us confidence that we could score gene function despite these 

biases. In contrast, the average gene on Chromosome 8 contains 432 insert sites and intergenic 

sequences on Chromosome 8 have 472.7 inserts per kb on average. 

  

Machine learning helps predict essentiality 

TN-seq is commonly used in bacteria to identify essential genes (36). This approach generally 

relies on using a set of bona fide essential genes, which should have few transposon inserts, and 

bona fide non-essential genes, which should have many inserts. In C. neoformans, there is a 

limited set of bona fide essential genes. ERG11 is one such essential gene and the target of the 

antifungal drug fluconazole. We could very clearly see that Ds insertions within the coding 

sequence of ERG11 were not tolerated in our mutant library (Figure 2A). Similarly, transposon 

insertions were enriched in genes deleted within the Cryptococcus deletion collection compared 

with those not contained within the collection (p=3.47 * 10-15, Supplemental Figure 1C), with 

some clear exceptions.  
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To assess essentiality across the entire C. neoformans genome, we built a random forest machine 

learning model (Figure 2B). We started by taking the set of genes and essentiality predictions 

reported in Segal et al. (26) which contained ortholog and essentiality predictions for C. 

albicans, S. pombe, and S. cerevisiae genes. We then used FungiDB to identify Cryptococcus 

neoformans orthologs of these genes (37). Selecting only genes with identifiable orthologs in all 

four species left us with 1,653 genes. There are existing essentiality predictions for all species 

except C. neoformans (26). We reasoned that the majority of these genes conserved over the 

approximately 600 million years of evolution separating basidiomycetes from ascomycetes 

would likely have conserved essentiality as well, enabling us to use this set of genes to train our 

model. Specifically, genes essential or nonessential in S. cerevisiae, S. pombe, and C. albicans 

were similarly assumed to be essential or nonessential in C. neoformans.  

We built our model by first parameterizing our TN-seq data set based on those used in previous 

studies (Figure 2C; (26,27)). We captured 11 variables for each gene, 9 of which described the 

transposon insertions (total insert frequency within a gene, total insert frequency within a gene 

normalized to gene length, number of unique transposon insert locations within a gene, number 

of unique transposon insertion locations within a gene normalized to gene length, total insert 

frequency within the middle 80% of a gene, total insert frequency within the middle 80% of a 

gene normalized to gene length, length of largest insert-free gap, length of largest insert free gap 

normalized to gene length, and total transposon frequency in the 100 kb surrounding the gene) 

and 2 of which described the gene absent TN-seq information (chromosome and length of gene). 

We then randomly split our set of 1,653 genes into a training set of 1,322 genes and a validation 

set of 331 genes. This set includes 600 genes we assumed to be essential and 1,053 we assumed 

to be nonessential. We randomly chose the training and validation subsets 100 times and built a 
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random forest model from the training subset each time, testing the model against the validation 

set, and predicting essentiality (Essentiality Scores ranging from 0-1, with 1 being essential and 0 

being nonessential) for every gene on every iteration. Across the 100 models, we obtained a 

maximum combined precision (true positives/(true positives + false positives)) and recall (true 

positives/ (true positives + false negatives)) at a threshold essentiality score of 0.41, where the 

mean precision was 0.78 and the mean recall was 0.9 (Figure 2D). For consistency with past 

models, we used the default cutoff of 0.5, which still had a mean precision of 0.8 and recall of 

0.88. This model compares favorably to one used for C. albicans (Precision 0.71, Recall = 0.62) 

(27). Given that some differences are likely biological (ie. a conserved essential gene is not 

essential in Cryptococcus) rather than model defects, these scores are quite strong.  

We then used this model to predict the essentiality score for each gene from the 100 models and 

used the variation across these models to test whether the mean essentiality score (ES) was 

statistically different from the 0.5 cutoff. As a result, we define three classes of genes: essential 

genes (ES >0.5 and p<0.05 after Bonferroni correction), nonessential genes (ES<0.5 and p<0.05 

after Bonferroni correction) and unknown genes (p>0.05). Using this approach, we predicted 

1,412 essential genes, 5,382 nonessential genes, and 181 unknown genes. We then revisited our 

training data using these classifications. Of 1,653 genes in our original training set, 89 were 

classified as unknown (5.4%), compared with just 92 in the remaining 5,322 genes (1.7%) 

(p<0.0001, Fisher’s exact test). Given that the original assignment of essentiality was based on 

conservation, we were concerned that our model may have been overfit and was struggling to 

accurately determine essentiality for genes in the training set whose actual essentiality did not 

match the original assumption. Indeed, we identified no genes in our training set that were 
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statistically assigned opposite essentiality from the initial assumption we provided from 

homology. 

We thus retrained our model using a training set without all 89 genes with unknown essentiality 

in our first model. As before, we ran our training and validation 100 times and determined mean 

precision and recall values from this data (Figure 2D). Unsurprisingly, precision and recall were 

improved by removing data that the model had struggled to classify and our mean precision and 

recall at a threshold value of 0.5 were now 0.94 and 0.87. Our revised model had just 31 

unknown genes in the training set (2.0%) compared with 60 in the remaining 5,411 (1.1%). 

While this difference was still statistically significant (p=0.011, Fisher’s exact test), the 

magnitude of the discrepancy was substantially reduced from the first model. Notably, this 

revised model was capable of assigning essentiality to many genes that differed from that 

assumed in the initial conservation-based assumptions (Figure 3B,C, discussed below). 

We also extracted the importance of each value to the model’s predictions (Figure 2E). Our 

model was most strongly impacted by length adjusted metrics, including the strongest metric, 

which was the percentage of the gene that was covered by the largest insert free gap. 

Interestingly, the frequency of transposon insertions in the local environment (surrounding 100 

kb) and the specific chromosome had very little impact on the model, despite the biases in 

transposon insertion frequencies across the genome that we observed.  

We then used our revised model to predict essentiality scores for every Cryptococcus gene 

(Figure 2F, Supplemental Table 1). Using the statistical approach described above, we predicted 

1,465 essential genes and 5,419 nonessential genes, with 91 unknown genes. There was 

reasonably good overlap between our approach and the existing deletion collection. 76.4% 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.07.28.605507doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.28.605507
http://creativecommons.org/licenses/by-nc-nd/4.0/


(n=4,139) of the genes we scored as nonessential are deleted in the collection and 92.6% 

(n=1,357) of the genes we scored as essential are not in the collection. Still, there are numerous 

discrepancies. 23.6% of the genes (n= 1,280) we predict are non-essential are missing from the 

deletion collection. This is not inherently surprising as there are known nonessential genes 

missing from the whole genome deletion collection (eg., BAP1 and PAN1, TFs (38); PBS2 and 

MEC1, kinases (39); PTC5 and HPP2, phosphatases (40); and LMP1 (41)) and the deletion 

collection is available prepublication rather than in a complete state. Similarly, no claims have 

been made that failure to construct a deletion distinguishes essentiality rather than experimental 

failure.  

More surprising is that we classified 108 genes as essential that were present in the deletion 

collection. We hypothesized three potential explanations for this discrepancy. First, the 

construction of our mutant library required growth on SC-URA+GAL media. Any genes 

required for growth on this medium would score as essential in our assay. Additionally, our 

assay is performed in a pool. Insertion mutants with severe growth defects may be outcompeted 

by other strains and not be represented in the final TN-seq library, thus scoring as essential. 

Finally, some strains in the deletion collection may not have the intended gene deleted.  

We tested putative mutants from the deletion collection for five of the genes we classified as 

essential with a range of essentiality prediction scores (ranging from 0.58 to 0.98) to determine 

which of the models above may explain the discrepancy. We started by testing all five mutants, 

using 5’ and 3’ junction PCRs and in gene PCRs (Supplemental Figure 2A). For two of the 

mutants (CNAG_06887 (essentiality score (ES) = 0.58) and CNAG_05292 (ES = 0.95)), we 

were unable to PCR validate any of 5 independent colonies from the deletion collection, 

including positive PCR products for an in-gene PCR, suggesting that these strains did not contain 
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deletions of the indicated gene (Supplemental Figure 2B, C). For the other three genes 

(CNAG_02190 (ES = 0.76), CNAG_04763 (ES = 0.91), CNAG_00996 (ES = 0.98)) we 

validated their deletion in the deletion collection, indicating our TN-seq approach misclassified 

the genes (Supplemental Figure 2D).  

We tested the growth of the deletion alleles of the three misclassified genes. We found that the 

CNAG_02190 deletion had a growth defect that was exacerbated on YP+GAL and SC-

URA+GAL (Supplemental Fig 3A). The CNAG_04763 deletion had a very mild growth defect 

on YP+GAL that was exacerbated on SC-URA+GAL and SC-URA, while the CNAG_00996 

deletion made normal size colonies on both media but with unusual morphology on SC-

URA+GAL (Supplemental Figure 3C). To further query the growth of these mutants we used 

competition assays where we competed the NAT resistant mutants against an unmarked KN99 

wildtype strain. Both CNAG_02190 and CNAG_04663 were outcompeted by the wildtype while 

CNAG_00996 grew at relatively the same rate as the wildtype (Supplemental Fig 3B). Our data 

suggest that the discrepancies are likely a mix of at least two of our three models, although we 

lack a satisfying explanation for why CNAG_00996 scored as confidently essential in our hands 

(essentiality score of 0.867) but was clearly not essential and lacked a growth defect in our 

relevant media conditions. 

Finally, Ianiri et al. characterized essential C. neoformans genes in their 2015 study. They 

identified 21 genes that were described as essential in previous publications and additionally 

identified 21 more essential genes by looking for the failure to recover mutant haploid progeny 

from heterozygous mutants (11). Our analyses predicted 39 of those 42 genes to be essential as 

well. One possible explanation for the three exceptions is that the assay employed by Ianiri et al 

required mutant spores to germinate. Mutants defective in germination would score as essential 
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in their assay but not ours. Alternately, in our pooled assay, essential gene mutants could be 

complemented by neighboring wildtype cells through production of diffusible factors. This type 

of complementation would not occur in the assay used by Ianiri et al. None of the three genes we 

predict as nonessential are found in the deletion collection, perhaps favoring an issue with the 

TN-seq assay rather than a germination defect.  

Conservation of essential genes 

One of the primary goals of identifying essential genes in fungal pathogens is to identify 

potential targets for antifungal drug development. Because fungi are so closely related to 

humans, many genes are present in both pathogens and their hosts, making these genes poor 

choices for antifungal development. We used FungiDB (42) to annotate if each gene in the C. 

neoformans genome had a human ortholog. This approach identified 3,817 genes without human 

orthologs and 3,158 genes with human orthologs (Fig 3A). However, we identified only 302 

genes that we scored as essential that also lacked human orthologs, compared to the 1,163 

predicted essential genes with human orthologs (Fig 3A). The predicted essential genes lacking 

human orthologs were enriched for functions in various biosynthetic processes (such as “small 

molecular biosynthetic process”, p=1.87 e-21; “organic substance biosynthetic process”, p=4.53 

e-10; “biosynthetic process”, p=8.67 e-10) and also cell division (such as “cell cycle”, p=3.53 e-

5; “cell division”, p=7.83 e-5; chromosome segregation, p=7.23 e-4) (Supplemental Table 2).  

Previous work identified 694 genes whose orthologs were essential in ascomycete yeasts S. 

cerevisiae, S. pombe and C. albicans (26). We used FungiDB (42) to identify orthologs for these 

genes and found that 600 of these genes also had orthologs in C. neoformans, which is a 

basidiomycete. Our model predicted that 558 of these genes were also essential in C. 
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neoformans. Once again, we used FungiDB (42) to identify human orthologs and only 34 of 

these 561 conserved essential genes lacked human orthologs. This compares with 30 genes 

identified by Segal et al. for a similar comparison (essential in S. cerevisiae, S. pombe, C. 

albicans, ortholog in C. neoformans, no ortholog in humans) (26). Segal et al. used a different, 

relatively stringent method to identify orthologs and it is likely not surprising that they identified 

fewer genes, even without considering essentiality in C. neoformans. The 34 genes we identified 

as conserved essential genes lacking human orthologs include genes involved in inositol 

phosphoceramide metabolism, including an ortholog of AUR1, the target of the antifungal drug 

aureobasidin A (43). Further exploration of these genes, as well as those specific to C. 

neoformans, will likely be fruitful in targeted design of broad or narrow spectrum antifungal 

agents, respectively. 

When we compared our predicted essential genes in C. neoformans to those of the other fungi 

above, we identified 39 genes that had orthologs that scored as essential in the other three fungi, 

but our model scores as nonessential (Figure 3B). 28 of these 39 (71.8%) genes are represented 

in the deletion collection, which is similar to the average representation of deletions in the 

nonessential genome (76.4% of the scored nonessential genes have a deletion in the collection; 

p=0.570, Fisher’s exact test). The differential essentiality of a number of these orthologs may be 

explained by paralogy (gene duplicates). For example, C. neoformans CNAG_01675 is 

confidently nonessential, unlike the identified orthologs in the other species. But whereas the 

gene is single copy in the other three fungi, there are three paralogs in C. neoformans. Two of 

these paralogs, CNAG_01675 (ES=0.000003, p=0) and CNAG_02590 (ES=0, p=0), are in our 

set of predicted nonessential genes while the third paralog CNAG_06770 is confidently predicted 

to be essential (ES=0.987, p= 1.57 * 10-168). 17 of the genes that are predicted to be nonessential 
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in C. neoformans but are essential in the other fungi have paralogs in C. neoformans. However, 

the reasons for the non-essentiality specifically in C. neoformans for the 22 other genes lacking 

paralogs are not obvious. For example, the predicted nonessential C. neoformans genes 

CNAG_03878 and CNAG_07951 genes are orthologs of essential genes involved in 60S 

ribosomal biogenesis, which should be an essential process. Further exploration of many of these 

discrepant genes will likely be enlightening. 

We also queried the essentiality in C. neoformans of 1,053 genes that were classified 

nonessential in all 3 of the other fungi. 50 of these genes scored as essential in C. neoformans 

(Figure 3C). 11 of the 50 are present in the deletion collection, which is statistically enriched 

compared to the whole set of our predicted essential genes (p= 0.0012, Fisher’s exact test), 

suggesting that some of these discrepancies are likely false positives for essentiality in our 

predictions. Some of these genes may be false positives resulting from the TN-seq approach. For 

example, UGE1 and UGE2 are both homologs of GAL10 in S. cerevisiae, and presumably score 

as essential in our assay because they are required for growth on galactose, which was used to 

induce transposition. Both are present in the deletion collection. However, as above, other 

examples are less easily explained. For example, CNAG_06737 encodes an ortholog of VPS16, 

which is not essential in any of the three ascomycete yeasts, does not appear to have an annotated 

role in galactose metabolism, and does not appear to have paralogs in any of the three 

ascomycete species. While vps16+ is required for high temperature growth in S. pombe (44), at 

normal temperatures mutants appear to grow faster than wildtype (45). Understanding how 

VPS16 and other genes have become essential in C. neoformans will likely reveal unique 

elements of adaptation that differentiate basidiomycetes like C. neoformans from the ascomycete 

model yeasts. 
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TN-seq identifies genes involved in growth in fluconazole 

We also used our TN-seq libraries to assay the sensitivity/tolerance of C. neoformans to 

fluconazole on a genome-wide scale (Figure 4A). Fluconazole is one of the primary drugs used 

to treat many fungal pathogens. While the frontline therapy for cryptococcosis is a combination 

therapy of 5FC and amphotericin, azoles are often used instead either alone or in combination 

with amphotericin. Fluconazole is also typically used for long term suppression or prophylactic 

treatment. Azole drugs function by inhibiting the Erg11 protein, both reducing the synthesis of 

ergosterol and promoting the production of toxic intermediate sterols. We performed growth 

curves with serial dilutions of fluconazole to determine the half-maximal inhibitory 

concentration (IC50) for our starting strain when grown in YPD (Supplemental Figure 4). We 

then split our TN-seq library to grow in YPD with either 0.1% DMSO or the IC50 level of 

fluconazole (13.5 ug/mL), which is dissolved in DMSO (final concentration of 0.1%). After two 

rounds of dilution to an OD of 0.1 followed by growth to saturation (approximately 8 doublings 

per round, 16 total) in either DMSO or fluconazole, we determined the transposon landscapes in 

both populations. We compared these landscapes to that of the starting library that we used for 

essential gene prediction above. To control for differential growth rates and the effect of DMSO, 

we compared the frequency changes at every site in the genome after growth in fluconazole to 

the frequency changes after growth in 0.1% DMSO. To test for statistical significance, we 

compared the distribution of frequency changes across a gene to those of the presumably neutral 

intergenic sites across the entire genome (n=454,341). Because some individual insert sites can 

be noisy, especially at low insertion frequencies, we only scored genes with at least 5 unique 

insertion locations. This filtering removed 1,228 of our predicted essential genes but still allowed 

us to assay 237 predicted essential genes. The filtering also eliminated 387 predicted 
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nonessential genes and 64 “unknown” genes. In total, we were able to score the effect of 

fluconazole on mutants of 5,296 genes (Supplemental Table 1).  

We identified 398 genes that were specifically enriched or depleted for inserts after treatment 

(p<0.05 after a Bonferroni correction, n=5296) (Figure 4B). Of these, 185 genes had inserts that 

on average increased in frequency in fluconazole, meaning the mutants had a relative growth 

advantage in the presence of the drug, while 213 genes had inserts that on average decreased in 

frequency, meaning the mutants had enhanced sensitivity to the drug. We recovered known 

genetic interactions for fluconazole. For example, AFR1 is well known as a major efflux pump 

for fluconazole (46). Transposon insertions in AFR1 were significantly depleted after fluconazole 

selection (log(fluconazole/DMSO) = -0.971, p=1.52 e-57) (Figure 4B). In contrast, insertions in 

either of two genes, FCY1 and FCY2, involved in 5FC toxicity but not fluconazole toxicity were 

unaffected (FCY1: log(fluconazole/DMSO)= 0.0474, p=0.171; FCY2: log(fluconazole/DMSO)= 

0.0276, p=0.162) (Figure 4B) (47,48). Together, these data gave us confidence to explore the hits 

from our assay. 

Interestingly, among the strongest hits for fluconazole sensitivity were mutants in components of 

the RIM101 pathway, which had not previously been implicated in fluconazole sensitivity. Of 

nine described components of the RIM101 pathway in C. neoformans (49), we assayed eight here 

and six were sensitive to fluconazole (Figure 4C). Some of these RIM101 pathway genes 

exhibited similar magnitude insertion losses to the antifungal efflux pump AFR1 (46). We had 

limited statistical power for some of these RIM101 pathway genes (SNF7 had 0 coding 

transposon insertions and is not pictured) because insert sites were relatively low in number even 

prior to selection with fluconazole. To further investigate these hits, we assayed deletion mutants 

of eight RIM101 pathway genes (all but vps25) in spot dilution assays. All eight mutants exhibit 
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fluconazole sensitivity compared to wildtype (H99), even those that did not score as statistically 

significant in our TN-seq assay (Figure 4D).  

Assaying Essential Genes using TN-seq 

Essential genes are not represented in deletion collections, so these collections are not useful for 

directly screening essential gene functions. TN-seq mutant libraries can similarly not maintain 

null alleles of genes with essential functions. However, we hypothesized that insertions in 

regulatory regions of essential genes, which can sometimes be tolerated, may generate sensitized, 

or hypomorphic alleles. If so, then any selection affecting a pathway involving a given essential 

gene could favor or disfavor insertions in the regulatory regions of that gene. To test this 

hypothesis, we examined inserts near ERG11 in our datasets. We reasoned that mutants with 

transposon insertions in the region upstream of ERG11 should be specifically sensitive to 

fluconazole and thus should be depleted when a TN-seq library is treated with fluconazole 

(Figure 5A). This model was supported by our TN-seq data. Mutants with inserts into the 300 

base pair region directly upstream of ERG11 were well tolerated in DMSO but were selected 

against with the addition of fluconazole (p= 4.14 * 10-8; Figure 5B). In contrast, mutants with 

inserts into the 300 base pair region downstream of ERG11 were not depleted by the addition of 

fluconazole (p=0.383).  

We then extended these analyses to assay regulatory inserts on a genome-wide scale, similar to 

examining coding sequence insertions. We were able to examine 5’ regulatory insertions for 

6194 genes (compared with 5296 for coding insertions). 1,251 genes we predicted were essential 

had at least 5 unique insertion sites within the 300 bp upstream of the start codon compared with 

only 237 predicted essential genes that had at least 5 unique insertion sites within the far larger 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.07.28.605507doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.28.605507
http://creativecommons.org/licenses/by-nc-nd/4.0/


coding sequences. Of those 1,251 predicted essential genes, 126 had inserts significantly 

enriched (n=79) or significantly depleted (n=47) within 300 base pairs upstream of the start 

codon after fluconazole treatment (p<0.05 after Bonferroni correction, n=1,251). 

Interestingly, when we examined predicted essential genes with significant increases in insert 

frequency at the 5’ end in response to fluconazole (ie. mutants were more resistant), we saw a 

number of genes with mitochondrial functions (30 of 79 genes). These genes encoded 

components of the electron transport chain, the ATP synthase, mitochondrial ribosomal subunits, 

and others. In contrast, predicted essential genes with significant decreases in insert frequency at 

the 5’ end had significantly fewer genes with mitochondrial function (4 of 47 genes; p=0.0003, 

Fisher’s exact test). There are no obvious differences between the thirty genes we identified 

where inserts in the 5’ end conferred resistance and the four genes where inserts in the 5’ end 

conferred sensitivity (a mitochondrial ribosomal subunit, a malate dehydrogenase, a 

phosphoglycerate kinase, and an inositol phosphorylsphingolipid-phospholipase C), but there are 

reasonable models that could explain this pattern. For example, genes could fall into this 

category if they play a role in both mitochondrial function and cell wall integrity for example. 

Together, these results suggest that loss of mitochondrial function generally makes cells more 

resistant to fluconazole. This is consistent with past work showing that rotenone, a specific 

inhibitor of the electron transport chain complex I, is strongly antagonistic with fluconazole in C. 

neoformans (50). Our genetic data suggests this phenotype is broader than just the electron 

transport chain and includes general mitochondrial function.  

We also found we could use the TN-seq data to guide construction of hypomorphic alleles of 

essential genes, using ERG11 as a test case. Inserts across the region upstream of ERG11 

allowed us to define the regions where inserts would or would not disrupt ERG11 function. We 
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generated two targeted mutants, with inserts either 296 bases upstream of the start codon that 

were predicted not to alter fluconazole resistance or 77 bases upstream which were predicted to 

decrease fluconazole resistance. Consistent with our predictions, the -77 insertion generated 

strains which are highly sensitive to fluconazole while growing at wildtype levels on rich media 

(Figure 5D), while the -296 insertions generated strains that grew at wildtype levels on 

fluconazole and rich media.  

Shiny app allows navigation of fluconazole TN-seq data 

As a resource for the C. neoformans community, we developed an interactive Shiny app to help 

readers navigate our TN-seq data (Supplemental Figure 5, 

https://simrcompbio.shinyapps.io/Crypto_TN_seq_viewer/). This app includes data for all genes, 

however, genes that lack sufficient inserts (and thus did not pass our depth cutoffs) will display 

only a subset of the plots. The plots enable visualization of both the distribution and frequency of 

transposon insertions within a gene as well as how they respond to fluconazole selection. This 

should enable the C. neoformans community to more easily navigate this dataset.  

Discussion 

Here we present a TN-seq system for Cryptococcus neoformans than enables genome-wide 

assays of gene function. We used our TN-seq data to predict gene essentiality and to select and 

identify genes contributing to fluconazole sensitivity and resistance. We identified numerous 

essential genes as well as novel modifiers of fluconazole tolerance and resistance. Finally, we 

showed that transposon insertions can help guide the construction of hypomorphic alleles for 

essential genes and allow analysis of essential genes in a screen-like fashion. 
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Essential Gene Identification 

Identifying essential genes is important because these genes can serve as targets for antifungal 

drug discovery. We predicted 1,465 essential genes using a random forest machine learning 

model trained on our TN-seq data. This represents 21.0% of the genes tested. Approximately 

18% of the S. cerevisiae genome is essential (51) and 26% of the S. pombe genome is essential 

(52). There are multiple factors that could contribute to these differences in essentiality. S. 

pombe has far fewer genes (n=5,134)(53) than S. cerevisiae (n=6,275)(54) and Cryptococcus 

neoformans (n=6,975)(37), suggesting that the elevated proportion of essential genes in S. pombe 

may be the result of differential conservation of nonessential and essential genes in a reduced 

genome. However, Cryptococcus neoformans also has a higher proportion of essential genes than 

S. cerevisiae, despite having more genes. This could be explained by the whole genome 

duplication in S. cerevisiae, which generated many redundancies in gene function (55,56). 

Alternately, the TN-seq approach may be more liberal in assigning essential status than 

traditional genetic approaches. Indeed, a TN-seq based approach in C. albicans suggests that 

27.5% (1,610 of 5,893 genes) of the genome is essential (26). Because of the competitive growth 

in pooled settings, mutants that are sufficiently sick are difficult to sample, despite being viable, 

resulting in overestimation of the number of essential genes. 

Practically, scoring essentiality as a binary phenotype, where mutants either grow or do not, may 

not be a totally meaningful distinction, particularly in the context of antifungal drug 

development. Severely impairing pathogen growth may not be dramatically different from 

completely impairing pathogen growth in terms of clinical outcome. Further, TN-seq may also 

score genes required for various growth stages as essential. Our mutant library preparation 

method required growth on synthetic defined media containing galactose and lacking uracil. 
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Genes required for growth in these conditions may score as essential using TN-seq but not in 

traditional approaches. Indeed, we showed that some discrepancies between the existing deletion 

collection and our TN-seq approach were explained by growth defects under these conditions. 

Essentiality is frequently context dependent, with a gene’s essentiality being dependent both on 

the environment (eg. plates versus mice versus human hosts) and on the genetic background of 

the pathogen. Future experiments exploring variation in essentiality in animal models of 

infection will likely be informative.  

Fluconazole resistance and tolerance are highly multigenic 

Our TN-seq approach revealed numerous modifiers of fluconazole susceptibility and resistance. 

One of the strongest phenotypes we observed in our fluconazole TN-seq assay was for sensitivity 

to fluconazole conferred by loss of components of the RIM101 pathway. This result was 

confirmed by analysis of individual mutants. The RIM101 pathway is responsible for pH sensing 

and cell wall remodeling in response to elevated pH, as typically occurs upon entry into 

mammalian lungs. He we find that the RIM101 pathway function promotes resistance to 

fluconazole. This is not unprecedented as RIM101 pathway components are also required for 

fluconazole tolerance in Candida albicans (57). However, the Rim pathway in Cryptococcus 

neoformans is substantially diverged from that found in the Ascomycete lineage, which includes 

C. albicans. In Ascomycetes, pH sensing is carried out by the Rim21 pH sensor acting in 

conjunction with the arrestin-like Rim8 and the Rim9 chaperone. None of these three proteins 

are present in Basidiomycetes and are instead replaced by a different upstream pH sensing 

module including Rra1 and Nap1 (49,58). Given this dramatic upstream reprogramming of the 

Rim pathway in Cryptococcus relative to the ascomycete C. albicans, it is interesting that a 

similar phenotype is present. In S. cerevisiae, the Rim21 sensor appears to respond to imbalances 
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in plasma membrane lipids (59). While Rra1 is not a homolog of Rim21, perhaps it is detecting 

and responding to the same type of plasma membrane stress in C. neoformans, including 

potentially that triggered by fluconazole, which impairs the production of the membrane sterol 

ergosterol. In fact, loss of the Cdc50 lipid flippase changes how Rim pathway activation occurs 

in Cryptococcus, further supporting this model (60). cdc50Δ mutants have increased fluconazole 

susceptibility (61) and our assay confirmed this, albeit with a weak p-value resulting from very 

few coding inserts in CDC50 (p= 0.035, n=4). 

We also saw increased fluconazole resistance when transposon insertions were found upstream 

of genes involved in the electron transport chain and mitochondrial metabolism. This is 

consistent with past reports that rotenone, an inhibitor of the electron transport chain complex I, 

is very strongly antagonistic with fluconazole (50). It is not immediately clear why 

downregulating electron transport chain function would make cells grow better in the presence of 

fluconazole. One possible explanation is that slowing growth may allow cells without complete 

inhibition of ERG11 to produce enough ergosterol to prevent depletion from the membrane, thus 

allowing slower but more successful growth to continue (62). 

High throughput genomics 

TN-seq is one of several modern approaches that can be used to quickly assay gene function on a 

large scale. Broadly, these approaches fall into either insertional mutagenesis approaches (such 

as TN-seq) or CRISPR-based approaches. Many of the CRISPR approaches operate similarly to 

TN-seq except that they use a library of guide RNAs and a Cas9 to generate a single break and 

mutation per cell. The template sequence expressing the guide RNA can then be sequenced to 

determine which gene was disrupted. CRISPR approaches typically require synthesis of guide 
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RNA libraries, which can be expensive, but has advantages in customization relative to TN-seq 

approaches. As well, in the short term, TN-seq is typically cheaper because of the lower startup 

costs, but in the long run CRISPR will typically become less expensive because of lower 

sequencing and library preparation costs for more targeted libraries with less complicated library 

preparation. 

TN-seq does have significant advantages in portability. Our approach only requires the ability to 

introduce and mobilize a marked transposon. In contrast with CRISPR-based approaches, 

transposon mutant libraries do not require the synthesis of expensive whole genome guide RNA 

libraries that may need to be modified for every additional species or even isolate in species with 

particularly high sequence divergence. Our TN-seq approach could be readily applied to 

additional isolates or species across the Cryptococcus pathogenic species complex. Variation in 

essential genes is common across various organisms, including fungi (24,63). This variation also 

extends to drug resistance phenotypes as well (64). Because this type of variation can be driven 

both by sequence polymorphism and by gene content polymorphism, future exploration of strain 

variation in Cryptococcus and other fungi would likely benefit from a pangenome oriented 

approach, as is becoming common in bacteria (63). Indeed, initial studies in fungi like 

Aspergillus fumigatus have revealed enormous variation in gene content between individual 

isolates that TN-seq approaches would be extremely powerful in exploring (65,66).   

Assaying essential gene function 

Because deletion alleles of essential genes are inviable, screens using traditional deletion 

collections are unable to assay the contribution of essential genes to a given phenotype. This has 

long been a challenge for high throughput genetic assays and a number of solutions have been 
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developed to allow assays of essential genes. These solutions generally rely on partial loss of 

function and include the construction of collections of repressible alleles (27,67), hypermorphic 

alleles including the DAmP (decreased abundance by mRNA perturbation) libraries (68), RNAi 

libraries (69,70), and CRISPRi libraries (71,72). All of these approaches require either laborious 

one by one construction of targeted alleles (repressible promoters, DAmP alleles) or expensive 

synthesis of whole genome targeting libraries (RNAi, CRISPRi). In contrast, our TN-seq 

approach assayed 5’ modifiers across the entire genome in a single experiment that required no 

modifications to the typical TN-seq assay. We were able to identify modifiers of both the known 

essential gene and target of fluconazole ERG11 as well as recapitulate previously described 

fluconazole interactions that were unveiled using chemical screens. TN-seq in combination with 

chemical inhibitors can help to reveal mechanism of action and predict potential chemical 

interactions to help guide therapeutic development. While our TN-seq assay was conducted in a 

pool, it can also provide guidance to construct individual mutants, as we did to generate the 

fluconazole sensitive erg11 hypomorph (Figure 5D). Alternately, the pools can be cloned out and 

decoded using approaches like knockout sudoku to efficiently construct libraries of hypomorph 

alleles if desired (73). As described above, this approach also benefits from portability, allowed 

TN-seq to potentially be applied to assay the function of essential genes across multiple isolates 

or species.  

Material and Methods 

Media 

We routinely grew Cryptococcus neoformans strains on YPD media at 30°C. We made YPD 

using 20 g/L Bacto Agar, 20 g/L Bacto Peptone, 10 g/L Bacto Yeast Extract and 2% glucose. We 
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made YPD liquid the same way but omitting agar. We supplemented media with G418 (NEO) at 

200 ug/mL and Nourseothricin (NAT) at 100 ug/mL. We made SC-URA media using 6.7 g/L of 

yeast nitrogen base without amino acids, 20 g/L Bacto Agar, 2% glucose and 1.92 g/L SC-URA 

dropout powder mix. For raffinose or galactose media, we substituted the 2% glucose with 2% 

raffinose or 2% galactose. Strains were cryopreserved in 20% glycerol. 

We routinely grew bacterial stocks at 37°C. We made LB plates with 5 g/L Bacto Yeast Extract, 

10 g/L Bacto tryptone, 10 g/L sodium chloride, and 15 g/L bacto agar. We supplemented media 

with 100 mg/L ampicillin or 25 mg/L kanamycin. Strains were cryopreserved in 20% glycerol. 

Strain Construction 

We generated strains using an electroporation protocol modified from (74). We grew strains to 

saturation overnight at 30°C in YPD and diluted back to an OD600 of 0.2 in 100 mL of fresh YPD 

liquid. We then grew with shaking at 30°C until cultures reached an OD600 between 0.6 and 1.0. 

We then centrifuged cells to pellet them and washed them twice with ice-cold water. We 

resuspended them in 10 mL of electroporation buffer (10 mL Tris-HCl (pH 7.5), 1 mM MgCl2, 

270 mM sucrose, 1 mM DTT). We incubated cells on ice for one hour. We then pelleted cells 

again and resuspended them in 250 uL of EB. We mixed 45 uL of cell suspension with 5 uL of 

transformation DNA in a pre-cooled 2 mm gap electroporation cuvette. We then transformed 

using a BioRad Gene Pulse with settings of 0.45 kV and 125 uF. Immediately after 

electroporation, we added 2 mL of liquid YPD and transferred cells to a round bottom culture 

tube. We let cells recover overnight at room temperature and then pelleted cells to plate on 

selective media. After colonies were visible, we streak purified colonies on selective media 

before preparing DNA to PCR validate transformants. 
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We generated our TN-seq library strain (yBB119) in two steps. We first commercially 

synthesized (IDT) a dS minitransposon (75) containing a NEO resistance marker (35) (pBB51). 

We then used overlap PCR to add homology to the up and downstream regions surrounding an 

intron of URA5. We performed a first round PCR to build upstream and downstream regions 

with homology to a product containing the transposon (oBB229 & oBB283, 5’; oBB285 & 

oBB286, transposon; oBB284 & oBB235, 3’). We then used a second round PCR to assemble 

the pieces (oBB229 & oBB235). We gel extracted the amplified band and topo blunt cloned to 

make plasmid pBB65. We then digested plasmid pBB65 with KpnI and NotI to release the 

transposon with targeting homology and used that as template for a transformation into H99 C. 

neoformans to produce strain yBB115. This strain was selected on G418 to select for transposon 

integration. G418 resistant colonies were checked for growth on SC-URA to detect integrations 

in the correct location. 

We also commercially synthesized (IDT) a codon optimized version of the hyperactive 

AcTPase4x (Ac) transposase (pBB52) (76). We codon optimized the Ac transposase using the 

Optimizer webtool and the “random” method which assigns codon usage probabilistically across 

the gene sequence to roughly match the codon usage of the genome (34). We added a GAL7 

promoter using overlap PCR. In our first round PCR we amplified the GAL7 promoter (oBB183 

& oBB290) and the Ac transposase (oBB271 & oBB272). We then assembled these pieces in a 

second round PCR (oBB183 & oBB272). We gel extracted the amplified band and topo blunt 

cloned this product to make plasmid pBB63. We then subcloned the gal driven Ac into plasmid 

pSDMA25 (35) by digesting both vectors with XhoI. We additionally digested pBB63 with 

XmaI to digest the vector backbone to produce bands of a different size from the released insert. 

We called the resulting plasmid pBB68. We digested this plasmid with PacI to linearize it and 
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transformed it into yBB115. We selected transformants on YPD+NAT plates. We verified 

transposase activity by checking transformants for the ability to produce colonies on SC-Ura 

plates after overnight growth in YPGalactose liquid media and conducted a stability assay to 

check for stable integration. A successful strain was frozen down as yBB119.  

To generate specific transposon inserts at the 5’ end of ERG11, we used overlap PCR to add 

homology arms to the dS transposon. To generate 5’ inserts that disrupted ERG11 function 

(erg11-77), we amplified the upstream region from H99 genomic DNA using primers oBB583 

and oBB595, the downstream from H99 genomic DNA using primers oBB598 and oBB588, and 

the transposon from pBB51 using oBB596 and oBB597. We then stitched together the pieces in 

a second PCR using primers oBB589 and oBB590. We excised the amplified band from a gel, 

blunt cloned it with a topo blunt kit and sequence verified as pBB102. To generate inserts that 

did not disrupt ERG11 function (erg11-296) we amplified the upstream region from H99 

genomic DNA using primers oBB583 and oBB591, the downstream from H99 genomic DNA 

using primers oBB594 and oBB588, and the transposon from pBB51 using oBB592 and 

oBB593. We then stitched the pieces together in a second PCR using primers oBB589 and 

oBB590. We excised the amplified band from a gel, blunt cloned it with a topo blunt kit and 

sequence verified it as pBB100. We digested each plasmid with XhoI to release the insert and 

transformed into H99. We verified transformants using stability tests and PCR validation for 

junction PCRs (oBB212 & oBB583, 5’ junction; oBB171 & oBB588, 3’ junction). We called the 

resulting strains yBB163 and yBB164 (pBB100, erg11-296) and yBB165 and yBB281 (pBB102, 

erg11-77). 

Strain, plasmid, and primer lists are available as Supplemental Tables 3-5.  
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Mutant library construction  

We constructed our TN-seq mutant library from strain yBB119, which was built as described 

above. We began library construction by subculturing yBB119 from the freezer onto 

YPD+5FOA plates. We then started 5 x 10 mL cultures of yBB119 in YPD + 5FOA liquid 

media from independent colonies. We shook these cultures overnight at 30°C. We then 

centrifuged the cultures, decanted the supernatant, and resuspended the cell pellet in 20 mL of 

YP+raffinose. We then shook them overnight again at 30°C. The next day we spun down, 

decanted, resuspended in water, spun down a second time, decanted, and finally resuspended in 

100 mL of YPGal. We then plated 500 uL of culture to 160 SC-URA+GAL plates. With 5 

replicate cultures this totaled 800 plates. We incubated the plates for 4 (3 sets of plates) or 5 days 

(2 sets of plates) before scraping the colonies off of the plates using water and a cell spreader. 

We then spun them down, washed once with water and then resuspended in 500 mL of water. 

We then diluted that culture 1:10 into SC-ura media, which we shook overnight at 30C. We froze 

1.5 mL aliquots from these cultures in 20% glycerol.  

We then revived all five cultures from 1.5 mL aliquots in 50 mL of YPD+G418. We allowed 

them to grow to saturation with shaking at 30°C and then mixed all five cultures to form a pool. 

We froze 1.5 mL aliquots of this library in 20% glycerol in cryovials for future experiments.  

TN-seq sequencing library preparation 

To prepare DNA for sequencing, we used a modified version of the Qiagen Genomic-Tip Yeast 

DNA protocol. We followed all standard steps except that we extended both the lyticase and 

proteinase K treatments to 24 hours on a shaking incubator. Prior to applying DNA to the 

genomic-tip columns, we transferred the digested cells to a 50 mL tube containing lysing matrix 
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Y (MP Biomedicals). We then freeze cracked twice in liquid nitrogen (alternating between liquid 

nitrogen and a 42°C water bath). We then bead beat the cells using a Fastprep big prep adapter 

with 40 seconds of shaking at 4.0 m/sec with 5 minutes pause in between. We then pelleted the 

cells and applied the supernatant to the Qiagen genomic tip column. 

We prepared TN-seq libraries as previously described in S. pombe, with some modifications 

(22). We digested purified DNA using either MseI (10,000 U/mL) or CviAII (10,000 U/mL). 

Our digests used 10 ug of DNA in 500 uL of volume overnight at 37°C in CutSmart buffer, 

including 15 uL of each enzyme. We then used SPRIselect beads to clean and size select the 

digested DNA. We washed with 0.5 volumes of beads, pelleted on a magnet, removed the 

supernatant and added 0.2 volumes of beads before precipitating again. We then washed and 

eluted the DNA with 500 uL of water. We then added linkers with unique random barcodes via 

end ligation (88 uL of 10x ligation buffer, 143.5 uL of water, 153 uL of annealed barcoded 

linker, 5 uL of T4 DNA ligase, and 490 uL of the cleaned and size-selected DNA). We made the 

linkers from primers oBB912 (MseI) or oBB913 (CviAII) combined with primer oBB914. We 

mixed the primers at a concentration of 10 uM each in 1x HF PCR buffer and denatured at 95°C 

for 1 minute, followed by cycles of 10°C decreases in temperature for 7 minutes until a final 

cycle at 20°C. 

After end ligation, we split the DNA from each digest into two pools. We used PCR to amplify 

these pools separately with 4 different dS-specific oligos (oBB915, oBB916, oBB917, oBB918), 

intended to create diversity in starting location. We thus performed 12 PCR reactions per digest 

per pool, except for oBB918, for which we performed only 9 PCR reactions per digest. In 

addition, we ran 3 linker-only controls per pool. In sum, each digest thus produced two pools of 

45 reactions, or 90 reactions per digest. Each PCR reaction contained 24.5 uL water, 10 uL 5x 
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HF buffer, 1 uL dNTPs (10 mM), 8 uL linker ligated DNA, 1 uL linker oligo oBB919 (10 uM), 5 

uL dS-specific oligo (2uM) or water, and 0.5 uL Phusion polymerase (2,000 U/mL). We ran this 

PCR using 94°C for 1 minutes, 6 cycles of (94°C for 15 seconds, 65°C for 30 seconds, 72°C for 

30 seconds), 24 cycles of (94°C for 15 seconds, 60°C for 30 seconds, 72°C for 30 seconds), and 

finally 72°C for 10 minutes.  

We then combined the reactions with shared primers from each pool (12 or 9 reactions) to form a 

subpool. We ran a subset of these subpools on a gel for validation. Successful amplification of a 

TN-seq library produces a smear of DNA rather than discrete bands. Defined bands suggest low 

complexity libraries, potentially resulting from jackpot events. 

We then added the remaining Illumina adapters and barcodes with a second round of PCR on the 

subpools. This second reaction contained 28.5 μL water, 10 μL 5x HF buffer, 1 μL dNTPs (10 

mM), 2.5 μL oBB920 (10 μM), 2.5μL barcode oligo (oBB921-oBB932; 10μM), 5 μL of insert 

PCR pool, 0.5 μL Phusion polymerase (2,000 U/mL) and was incubated at 94°C for 2 min, 5x 

(94°C for 30 sec, 54°C for 30 sec, 72°C for 40 sec). We gave each individual pool a unique 

barcode (1 barcode per enzyme digest mix). For each subpool, we ran 4 PCRs or 3 for those 

derived from oBB918. We then pooled reactions these reactions and cleaned the DNA using 

SPRIselect beads. We used 600 uL of pooled PCR product from the reactions above and added 

0.75 volumed of SPRI beads. We precipitated the beads on a magnet, removed the supernatant 

and washed the pellet with 85% ethanol. We then eluted with 200 uL of TE. We repeated this 

wash a second time.  

Finally, we confirmed this library by using a PCR with oligos that matched the end of the 

Illumina adapters (oBB933 and oBB934). This reaction was 15.75 μL water, 5 μL 5x HF buffer, 
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0.5 μL dNTPs (10 mM), 1.25 μL oBB933 (10 μM), 1.25 μL oBB934 (10 μM), 1 μL library 

DNA, 0.25 μL Phusion polymerase (2,000 U/mL). We ran this PCR at 98°C for 30 sec, 35x 

(98°C for 10 sec, 62°C for 30 sec, 72°C for 40 sec), 72°C for 10 min. We then quantified the 

library using a Qubit and determined fragment sizes using a Bioanalyzer. Sequencing was 

performed on a NextSeq instrument at the Stowers Molecular Biology Core. Raw sequencing 

reads are available at PRJNA1134100 on the Sequence Read Archive. 

TN-seq Fluconazole Assay 

To perform our fluconazole assay, we revived a 1.5 mL aliquot of our TN-seq library in 99 mL 

of YPD. After it grew to saturation, we inoculated two 100 mL YPD cultures at OD600 = 0.1. We 

then saved the remaining culture to prepare DNA for a T0 timepoint. We added 0.1 mL of 

DMSO to one culture and 0.1 mL of DMSO containing 13.5 mg/mL of fluconazole to the other. 

We grew these cultures with shaking at 30 C overnight. The next day we diluted back to OD600 = 

0.1 in 100 mLs of fresh YPD with 0.1% DMSO and with or without fluconazole. We grew to 

saturation overnight with shaking at 30°C again. The next day we collected cell pellets via 

centrifugation to prepare DNA. 

Data analysis 

We processed data by first identifying reads with exact matches to the dS transposon sequence 

with a custom perl script (available at https://github.com/bbillmyre/Crypto_TNseq). We trimmed 

dS and linker sequences, saving the barcode sequences trimmed from the linker. We then 

mapped the reads to the H99 genome (v44 from FungiDB (41,42)) using bwa mem (77). We 

used samtools (78), picard, and bedtools (79) for further processing before identifying the start of 

each transposon derived read and outputting a .bed file using a custom perl script (available at 
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https://github.com/bbillmyre/Crypto_TNseq). We reduced inserts that shared a common linker 

barcode to a single representative. We then used R to combine bed files by site from the various 

runs (T0, DMSO, and IC50 fluconazole). We converted insert counts to insertion frequencies and 

set 0 insert sites (where there were inserts at T0) from the DMSO and IC50 fluconazole libraries 

to the minimum frequency >0 otherwise detected in that library. Resetting 0 values to minimum 

frequency artificially reduces the size of the phenotypes detected but allows log adjustment of 

our data. We also removed any sites with less than 6 inserts in the original T0 pool to reduce 

potential sampling error in the fluconazole experiments. We then labeled each insert site either 

with the gene body it was part of or as intergenic if not between an ATG and STOP codon of a 

gene.  

For our machine learning model, we then used custom R scripts to calculate parameters 

describing the landscape of transposon insertions across each gene (available at 

https://github.com/bbillmyre/Crypto_TNseq). For each gene we determined the following: 

Chromosome, Gene Length, Total Number of inserts, Total number of inserts divided by gene 

length, sum of insert frequency, sum of insert frequency divided by gene length, largest insert 

free gap in bases, largest insert free gap as percentage of gene length, sum of insert frequency in 

the middle 80% of the gene body, sum of insert frequency in the middle 80% of the gene body 

divided by length, and sum of insert frequency over the surrounding 100 kb sequence 

surrounding the gene. We obtained a set of gene essentiality and orthology predictions for C. 

albicans, S. cerevisiae, and S. pombe from a previous study (26). We used FungiDB to find 

orthologs in C. neoformans of the C. albicans genes in this dataset. We then selected a set of 

genes with orthologs in all four species that shared essentiality status in C. albicans, S. 

cerevisiae, and S. pombe. We used this set as a training set for a machine learning model. Using 
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R, we randomly split it into 80% training data and 20% validation data (random seed=100). We 

then trained using the “randomForest” package with parameters (mtry=5, ntree=10000, 

importance =TRUE)(80). We repeated this 100 times, saving importance parameters and 

precision/recall estimates from the validation set for each run. We also used each model to 

predict the genome each time. We then used a Student’s t-test to test whether the distribution of 

our essentiality scores for each gene were different from the essentiality threshold of 0.5 (p<0.05 

after a Bonferroni correction).  

Upon reviewing the data, we discovered that genes in the training set were enriched for poor p 

values. We manually reviewed transposon insertions in many of these genes, which suggested 

that the model was struggling to predict essentiality for these genes because the TN-seq data 

disagreed with the conservation-based assumptions that were part of the training set. We dropped 

all of the genes with p>0.05 that were part of the original training set and repeated our model 

construction as above to produce our V2 model. As before, we predicted essentiality from this 

model 100 times.  

For the fluconazole experiments we used R to perform statistical tests. We calculated a log10 fold 

change for IC50 to DMSO growth (mathematically the same as the ratio of IC50/T0 to 

DMSO/T0). We used a Mann-Whitney U test to compare the distribution of fold-changes in a 

gene region to that of the intergenic inserts. We also performed multiple test correction using a 

Bonferroni correction. For 5’ and 3’ modifiers we performed the statistical tests in exactly the 

same manner except that we compared the distributions of fold changes of inserts within the 300 

bp immediately upstream of the start codon (3’) or downstream of the stop codon (5’) to the 

intergenic inserts. We again performed a Bonferroni correction.  
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Competition Assay 

To conduct competition assays, we grew cultures overnight in YPD at 30°C. We then added 

enough KN99 and enough competitor strain to reach an OD600 of 0.05 of each strain to 5 mL of 

SC-URA+GAL broth. We plated a concentration series of these initial mixed cultures to YPD 

plates. We then grew the cultures overnight with shaking at 30°C. The next day we plated a 

concentration series to YPD plates. After colonies grew from each concentration series, we 

replica plated to YPD+NEO and to new YPD plates. We counted colonies the next day and 

recorded the number of colonies that grew on YPD+NEO (just marked strain) versus YPD (both 

strains). 

Spot Dilution Assays 

To perform spot dilution assays, we grew cultures overnight in YPD at 30°C until they reached 

saturation. We then measured the OD600 using a spectrophotometer. We diluted cells to an OD600 

of 20. We then performed 10-fold serial dilutions and plated 5 uL spots of each dilution to the 

appropriate media. Plates were incubated at 30°C until we took pictures as detailed in each 

figure.  

Growth Curves 

To measure growth curves we grew cultures overnight in YPD at 30°C until they reached 

saturation. We diluted cells to an OD600 of 0.00166 in fresh YPD and added 150 uL to each well 

of a 96 well plate. We then made a drug stock containing (for each sample) 50 uL of YPD with 

0.2 uL of DMSO containing 1000X fluconazole. This stock was thus 0.4% DMSO and 4X 

fluconazole for each condition. We then added 50 uL of drug stock YPD mix to each well to 
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achieve a final mix in each well of cells at an OD600 of 0.00125, DMSO at 0.1%, and fluconazole 

(if present) at 1X concentration. We grew the plates on a TECAN Infinite M200 Pro at 30°C 

with shaking. We ran 8 technical replicates for each sample and report the OD600 at 24 hours 

normalized to the no drug control at 24 hours. 

Data Availability 

Sequences have been deposited into the Sequence Read Archive under project accession no. 

PRJNA1134100. Original data underlying this manuscript can be accessed from the Stowers 

Original Data Repository at http://www.stowers.org/research/publications/libpb-2480 
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Figure Legends 

Figure 1. TN-seq in C. neoformans. A) Transposon insertions (orange arrow) into nonessential 

genes results in viable cells. In contrast, insertions into essential genes will result in dead and 

nonrecoverable cells. B) TN-seq works by generating a library of cells where each cell has a 

single independent transposon insertion in a random location. As in A, those insertions into 

essential regions cause the cells to die and are nonrecoverable. As a result, the total library 

(bottom) is depleted in insertions in essential regions. C) The Ac/Ds transposon was split into an 

Ac transposase and a Ds transposon containing a neomycin resistance marker. This Ds 

transposon was integrated into an intron of URA5 and the Ac transposase was integrated into the 

safe haven locus. The resulting stain is ura- and neomycin resistant. Upon initiating transposition 

via growth on galactose, the strain becomes URA+ and mutant at another locus (depicted here as 

YFG1). 

Figure 2. TN-seq enabled prediction of gene essentiality. A) 176 unique transposon insertions 

(orange vertical lines) are plotted along a region of Chromosome 1 centered on the known 

essential gene ERG11 and showing two flanking predicted nonessential genes. For nine of the 

displayed sites, we recovered transposon insertions in both orientations. B) Flow chart depicting 

the random forest approach to classifying gene essentiality. C) Schematic illustrating parameters 

that describe each gene within the TN-seq data for machine learning. D) Precision recall curve 

describing tradeoff between precision and recall for both of the random forest models. Each 

point is the mean of 100 replicates where the training data was randomly split into training and 

validation sets. The threshold was then varied by 0.01 from 0.01 to 0.99 for each set. E) The 

importance of each feature for the V2 model is plotted. Each importance value is also calculated 
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from the same 100 replicates of the training data. Error bars indicate standard deviation. F) 

Histogram of the essentiality prediction score for the entire gene set of C. neoformans based on 

the mean of 100 replicates. 

Figure 3. Evolution and conservation of essentiality. A) Histogram of essentiality score as in 

Figure 2F, split by conservation status in humans. Genes without human orthologs are shown at 

top and those with human orthologs are shown below. B) Genes with orthologs in S. cerevisiae, 

C. albicans, S. pombe and C. neoformans where the orthologs are essential in all three 

ascomycetes but predicted dispensable in C. neoformans. C) Genes with orthologs in S. 

cerevisiae, C. albicans, S. pombe and C. neoformans where the orthologs are dispensable in all 

three ascomycetes but predicted essential in C. neoformans. 

Figure 4. Using TN-seq to assay genetic contribution to fluconazole resistance. A) TN-seq 

libraries were selected with IC50 levels of fluconazole dissolved in DMSO or with just the 

equivalent amount of DMSO as a control. Libraries were sequenced at time 0, and after two days 

growth in DMSO or fluconazole to identify genes with differential transposon insertion 

frequencies after selection. B) Volcano plot of 5296 genes with 5 or more insert sites (out of 

6975 Cryptococcus neoformans genes) displaying the mean log10 (Fluconazole/DMSO) value on 

the x-axis and the -log10 (Bonferroni corrected p-value) on the y-axis. Individual genes are 

shaded orange if the distribution of inserts is statistically different from the distribution of inserts 

into noncoding regions (p<0.05 via Mann-Whitney U test after Bonferroni correction). Genes 

that are not statistically different are shaded blue. C) Boxplot displaying distribution of log10-

adjusted fold changes in insert density (ie. frequency in fluconazole/frequency in DMSO). 

Boxplots show first quartile, median, third quartile. The whiskers show the range to a maximum 

of 1.5 times the interquartile range above and below the first and third quartile, respectively. 
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Outlier data points (outside the whiskers) are not displayed. Not displaying outliers results in 

15,902 of 454,341 intergenic sites, 1 of 107 sites from afr1, 1 of 4 sites from nap1, 1 of 34 sites 

from rim23, 2 of 127 sites from rra1, 12 of 74 sites from rim20, 0 of 5 sites from vps25, 5 of 77 

sites from rim101, 5 of 151 sites from rim 13, and 1 of 11 sites from vps23 not being displayed 

although those data were considered in the statistical analyses. Snf7 is not shown because there 

were 0 inserts between the start and stop codons. Inserts in intergenic regions are indicated in 

grey, genes where inserts were significantly depleted after fluconazole treatment are shown in 

orange (afr1, rim23, rra1, rim20, rim101, rim13, vps23) and genes where inserts were not 

significantly depleted after fluconazole are shown in blue (nap1 and vps25). Notably, both nap1 

and vps25 had very low numbers of inserts that limited statistical power. D) Spot dilution assays 

with 5 μL spots plated. The initial leftmost spot is of OD600 = 20 culture and each successive spot 

is a 10-fold dilution, so that the final spot should be 107 less concentrated than the first. Both 

plates were spotted on the same day with the same dilution series. YPD plates were imaged after 

48 hours at 30°C and fluconazole plates were imaged after 72 hours at 30°C. Mutants were 

spotted on two separate plates for YPD and fluconazole media, each with a wildtype H99 control 

present. 

Figure 5. Regulatory inserts enable assays of essential gene function. A) Schematic of model 

for 5’ transposon insertions. Wildtype cells (top row) should grow well on YPD and be 

moderately impaired (~50%) by an IC50 level of fluconazole. Cells with a transposon insertion 

in the 5’ regulatory region of ERG11 should grow well on YPD but be highly sensitive to IC50 

levels of fluconazole. B) Boxplot displaying distribution of log10-adjusted fold changes in insert 

density (ie. frequency in fluconazole/frequency in DMSO). Each column shows inserts only 

within a 300 base pair region either immediately upstream of the start codon or downstream of 
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the stop codon. Boxplots show first quartile, median, third quartile. The whiskers show the range 

to a maximum of 1.5 times the interquartile range above and below the first and third quartile, 

respectively. Outliers are displayed as individual datapoints. C) Volcano plot of 1,251 predicted 

essential genes with 5 or more insert sites in the 300 base pairs upstream of the start codon (out 

of 6975 Cryptococcus neoformans genes) displaying the mean log10 (Fluconazole/DMSO) value 

on the x-axis and the -log10 (Bonferroni corrected p-value) on the y-axis. Individual genes are 

shaded orange if the distribution of inserts is statistically different from the distribution of inserts 

into noncoding regions genome-wide (p<0.05 via Mann-Whitney U test after Bonferroni 

correction). Genes that are not statistically different are shaded blue. D) Spot dilution assays with 

5 μL spots plated. The initial leftmost spot is of OD600 = 20 culture and each successive spot is a 

10-fold dilution, so that the final spot should be 105 less concentrated than the first. Both plates 

were spotted on the same day with the same dilution series. YPD plates were imaged after 48 

hours at 30°C and fluconazole plates were imaged after 72 hours at 30°C. 

Supplemental Figure 1. Transposon insertions are biased regionally and by selection. A) 

Transposon insertion count is plotted across chromosomes. There are clear peaks at the rDNA 

array on Chromosome 2 and the URA5 locus on Chromosome 8, as well as the surrounding 

chromosome. B) Transposon insertion count is plotted across the 2000 bases immediately 

upstream and downstream of the start codon. Rows are split based on predicted gene essentiality. 

C) Insertions per base are plotted for genes not present vs present in the deletion collection. 

Boxplots show first quartile, median, third quartile. The whiskers show the range to a maximum 

of 1.5 times the interquartile range above and below the first and third quartile, respectively. 

Outliers are displayed as individual datapoints. 
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Supplemental Figure 2. PCR validation of predicted essential genes with strains in deletion 

collection. A) Schematic of PCR validation strategy for deletions. WT alleles should be 

detectable with an in-gene PCR that amplifies wildtype DNA sequence (left). Mutant alleles 

should have the wildtype allele replaced with a drug resistance marker. The junctions between 

the genomic sequence and the resistance marker should be detectable via PCR on both the 5’ and 

3’ ends (right). A successful mutant should produce bands from the 5’ junction and 3’ junction 

but not from the in-gene PCR. A wildtype strain should produce a band only from the in-gene 

PCR. B) PCR validations for 5 independent colonies from the deletion collection strain for 

CNAG_05292. All five produce wildtype in-gene bands and no junction bands. C) PCR 

validations for 5 independent colonies from the deletion collection strain for CNAG_06887. All 

five produce wildtype in-gene bands and no junction bands. D) PCR validations for deletion 

collection strains for CNAG_04763, CNAG_00996, CNAG_02190. All three strains produce 

negative in-gene PCRs and successful junction PCRs for both 5’ and 3’ ends. 

Supplemental Figure 3. Some incorrectly predicted essential genes have growth defects in 

transposase inducing conditions. A) Spot dilution assays with 5 μL spots plated. The initial 

leftmost spot is of OD600 = 20 culture and each successive spot is a 10-fold dilution, so that the 

final spot should be 105 less concentrated than the first. All four plates were spotted on the same 

day with the same dilution series. B) Competition assay with percentage of mutant plotted on the 

y-axis. Each mutant was competed against the same unmarked wildtype KN99 parental strain. 

Strains were competed in the SC-URA+Gal media used in the original assay. Strains were 

originally mixed at a 50:50 ratio based on OD600. Inconsistency with mixing of CNAG_00996 

suggests an altered OD600 to CFU ratio. C) Picture of colonies on YPD plates from the 

competition assay for the cnag_00996Δ mutant. Colonies were distinctly different in appearance 
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and replica plating to YPD+NAT media confirmed that rough colonies were the mutant strain. 

Panel on right is zoomed in from inset box on left and is adjusted to help visualize difference 

between colonies more clearly.  

Supplemental Figure 4. Concentration dependent inhibition of growth by fluconazole in 

YPD liquid. Growth at 24 hours plotted relative to a no drug control. X axis displays 

concentration of fluconazole added in DMSO. Y axis shows OD600 normalized to OD600 of no 

drug control. 

Supplemental Figure 5. Shiny app allows visualization of data on publicly available 

website. Screenshot of a publicly available interactive Shiny app 

(https://bbillmyre.shinyapps.io/Crypto_TN_seq_viewer/) that visualizes data from the 

Cryptococcus neoformans TN-seq assay. There are four plots, displaying the distribution of fold 

changes within a gene compared with intergenic inserts (as in figure 4C,) the distribution of 

insert frequencies across a gene at three different experimental stages, transposon insertion 

frequencies across a gene with an additional 300 bases before the ATG and after the stop codon, 

and finally a volcano plot (as in figure 4B) with the current gene highlighted in black. The app 

only accepts C. neoformans systematic names (ie., CNAG_0####). 

Supplemental Table 1. Table containing essentiality predictions and fluconazole response 

data. 

Supplemental Table 2. Table containing GO predictions for predicted essential genes 

lacking predicted human orthologs 

Supplemental Table 3. Strain table. 
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Supplemental Table 4. Plasmid table. 

Supplemental Table 5. Primer table. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.07.28.605507doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.28.605507
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 

1. Denning DW. Global incidence and mortality of severe fungal disease. Lancet Infect Dis 
[Internet]. 2024 Jan 12 [cited 2024 Feb 8];0(0). Available from: 
https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(23)00692-8/fulltext 

2. Craw JA, Beer L, Tie Y, Jaenicke T, Shouse RL, Prejean J. Viral Rebound Among Persons 
With Diagnosed HIV Who Achieved Viral Suppression, United States. JAIDS J Acquir 
Immune Defic Syndr. 2020 Jun 1;84(2):133.  

3. Roemer T, Krysan DJ. Antifungal Drug Development: Challenges, Unmet Clinical Needs, and 
New Approaches. Cold Spring Harb Perspect Med. 2014 May 1;4(5):a019703.  

4. Perfect JR. Cryptococcus neoformans: A sugar-coated killer with designer genes. FEMS 
Immunol Med Microbiol. 2005;45(3):395–404.  

5. Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, et al. Recognition of 
seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal 
Genet Biol. 2015 May 1;78:16–48.  

6. Jallow S, Govender NP. Ibrexafungerp: A First-in-Class Oral Triterpenoid Glucan Synthase 
Inhibitor. J Fungi. 2021 Feb 25;7(3):163.  

7. Feldmesser M, Kress Y, Mednick A, Casadevall A. The Effect of the Echinocandin Analogue 
Caspofungin on Cell Wall Glucan Synthesis by Cryptococcus neoformans. J Infect Dis. 2000 
Dec 1;182(6):1791–5.  

8. Burks C, Darby A, Gómez Londoño L, Momany M, Brewer MT. Azole-resistant Aspergillus 
fumigatus in the environment: Identifying key reservoirs and hotspots of antifungal resistance. 
PLoS Pathog. 2021 Jul;17(7):e1009711.  

9. Kang SE, Sumabat LG, Melie T, Mangum B, Momany M, Brewer MT. Evidence for the 
agricultural origin of resistance to multiple antimicrobials in Aspergillus fumigatus, a fungal 
pathogen of humans. G3 Bethesda Md. 2022 Feb 4;12(2):jkab427.  

10. Denning DW, Bromley MJ. How to bolster the antifungal pipeline. Science. 2015 Mar 
27;347(6229):1414–6.  

11. Ianiri G, Idnurm A. Essential Gene Discovery in the Basidiomycete Cryptococcus 
neoformans for Antifungal Drug Target Prioritization. mBio. 2015 Mar 
31;6(2):10.1128/mbio.02334-14.  

12. Liu OW, Chun CD, Chow ED, Chen C, Madhani HD, Noble SM. Systematic genetic 
analysis of virulence in the human fungal pathogen Cryptococcus neoformans. Cell. 2008 Oct 
3;135(1):174–88.  

13. Lehner KR, Stone MM, Farber RA, Petes TD. Ninety-Six Haploid Yeast Strains With 
Individual Disruptions of Open Reading Frames Between YOR097C and YOR192C, 
Constructed for the Saccharomyces Genome Deletion Project, Have an Additional Mutation 
in the Mismatch Repair Gene MSH3. Genetics. 2007 Nov;177(3):1951–3.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.07.28.605507doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.28.605507
http://creativecommons.org/licenses/by-nc-nd/4.0/


14. Li Z, Kim KS. RELATe enables genome-scale engineering in fungal genomics. Sci Adv. 
2020 Sep 18;6(38):eabb8783.  

15. Goodman AL, McNulty NP, Zhao Y, Leip D, Mitra RD, Lozupone CA, et al. Identifying 
genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host 
Microbe. 2009 Sep 17;6(3):279–89.  

16. Gawronski JD, Wong SMS, Giannoukos G, Ward DV, Akerley BJ. Tracking insertion 
mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus 
genes required in the lung. Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16422–7.  

17. van Opijnen T, Bodi KL, Camilli A. Tn-seq: high-throughput parallel sequencing for 
fitness and genetic interaction studies in microorganisms. Nat Methods. 2009 Oct;6(10):767–
72.  

18. Langridge GC, Phan MD, Turner DJ, Perkins TT, Parts L, Haase J, et al. Simultaneous 
assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res. 
2009 Dec;19(12):2308–16.  

19. Guo Y, Park JM, Cui B, Humes E, Gangadharan S, Hung S, et al. Integration Profiling of 
Gene Function With Dense Maps of Transposon Integration. Genetics. 2013 Oct;195(2):599–
609.  

20. Lee SY, Hung S, Esnault C, Pathak R, Johnson KR, Bankole O, et al. Dense 
Transposon Integration Reveals Essential Cleavage and Polyadenylation Factors Promote 
Heterochromatin Formation. Cell Rep. 2020 Feb 25;30(8):2686-2698.e8.  

21. Grech L, Jeffares DC, Sadée CY, Rodríguez-López M, Bitton DA, Hoti M, et al. Fitness 
Landscape of the Fission Yeast Genome. Mol Biol Evol. 2019 Aug 1;36(8):1612–23.  

22. Billmyre RB, Eickbush MT, Craig CJ, Lange JJ, Wood C, Helston RM, et al. Genome-
wide quantification of contributions to sexual fitness identifies genes required for spore 
viability and health in fission yeast. Cullen PJ, editor. PLOS Genet. 2022 Oct 
27;18(10):e1010462.  

23. Michel AH, Hatakeyama R, Kimmig P, Arter M, Peter M, Matos J, et al. Functional 
mapping of yeast genomes by saturated transposition. Deshaies RJ, editor. eLife. 2017 May 
8;6:e23570.  

24. Chen P, Michel AH, Zhang J. Transposon insertional mutagenesis of diverse yeast 
strains suggests coordinated gene essentiality polymorphisms. Nat Commun. 2022 Mar 
21;13(1):1490.  

25. Michel AH, Schie S van, Mosbach A, Scalliet G, Kornmann B. Exploiting homologous 
recombination increases SATAY efficiency for loss- and gain-of-function screening [Internet]. 
bioRxiv; 2019 [cited 2024 Jan 19]. p. 866483. Available from: 
https://www.biorxiv.org/content/10.1101/866483v1 

26. Segal ES, Gritsenko V, Levitan A, Yadav B, Dror N, Steenwyk JL, et al. Gene 
Essentiality Analyzed by In Vivo Transposon Mutagenesis and Machine Learning in a Stable 
Haploid Isolate of Candida albicans. mBio. 2018 Oct 30;9(5):10.1128/mbio.02048-18.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.07.28.605507doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.28.605507
http://creativecommons.org/licenses/by-nc-nd/4.0/


27. Fu C, Zhang X, Veri AO, Iyer KR, Lash E, Xue A, et al. Leveraging machine learning 
essentiality predictions and chemogenomic interactions to identify antifungal targets. Nat 
Commun. 2021 Nov 11;12(1):6497.  

28. Gale AN, Sakhawala RM, Levitan A, Sharan R, Berman J, Timp W, et al. Identification of 
Essential Genes and Fluconazole Susceptibility Genes in Candida glabrata by Profiling 
Hermes Transposon Insertions. G3 Bethesda Md. 2020 Oct 5;10(10):3859–70.  

29. McClintock B. Chromosome Organization and Genic Expression. Cold Spring Harb 
Symp Quant Biol. 1951 Jan 1;16:13–47.  

30. Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, et al. The genome 
sequence of Schizosaccharomyces pombe. Nature. 2002 Feb;415(6874):871–80.  

31. Gatermann KB, Hoffmann A, Rosenberg GH, Käufer NF. Introduction of Functional 
Artificial Introns into the Naturally Intronless ura4 Gene of Schizosaccharomyces pombe. Mol 
Cell Biol. 1989 Apr 1;9(4):1526–35.  

32. Janbon G. Introns in Cryptococcus. Mem Inst Oswaldo Cruz. 2018 Feb 
19;113(7):e170519.  

33. Dumesic PA, Natarajan P, Chen C, Drinnenberg IA, Schiller BJ, Thompson J, et al. 
Stalled Spliceosomes Are a Signal for RNAi-Mediated Genome Defense. Cell. 2013 Feb 
28;152(5):957–68.  

34. Puigbò P, Guzmán E, Romeu A, Garcia-Vallvé S. OPTIMIZER: a web server for 
optimizing the codon usage of DNA sequences. Nucleic Acids Res. 2007 Jul;35(Web Server 
issue):W126–31.  

35. Arras SDM, Chitty JL, Blake KL, Schulz BL, Fraser JA. A Genomic Safe Haven for 
Mutant Complementation in Cryptococcus neoformans. PLOS ONE. 2015 Apr 
9;10(4):e0122916.  

36. Cain AK, Barquist L, Goodman AL, Paulsen IT, Parkhill J, van Opijnen T. A decade of 
advances in transposon-insertion sequencing. Nat Rev Genet. 2020 Sep;21(9):526–40.  

37. Basenko EY, Pulman JA, Shanmugasundram A, Harb OS, Crouch K, Starns D, et al. 
FungiDB: An Integrated Bioinformatic Resource for Fungi and Oomycetes. J Fungi. 2018 Mar 
20;4(1):39.  

38. Jung KW, Yang DH, Maeng S, Lee KT, So YS, Hong J, et al. Systematic functional 
profiling of transcription factor networks in Cryptococcus neoformans. Nat Commun. 2015 
Apr 7;6(1):6757.  

39. Lee KT, So YS, Yang DH, Jung KW, Choi J, Lee DG, et al. Systematic functional 
analysis of kinases in the fungal pathogen Cryptococcus neoformans. Nat Commun. 2016 
Sep 28;7(1):12766.  

40. Jin JH, Lee KT, Hong J, Lee D, Jang EH, Kim JY, et al. Genome-wide functional 
analysis of phosphatases in the pathogenic fungus Cryptococcus neoformans. Nat Commun. 
2020 Aug 24;11(1):4212.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.07.28.605507doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.28.605507
http://creativecommons.org/licenses/by-nc-nd/4.0/


41. Janbon G, Ormerod KL, Paulet D, Iii EJB, Yadav V, Chatterjee G, et al. Analysis of the 
Genome and Transcriptome of Cryptococcus neoformans var. grubii Reveals Complex RNA 
Expression and Microevolution Leading to Virulence Attenuation. PLOS Genet. 2014 Apr 
17;10(4):e1004261.  

42. Stajich JE, Harris T, Brunk BP, Brestelli J, Fischer S, Harb OS, et al. FungiDB: an 
integrated functional genomics database for fungi. Nucleic Acids Res. 2012 Jan;40(Database 
issue):D675-681.  

43. Hashida-Okado T, Ogawa A, Endo M, Yasumoto R, Takesako K, Kato I. AUR1, a novel 
gene conferring aureobasidin resistance on Saccharomyces cerevisiae: a study of defective 
morphologies in Aur1p-depleted cells. Mol Gen Genet MGG. 1996 May 23;251(2):236–44.  

44. Hayles J, Wood V, Jeffery L, Hoe KL, Kim DU, Park HO, et al. A genome-wide resource 
of cell cycle and cell shape genes of fission yeast. Open Biol. 2013 May;3(5):130053.  

45. Sideri T, Rallis C, Bitton DA, Lages BM, Suo F, Rodríguez-López M, et al. Parallel 
Profiling of Fission Yeast Deletion Mutants for Proliferation and for Lifespan During Long-
Term Quiescence. G3 GenesGenomesGenetics. 2014 Dec 1;5(1):145–55.  

46. Sanguinetti M, Posteraro B, La Sorda M, Torelli R, Fiori B, Santangelo R, et al. Role of 
AFR1, an ABC Transporter-Encoding Gene, in the In Vivo Response to Fluconazole and 
Virulence of Cryptococcus neoformans. Infect Immun. 2006 Feb;74(2):1352–9.  

47. Billmyre RB, Applen Clancey S, Li LX, Doering TL, Heitman J. 5-fluorocytosine 
resistance is associated with hypermutation and alterations in capsule biosynthesis in 
Cryptococcus. Nat Commun. 2020 Jan 8;11(1):127.  

48. Chang YC, Lamichhane AK, Cai H, Walter PJ, Bennett JE, Kwon-Chung KJ. Moderate 
levels of 5-fluorocytosine cause the emergence of high frequency resistance in cryptococci. 
Nat Commun. 2021 Jun 8;12(1):3418.  

49. Pianalto KM, Ost KS, Brown HE, Alspaugh JA. Characterization of additional 
components of the environmental pH-sensing complex in the pathogenic fungus 
Cryptococcus neoformans. J Biol Chem. 2018 Jun 29;293(26):9995–10008.  

50. Wambaugh MA, Denham ST, Ayala M, Brammer B, Stonhill MA, Brown JC. Synergistic 
and antagonistic drug interactions in the treatment of systemic fungal infections. eLife. 2020 
May 5;9:e54160.  

51. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, et al. Functional profiling of 
the Saccharomyces cerevisiae genome. Nature. 2002 Jul;418(6896):387–91.  

52. Kim DU, Hayles J, Kim D, Wood V, Park HO, Won M, et al. Analysis of a genome-wide 
set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol. 2010 
Jun;28(6):617–23.  

53. Rutherford KM, Lera-Ramírez M, Wood V. PomBase: a Global Core Biodata Resource—
growth, collaboration, and sustainability. Genetics. 2024 Feb 20;iyae007.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.07.28.605507doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.28.605507
http://creativecommons.org/licenses/by-nc-nd/4.0/


54. Wong ED, Miyasato SR, Aleksander S, Karra K, Nash RS, Skrzypek MS, et al. 
Saccharomyces genome database update: server architecture, pan-genome nomenclature, 
and external resources. Genetics. 2023 May 4;224(1):iyac191.  

55. Dietrich FS, Voegeli S, Brachat S, Lerch A, Gates K, Steiner S, et al. The Ashbya 
gossypii Genome as a Tool for Mapping the Ancient Saccharomyces cerevisiae Genome. 
Science. 2004 Apr 9;304(5668):304–7.  

56. Wolfe KH, Shields DC. Molecular evidence for an ancient duplication of the entire yeast 
genome. Nature. 1997 Jun 12;387(6634):708–13.  

57. Garnaud C, García-Oliver E, Wang Y, Maubon D, Bailly S, Despinasse Q, et al. The Rim 
Pathway Mediates Antifungal Tolerance in Candida albicans through Newly Identified 
Rim101 Transcriptional Targets, Including Hsp90 and Ipt1. Antimicrob Agents Chemother. 
2018 Feb 23;62(3):e01785-17.  

58. Ost KS, O’Meara TR, Huda N, Esher SK, Alspaugh JA. The Cryptococcus neoformans 
Alkaline Response Pathway: Identification of a Novel Rim Pathway Activator. PLoS Genet. 
2015 Apr 10;11(4):e1005159.  

59. Nishino K, Obara K, Kihara A. The C-terminal Cytosolic Region of Rim21 Senses 
Alterations in Plasma Membrane Lipid Composition: INSIGHTS INTO SENSING 
MECHANISMS FOR PLASMA MEMBRANE LIPID ASYMMETRY. J Biol Chem. 2015 Dec 
25;290(52):30797–805.  

60. Brown HE, Ost KS, Esher SK, Pianalto KM, Saelens JW, Guan Z, et al. Identifying a 
novel connection between the fungal plasma membrane and pH-sensing. Mol Microbiol. 
2018;109(4):474–93.  

61. Huang W, Liao G, Baker GM, Wang Y, Lau R, Paderu P, et al. Lipid Flippase Subunit 
Cdc50 Mediates Drug Resistance and Virulence in Cryptococcus neoformans. mBio. 2016 
May 10;7(3):10.1128/mbio.00478-16.  

62. Altamirano S, Simmons C, Kozubowski L. Colony and Single Cell Level Analysis of the 
Heterogeneous Response of Cryptococcus neoformans to Fluconazole. Front Cell Infect 
Microbiol [Internet]. 2018 Jun 19 [cited 2024 Apr 24];8. Available from: 
https://www.frontiersin.org/articles/10.3389/fcimb.2018.00203 

63. Rosconi F, Rudmann E, Li J, Surujon D, Anthony J, Frank M, et al. A bacterial pan-
genome makes gene essentiality strain-dependent and evolvable. Nat Microbiol. 
2022;7(10):1580–92.  

64. Opijnen T van, Dedrick S, Bento J. Strain Dependent Genetic Networks for Antibiotic-
Sensitivity in a Bacterial Pathogen with a Large Pan-Genome. PLOS Pathog. 2016 Sep 
8;12(9):e1005869.  

65. Lofgren LA, Ross BS, Cramer RA, Stajich JE. The pan-genome of Aspergillus fumigatus 
provides a high-resolution view of its population structure revealing high levels of lineage-
specific diversity driven by recombination. PLoS Biol. 2022 Nov;20(11):e3001890.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.07.28.605507doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.28.605507
http://creativecommons.org/licenses/by-nc-nd/4.0/


66. Barber AE, Sae-Ong T, Kang K, Seelbinder B, Li J, Walther G, et al. Aspergillus 
fumigatus pan-genome analysis identifies genetic variants associated with human infection. 
Nat Microbiol. 2021 Dec;6(12):1526–36.  

67. Roemer T, Jiang B, Davison J, Ketela T, Veillette K, Breton A, et al. Large-scale 
essential gene identification in Candida albicans and applications to antifungal drug 
discovery. Mol Microbiol. 2003;50(1):167–81.  

68. Breslow DK, Cameron DM, Collins SR, Schuldiner M, Stewart-Ornstein J, Newman HW, 
et al. A comprehensive strategy enabling high-resolution functional analysis of the yeast 
genome. Nat Methods. 2008 Aug;5(8):711–8.  

69. Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, et al. Systematic 
functional analysis of the Caenorhabditis elegans genome using RNAi. Nature. 2003 
Jan;421(6920):231–7.  

70. Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, et al. A genome-wide 
transgenic RNAi library for conditional gene inactivation in Drosophila. Nature. 2007 
Jul;448(7150):151–6.  

71. Zhang YM, Zheng L, Xie K. CRISPR/dCas9-Mediated Gene Silencing in Two Plant 
Fungal Pathogens. mSphere. 2023 Feb 21;8(1):e0059422.  

72. Billerbeck S, Prins RC, Marquardt M. A Modular Cloning Toolkit Including CRISPRi for 
the Engineering of the Human Fungal Pathogen and Biotechnology Host Candida glabrata. 
ACS Synth Biol. 2023 Apr 21;12(4):1358–63.  

73. Anzai IA, Shaket L, Adesina O, Baym M, Barstow B. Rapid curation of gene disruption 
collections using Knockout Sudoku. Nat Protoc. 2017 Oct;12(10):2110–37.  

74. Fan Y, Lin X. Multiple Applications of a Transient CRISPR-Cas9 Coupled with 
Electroporation (TRACE) System in the Cryptococcus neoformans Species Complex. 
Genetics. 2018 Apr;208(4):1357–72.  

75. Weil CF, Kunze R. Transposition of maize Ac/Ds transposable elements in the yeast 
Saccharomyces cerevisiae. Nat Genet. 2000 Oct;26(2):187–90.  

76. Lazarow K, Du ML, Weimer R, Kunze R. A Hyperactive Transposase of the Maize 
Transposable Element Activator (Ac). Genetics. 2012 Jul;191(3):747–56.  

77. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler 
transform. Bioinformatics. 2009 Jul 15;25(14):1754–60.  

78. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence 
Alignment/Map format and SAMtools. Bioinforma Oxf Engl. 2009 Aug 15;25(16):2078–9.  

79. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic 
features. Bioinformatics. 2010 Mar 15;26(6):841–2.  

80. Liaw A, Wiener M. Classification and Regression by randomForest. R News. 2(3):18–22.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.07.28.605507doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.28.605507
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.07.28.605507doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.28.605507
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1

A

Non-essential Gene

Ac/Ds
Transposon

Essential Gene

Ac/Ds
Transposon

B
Not Ess Ess Not Ess

Not Ess Ess Not Ess

Not Ess Ess Not Ess

Not Ess Ess Not Ess

Not Ess Ess Not Ess

Cell 1

Cell 2

Cell 3

Cell X

...

Library
(all cells)

C

ura5

NEODs Ds

ex1 ex2 ex3

+
G

al
(t

ra
ns

po
si

tio
n) YFG1

URA5 ex1 ex2 ex3 yfg1

int2int1

int2int1

NEODs Ds

x x
x x

x x
x x

ura-

NEOr

YFG1+

URA+

NEOr

yfg1-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.07.28.605507doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.28.605507
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2

A B

C

D

F

E

ZFC6 ERG11
CNAG
_07308ZFC6

120000 122500 125000 127500

Conserved essential 
and nonessential genes 

Conserved essential and
nonessential genes minus unknowns

from V1 model 

Training Set Validation Set

Randomly
split

Test ModelBuild Model

Classify 
All Genes 

Random Forest
Model v1

Training Set Validation Set

Randomly
split

Test ModelBuild Model

Classify 
All Genes 

Random Forest
Model v2

Largest insert-free gap

Frequency of inserts= 7/total across pool
Unique inserts= 4

Middle 80% of gene

Im
po

rt
an

ce

0.00

0.05

0.10

0.15

0

1000

3000

4000

5000

2000

0.25 0.50 0.75 1.000.00

1.0

0.75

0.5

0.25

0.0
0.0 0.25 0.5 0.75 1.0

C
ou

nt

Essentiality Score

F
re

qu
en

cy

F
re

qu
en

cy
pe

r 
ba

se

U
ni

qu
e

in
se

rt
s

U
ni

qu
e 

in
se

rt
s

pe
r 

ba
se

F
re

qu
en

cy
 in

m
id

dl
e 

80
%

La
rg

es
t G

ap

La
rg

es
t G

ap
/

le
ng

th
 o

f g
en

e

C
hr

om
os

om
e

F
re

qu
en

cy
 in

su
rr

ou
nd

in
g 

10
0 

kb

Le
ng

th

F
re

qu
en

cy
 p

er
 b

as
e

 in
 m

id
le

 8
0%

Threshold=0.50
Mean Prec= 0.87

Mean Recall= 0.94

V1
V2

Recall

P
re

ci
si

on

Unknown
(n=91)

Essential (n= 1,465) Nonessential (n=5,419)

Coordinate

100 kb
Frequency per 100 kb=35/total across pool

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.07.28.605507doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.28.605507
http://creativecommons.org/licenses/by-nc-nd/4.0/


S. cerevisiae

C. albicans

S. pombe

C. neoformans

Figure 3

S. cerevisiae

C. albicans

S. pombe

C. neoformans

Conserved nonessentials Conserved essentials 

39 genes 50 genes

A

CB

Essentiality Score
0.00

C
ou

nt

0.25 0.50 0.75 1.00

0

1000

3000

2000

0

1000

3000

2000

Essential genes 
without human orthologs

n=302

Nonessential genes 
without human orthologs

n=3,475

Unknown without 
human orthologs

(n= 40)

Unknown with
human orthologs

(n= 51)

Nonessential genes 
with human orthologs

n=1944

Essential genes 
with human orthologs

n=1,163

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.07.28.605507doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.28.605507
http://creativecommons.org/licenses/by-nc-nd/4.0/


( 
   

   
   

   
   

  )
Figure 4

A B

C

D

Initial
Library

IC50
Fluconazole

DMSO

ge
ne

 r
eq

ui
re

d 
fo

r 
dr

ug
 r

es
is

ta
nc

e

-L
og

10
(c

or
re

ct
ed

 p
-v

al
ue

)
Mean(Log10(Fluconazole/DMSO frequency))

-1.5 -1.0 -0.5 0 0.5 1.0 1.5

0

100

200

RIM23

In
te

rg
en

ic

af
r1

na
p1

rim
23

rr
a1

rim
20

vp
s2
5

rim
10
1

rim
13

vp
s2
3

-1

-2

0

1

2

Lo
g 1

0
F

re
qu

en
cy

 in
 IC

50
 F

lu
co

na
zo

le
F

re
qu

en
cy

 in
 0

.1
%

 D
M

S
O

nap1Δ
rra1Δ

vps23Δ
snf7Δ
rim23Δ

WT(H99)

WT(H99)

rim20Δ
rim13Δ
rim101Δ

Rim Components

YPD
YPD + 

13.5 μg/mL fluconazole

FCY2
FCY1

AFR1

p<0.05
p>0.05
RIM pathway

p<0.05
p>0.05

Up after fluconazoleDown after fluconazole

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.07.28.605507doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.28.605507
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5
A B

C

D

DMSO IC50

-1.5

-1.0

0.5

-0.5

0.0

ERG11 
Insert 
Location 3' 300 bp

5' 300 bp

*
*

( 
   

   
   

   
   

  )
Lo

g 1
0

F
re

qu
en

cy
 in

 IC
50

 F
lu

co
na

zo
le

F
re

qu
en

cy
 in

 0
.1

%
 D

M
S

O

ATG STOP

ERG11

ATG STOP

ERG11

YPD
IC50 

Fluconazole

x x
x x

Treatment

Mean(Log10(Fluconazole/DMSO frequency))

-L
og

10
(c

or
re

ct
ed

 p
-v

al
ue

)

20

10

15

5

0

YPD + 13.5 μg/mL 
fluconazoleYPD 

Wildtype (H99)
snf7Δ

rim101Δ

ERG11

ERG11
-296

-77

Up after fluconazoleDown after fluconazole

-1 -0.5 0 0.5

p<0.05
p>0.05
mitochondrial
and p<0.05

5 prime
essential genes

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.07.28.605507doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.28.605507
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Figure 1
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Supplemental Figure 3
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Supplemental Figure 4
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Supplemental Figure 5
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