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Introduction
Thanks to the rapidly decreasing cost of high-throughput 
genotyping technologies, genome-wide association studies 
(GWASs) have identified thousands of single nucleotide poly-
morphisms (SNPs) robustly associated with hundreds of com-
plex human diseases and traits,1 providing novel insights into 
the disease mechanisms2 and offering new therapeutic targets.3 
However, the large number of GWAS-identified genetic loci 
only explains a small proportion of the disease heritability, 
commonly estimated from twin and family-based studies. 
For example, a recent large-scale meta-analysis of GWAS has 
identified 67 SNPs associated with the risk of breast cancer, 
which, however, only explains 14% of the heritability of breast 
cancer.4 This so-called missing heritability problem has been 
attributed to the yet-to-be-identified susceptibility loci of 
even smaller effect sizes,5 rare genetic variants (minor allele 

frequency (MAF) ,1%),6,7 as well as gene–gene (G × G) and 
gene–environment (G × E) interactions.8

In spite of the important roles of G × G and G × E 
interactions in understanding disease mechanisms and fill-
ing in the missing heritability, there have been very few 
successes in identifying such interactions.9,10 Lack of statis-
tical power is one of the main reasons for such limited suc-
cess. Standard G × G analysis based on GWAS data entails 
interaction test between each possible pair of SNPs, while 
standard G × E analysis tests the interaction between the 
environmental exposure of interest and each of the GWAS 
SNPs. As G × G and G × E interactions are second-order 
effects, they are more difficult to detect than genetic main 
effects. A rule of thumb is that, given the same significance 
level and comparable magnitude of effect size, detecting a 
G × E interaction would require a sample size at least 4 
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times larger than that for detecting a genetic main effect.11 
The lack of power is further exacerbated in the analysis 
of G × G interactions due to the curse of dimensionality: 
one million tests of SNP main effects would correspond 
to 5 × 1011 tests of pairwise SNP interactions. As a result, 
while a typical GWAS that genotypes around one million  
SNPs is designed to ensure enough power for detecting 
genetic main effects, straightforward genome-wide scan-
ning of G × G and G × E interactions can be severely 
underpowered. In response to this pressing challenge, many 
new statistical methods have been proposed to improve the 
power of G × G and G × E interaction tests. Many new 
methods are aimed at reducing the burden of multiple test-
ing. For example, Kooperberg and Leblanc12 proposed to 
perform formal G × G tests only for those SNPs with some 
marginal/main effects. Other authors proposed some alter-
native or hybrid strategies to filter SNPs for formal G × E 
testing.13–16 Another line of research is to group SNPs into 
genes or biological pathways to aggregate multiple weak/
moderate signals and reduce the total number of interac-
tion tests. He et al.17 proposed a gene-based G × G test 
by first performing principal component analysis (PCA) on 
multiple SNPs in linkage disequilibrium (LD) in a gene 
region, and then testing interactions between each pair of 
PCs in the two genes. In addition to several new gene-based 
G × E tests,18–20 Tang et al.21,22 proposed biological path-
way-based G × E tests and demonstrated their applications 
to pancreatic cancer.

In this paper, we propose a parsimonious and powerful 
gene-based interaction test that can be applicable to both 
G × G and G × E testing. Our proposed method is moti-
vated by Tukey’s one degree-of-freedom (1-df) test for inter-
action,23 which was first introduced to statistical genetics 
by Chatterjee et al.24 in the context of testing genetic main 
effects while adjusting for possible G × E effects. The test 
of Chatterjee et al.24 is useful in de novo GWAS scanning, 
aimed at discovering SNPs with any effect, ie, both genetic 
main and G × E effects or either effect alone. However, in 
the post-GWAS era, it is often of primary interest to test 
and discover G × G or G × E interaction effect itself. Here 
we propose a two-step approach to test G × G/G × E inter-
actions: the first step is to perform PCA on the multiple 
SNPs within a gene region, along the line of He et al.17, and 
the second step is to perform Tukey’s 1-df test specifically 
for the interaction effect. We derive the score test for the lat-
ter, which is fast and numerically stable to compute. Using 
extensive simulations, we show that the proposed approach, 
which combines the two parsimonious models, namely, the 
PCA and Tukey’s 1-df form of interaction, outperforms 
other state-of-the-art methods. We also demonstrate the 
utility and efficiency gains of the proposed method with 
applications to testing G × G interactions for Crohn’s dis-
ease using the Wellcome Trust Case Control Consortium 
(WTCCC) GWAS data and testing G × E (SNP-set by 

smoking) interaction using data from a case–control study 
of pancreatic cancer.

Methods
existing methods: sNP-based and gene-based G × G 

and G × e tests. We consider a case–control study with a total 
sample size n including n0 controls and n1 cases (n = n0 + n1).  
Let Yi denote the binary disease status of individual i: 0 for 
controls and 1 for cases (i = 1,..., n). Let Zi denote the cova-
riate vector, including, eg, sex, age, and leading principal 
components capturing population substructure. Given two 
SNPs to be tested for G × G interaction, let X1i and X2i 
denote the genotypes of the two SNPs in subject i, each 
equal to 0, 1, and 2 for major allele homozygotes, heterozy-
gotes, and minor allele homozygotes, respectively. In this 
paper, we exclusively focus on multiplicative G × G/G × E 
interactions in the logistic regression framework; see Ref. 
25 for tests of additive interactions. A commonly used SNP-
based G × G test is based on the following logistic regres-
sion model:

logit P Y Z X X X Xi Z i i i i i=( )( ) = + + + +1 0 1 1 2 2 12 1 2β β β β β′ , (1)

where we assume the additive genetic model for both SNPs. 
Alternative genetic models, such as the genotypic and domi-
nant models, can also be assumed; see Ref. 26 for details. To 
test the null hypothesis of no G × G interaction, ie, H0:  
β12 = 0, we can perform a 1-df likelihood ratio test (LRT), 
or its asymptotically equivalent Wald and score tests. As 
pointed out before, the total number of all pairwise G × G 
interaction tests is much larger than that of SNP main effect 
tests in the GWAS setting, leading to prohibitively high 
computational cost and low statistical power. To conduct 
SNP-based G × E test between a SNP and an environ-
mental exposure, eg, smoking, we can similarly fit a logistic 
regression model

logit P Y Z X E X Ei Z i G i E i GE i i=( )( ) = + + + +1 0β β β β β′ , (2)

where Ei denotes the exposure of subject i. We test the null 
hypothesis H0: βge

 = 0 with a 1-df LRT.
Gene-based G × G and G × E tests have also been 

proposed to reduce the burden of multiple testing and 
aggregate weak/moderate signals in genes and biologi-
cal pathways. Assume two sets of SNPs mapped to two 

genes of interest, denoted as X1,i = …( )′X Xi iL1 1 1 1, ,, ,  and 

X ,i2 = …( )′X Xi iL2 1 2 2, ,, ,  for subject i. A SNP is assigned to a 
gene if it is located within certain range of the gene’s tran-
scription start and end sites, eg, ±20,000 base pairs (20 kb), 
to include SNPs in regulatory regions.27 Most gene-based 
multilocus G × G tests are based on the following saturated 
interaction model:
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The null hypothesis to be tested is H0 12: β =
β β12 11 12 1 2

0, ,, , .…( )′ =L L  A multivariate score test can be per-
formed based on the test statistic Tscore = U′  V–1U, where U is 
the efficient score vector of length L1 × L2 for β12, and V is its 
asymptotic covariance matrix under H0; see Ref. 18 for details. 
The score test is preferred here over the LRT or Wald test 
because it requires only fitting the null model without inter-
actions and is more computationally efficient. However, even 
with the score test, the genetic main effects need to be esti-
mated under the null model and can cause numerical insta-
bility due to the multicollinearity among SNPs in high LD 
within a gene region. In addition, Tscore approximately follows 
a χ2-distribution with a large number of degrees of freedom 
(L1 × L2) under H0, suffering from loss of power. Pan et al.18 
proposed to test H0 with the sum-of-squared score statistic 
(SSU) TSSU = U′ U, assuming an identity covariance matrix 
in Tscore. TSSU has an asymptotic distribution of a mixture of 
χ2(1)’s, which can be approximated by a scaled and shifted χ2 
distribution.18 As shown by Pan,28,29 the SSU test is equiva-
lent to the permutation-based version of a variance component 
score test for a random-effects logistic regression model for 
high-dimensional hypothesis testing.30 In addition, the SSU 
test is equivalent to the variance component score test in ker-
nel machine regression under a linear kernel, which has been 
shown to be powerful in rare variant association tests31 and 
gene-based G × E tests.19 Model (3) can be easily modified to 
perform gene-based G × E test:
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Multivariate score test and SSU test for H0 1: βΕ = …=
βEL1

0=  can be similarly derived. Of note, the SSU test may 
still suffer from numerical instability, as the genetic main 
effects need to be estimated under H0.

To overcome the multicollinearity problem, research-
ers have proposed to first perform PCA on the multiple 
SNPs in a gene region and then test for interactions based 
on the leading PCs.17,21,22,27 Specifically, the PCA is used 
to summarize SNPs in each gene as uncorrelated (orthogo-
nal) linear combinations of the original SNPs accounting 
for, eg, 90% of the total genetic variation. The number of 
the resulting PCs, denoted as PC1,..., PCK , is usually much 
smaller than the number of the original genotyped SNPs. 
He et al.17 proposed the following gene-based G × G model 

based on the leading K1 and K2 PCs of the two genes of 
interest:
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To test the null hypothesis H0 12 12 11: , ,,γ γ= …(
γ 12 1 2

0, ,K K )′ =  He et al.17 proposed to employ an LRT whose 
test statistic approximately follows a χ2-distribution with  
K1 × K2 degrees of freedom under H0. Tang et al.21,22 adapted 
Model (5) to conduct gene- and pathway-based G × E test:

logit P Y Z PC E

PC E

i Z i k ik
k

K

E i

Ek ik i
k

=( )( ) = + + +

+

=
∑1 0

1
1 1

1

1

1 1

β β β′ γ

γ ,
11

1

1=
∑
K

 (6)

where PCik1’s are the leading K1 PCs for the SNPs mapped 
to a gene or biological pathway. The null hypothesis H0: 
γE1 = . = γEK1 = 0 can be tested with an LRT or score test.

New method: tukey’s 1-df interaction test. Although 
there are typically fewer interaction terms in Model (5) than 
in Model (3) (K1 × K2 versus L1 × L2), the former can still be 
large for interactions involving large genes and may lead to 
loss of power. Here we propose to employ the parsimonious 
Tukey’s 1-df form of interaction
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Note that the above interaction model assumes that the 
interaction effect is proportional to the sum of the product 
of genetic main effects. A single parameter θ is used to cap-
ture the interactions between the PCs of the two genes, lead-
ing to the parsimonious Tukey’s 1-df form of interaction. For 
numerical stability and computational efficiency, we propose 
a score test for H0: θ = 0. We derive the score test statistic as 
follows:

1. Let ψ β βΖ= ′ ′ ′( )′0 1 2, , ,γ γ  and X Z PC PCi i i i= ′ ′ ′( )′1 1 2, , ,, ,
 

be the nuisance parameters and their corresponding 
covariate vector in Model (7), where γ γ γ1 1 1 1 1

= …( )′, ,, , K
 

and γ γ γ1 1 1 1 1
= …( )′, ,, , .K  We denote the disease prob-

ability under Model (7) by
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Model (7) can be easily extended to gene-based testing 

of G × E:
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where H0: θ = 0 corresponds to no interaction between 
the gene and environmental exposure E. A score test can be 
similarly derived, whose test statistic follows a χ 2-distribution 
with one degree of freedom.

Of note, our proposed Models (7) and (8) are conceptu-
ally similar to those proposed by Chatterjee et al.24; however, 
there are two main distinctions. First, while Chatterjee et al 
directly modeled the genotyped SNPs, we propose to uti-
lize the PCA technique to reduce the dimension and model 
the uncorrelated PCs, which enjoys numerical stability and 
improved statistical power (as will be shown in the Results 
section). Second, and more important, the null hypothesis to 
be tested in Chatterjee et al.24 was on the genetic main effects 
of one gene, ie, ′ = … = =H K0 1 1

0: γ γ  in Model (8) while 
accounting for possible G × E interaction effects in Tukey’s 
1-df form of interaction. In contrast, our focus here is specifi-
cally to test the interaction effect, ie, H0: θ = 0. Note that the 
nuisance parameter θ is not identifiable under ′H0

, and some 
special treatments were proposed by Chatterjee et al.24; how-
ever, all nuisance parameters are identifiable under H0: θ = 0 in 
our proposed Models (7) and (8), and standard large-sample 
likelihood theory can be applied.

results
A simulation study is often used to evaluate and compare 
different statistical methods’ Type I error rates and powers 
based on a large number of simulated datasets from some 
known models, eg, those with or without G × G interac-
tions. We performed extensive simulations to evaluate the 
proposed gene-based Tukey’s 1-df G × G interaction test 
and compared it with the state-of-the-art methods of He 
et al.17 and Pan et al.18 We also demonstrated the utility 
of the proposed method with applications to testing G × G 
interactions for Crohn’s disease (CD) using the WTCCC 
GWAS data and testing G × E (SNP-set by smoking) inter-
action using data from a case–control study of pancreatic 
cancer.

simulation setup. We performed simulations based on 
the HapMap SNP data of two genes IL12B (interleukin 12B; 
5q31.1–q33.1) and IL12RB2 (interleukin 12 receptor, beta 2; 
1p31.3–p31.2), which were found to interact with each other 

2. The log likelihood function for Model (7) is

   
logL logP logP= ( ) + −( ) ( )





=

+

∑ Y X Y Xi i i i
i

n n

ψ θ ψ θ, , .1
1

0 1

The score function for testing H0: θ = 0 is

S PC PCk k ik ik
k

K

k

K

θ ψ ψ= =( ) =



( )

==
∑∑0 0 1 2 1 2

11
1 2 1 2

2

2

1

1

, , , , ,
  γ γ






− ( )





=

+

=

∑

( )

i

n n

i iY P X

1

0

0 1

0ψ θ , ,

where ψ
0( ) is the maximum likelihood estimate (MLE) of 

ψ under H0: θ = 0, which can be easily obtained from the 
reduced (null) model as a standard logistic regression.
3. Obtain the inverse of the asymptotic variance for 
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which approximately follows a χ 2(1) distribution under H0.
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influencing the risk of CD in our analysis of the WTCCC 
GWAS data (results to be shown later). In addition, proteins 
IL12B and IL12RB2 have been reported to physically inter-
act with each other.32 We obtained the genotype and phased 
haplotype data for 60 HapMap CEU individuals (release 22) 
for IL12B and IL12RB2. For each gene, we selected common 
SNPs to be the genotyped/observed SNPs in the simulated 
datasets if they had MAFs of at least 5%, and were either gen-
otyped in the WTCCC GWAS or picked up as tagSNPs with 
pairwise tagging r2 $ 0.8 by the program Tagger.33 We ended 
up with 16 and 21 genotyped SNPs for IL12B and IL12RB2, 
respectively. We largely followed the simulation setup in He 
et al.17 to simulate a case–control study of 2,000 cases and 
2,000 controls in each of the 1,000 simulation replications. 
We designated either one or two causal SNPs with main/
interaction effects in each of the two genes. For the scenario 
of one causal SNP that was randomly selected in each gene, 
the case–control status was simulated based on the following 
logistic regression model:

logit P Y G G G Gi i i i i=( )( ) = + + +( ) ( ) ( ) ( ) ( ) ( )1 0 1
1

1
1

1
2

1
2

11
12

1
1

1β β β β 22( ) ,  (9)

where β0 = log(0.01/0.99) for a baseline disease prevalence  
of 1%, β1

1 0( ) =  or 0.5, and β1
2 0( ) =  or 0.5. We let β11

12 0( ) =  to 
evaluate the Type I error rate and let it gradually increase to 
evaluate the power. For each of the 1,000 simulation replicates, 
we randomly drew two haplotypes based on their frequencies 
in the HapMap CEU data to form the genotype data for an 
individual and generated a large homogeneous study popula-
tion based on the simulation model (9). We then randomly 
sampled 2,000 cases and 2,000 controls to form a simulated 
dataset.

For the scenario of two causal SNPs that were randomly 
selected in each gene, we simulated the case–control status 
based on the following logistic regression model:
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(10)

where β β β0 1
1

2
10 01 0 99 0= ( ) = =( ) ( )log . / . ,  or 0.5, and β1

2( ) =

β2
2 0( ) =  or 0.5. We let β11

12 0( ) =  to evaluate the Type I error 
rate and gradually increased it to evaluate the power. We have 
listed the parameter values in Table 1 for the six simulation 
configurations considered here.

We included the following gene-based G × G tests in the 
simulation study: (1) the score test for the proposed PC-based 
Tukey’s 1-df interaction Model (7), (2) the generic LRT for 
PC-based pairwise interaction Model (5) of He et al.17, and 
(3) the SSU test for SNP-based pairwise interaction Model (3) 
of Pan et al.18 as a representative of variance-component score 
tests for high-dimensional hypothesis testing. For PC-based 
tests, we first applied the PCA to the genotype data of each 
gene region to derive the top PCs that explained at least 90% 
of the total genetic variation.

simulation results. As shown in Table 1, all three 
methods controlled the Type I error rate at the nominal level  
α = 0.05 satisfactorily across the six simulation configurations. 
We also performed simulations when there was one or two 
covariates, and the proposed score test for Tukey’s 1-df inter-
action controlled the Type I error rate satisfactorily as well 
(results not shown).

Figures 1–6 show the power comparison of the three 
tests across different simulation configurations. Overall, the 
proposed Tukey’s 1-df score test was the most powerful one 
among the three methods under comparison, and the SNP-
based SSU test was the least powerful one, suggesting that the 
proposed strategy combining the two parsimonious statistical 
models, namely the PCA and Tukey’s 1-df form of interaction, 
was effective in improving the power of gene-based interac-
tion test. The power difference was larger when there was only 
one disease locus/causal SNP in each gene (Figs. 1–3) than 
when there were two disease loci/causal SNPs in each gene 
(Figs. 4–6) whether or not there was main effect. In particular, 
there was only a slight power difference between the generic 
LRT and the SSU in the latter scenario. This suggested that 
the SSU and its closely related variance-component score 
tests, such as the kernel machine-based methods, might have 
more improved power when the interaction signals were less 
sparse (four true interaction pairs versus one in the simulations 
here). It is noticeable that the power curve for the SSU test in 

Table 1. empirical type I error rate based on 1,000 simulation replications (2,000 cases and 2,000 controls in each replication).

CONFIGURATION β1
1( ) β2

1( ) β1
2( ) β2

2( ) NO. OF  
INTERACTIONS*

TUkEY’S 1-DF  
SCORE TEST

GENERIC LRT SSU

1 0.5 0 0.5 0 1 0.048 0.051 0.048

2 0.5 0 0 0 1 0.051 0.050 0.050

3 0 0 0 0 1 0.047 0.054 0.054

4 0.5 0.5 0.5 0.5 4 0.054 0.052 0.049

5 0.5 0.5 0 0 4 0.055 0.049 0.049

6 0 0 0 0 4 0.049 0.056 0.056

Notes: *All interaction terms were 0 to evaluate the Type I error rate. Significance level α = 0.05.
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Figure 3 was not monotonically increasing as the interaction 
signal increased. This may be explained by numerical problems 
in estimating the genetic main effects of multiple SNPs in high 
LD in Model (3). On the other hand, we did not observe this 
abnormal phenomenon for the PC-based Tukey’s 1-df score 
test and generic LRT, supporting that using PCs can not only 
reduce the dimension but also ensure numerical stability. In 
addition, although the proposed Tukey’s 1-df form of inter-
action is a function of the genetic main effects, it remained 
more powerful than the other two competing methods even 
when there was no genetic main effect (Figs. 3 and 6) or only 
one gene had genetic main effects (Figs. 2 and 5). The reason 

for this interesting phenomenon is that, even when there was 
only interaction effect and no main effect in the simulation/
true model, the expectation of the marginal genetic effect, 
ie, the main effect in the fitted null model, was not zero due to 
the absorption of the true interaction effect into the marginal 
effect. Therefore, Tukey’s test could still retain the statistical 
power to detect the interaction effect in the absence of main 
effects. Finally, the ratio of runtime for Tukey’s 1-df score test, 
generic LRT, and SSU test was nearly in the ratio 1:2:3, with 
the proposed Tukey’s test being the fastest.

Application to testing G × G for crohn’s disease. CD 
is a type of inflammatory bowel disease and is also considered 
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Figure 1. Power curve as a function of the interaction parameter β12
12( )  

under simulation Configuration 1. Each gene has only one disease locus, 
and both loci have main effects.
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under simulation Configuration 2. Each gene has only one disease locus, 
and only one of the loci has main effect.
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under simulation Configuration 3. Each gene has only one disease locus, 
and neither has main effect.
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under simulation Configuration 4. Each gene has two disease loci, and all 
of the loci have main effects.
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as an autoimmune disease with a strong genetic component.34 
Although large-scale meta-analyses of GWASs have identified 
a large number of susceptibility loci for CD, about 78.5% of 
the estimated heritability is still missing and it has been shown 
that 80% of the missing heritability could be due to G × G 
interactions.8 As a proof of concept, we applied the proposed 
Tukey’s 1-df gene-based G × G test and the generic LRT to 
the WTCCC case–control GWAS of CD.35 The GWAS data-
set contains 2,000 CD cases and 3,000 controls with a total 
of 500,568 SNPs. We followed the WTCCC quality control 
criteria to remove unqualified subjects and SNPs, resulting in 
469,612 SNPs in 1,748 cases and 2,938 controls.

To explore the G × G interactions among known CD 
susceptibility genes, we retrieved the 31 genes reviewed in 
Ref. 34. We followed Ref. 27 to assign SNPs to genes: an SNP 
is assigned to a gene if it is located within 20 kb of the gene’s 
transcription start and end sites. A total of 653 SNPs were 
assigned to the 31 genes. Since these genes were identified by 
large-scale meta-analysis of GWASs and candidate pathway 
studies, not all of them may be associated with CD in the 
WTCCC GWAS. To test for genetic marginal associations, 
we applied PCA to the SNPs in each of the 31 genes, retrieved 
the leading PCs that explained at least 90% of the genetic 
variation, and performed PC-based multilocus association 
test of the genetic main effects. Twelve nominally significant 
genes that had P-values ,0.1 were tested for pairwise G × G 
interactions, as in Ref. 12. Table 2 lists all pairs of G × G 
interactions with interaction P-values ,0.1 by either Tukey’s 
1-df score test or the generic LRT. As a comparison, we also 
listed the SSU test P-values, which were very similar to those 
of the generic LRT. As expected with this moderate sample 
size, none of the tests identified any G × G interaction with a 
P-value less than 0.01. On the other hand, previous research 
showed that G × G interactions tend to be enriched among 
neighboring genes on protein–protein interaction (PPI) net-
works.36 While none of the five nominally significant G × G 
interactions by the generic LRT (Plrt , 0.1) was found to 
coincide with PPIs in the STRING database,32 three of the 
nine nominally significant interactions by Tukey’s 1-df test 
(PTukey , 0.1) appeared to be supported by PPIs: the proteins 
of three pairs of genes, including IL12B–IL12RB2, IL12B–
IL23A, and IL12B–IL12RB1, were found to physically inter-
act with each other. Due to the small counts, this enrichment 
was not statistically significant. Nevertheless, these biologi-
cally plausible G × G interactions would be worth following 
up in independent and larger samples.

Application to testing G ×  e in a case–control study 
of pancreatic cancer. Pancreatic cancer is the fourth leading 
cause of cancer-related deaths for both men and women in the 
US with a 5-year survival rate of 6%.37 Known risk factors for 
pancreatic cancer include cigarette smoking, long-term Type 2 
diabetes, obesity, heavy alcohol consumption, and family his-
tory, with smoking conferring the highest risk. It is of inter-
est to investigate whether there exist genes that interact with 
environmental exposures, such as smoking, influencing the 
risk of pancreatic cancer. Here we tested the pancreatic cancer 
susceptibility SNP-set by smoking interaction (G × E) using 
data from a case–control study conducted at The University of 
Texas MD Anderson Cancer Center during 2004–2009.38,39 
Cases were patients with pathologically confirmed pancreatic 
adenocarcinoma, and controls were healthy individuals fre-
quency matched to cases by age, race, and sex. These individu-
als were genotyped for a total of 19 SNPs in 10 susceptibility 
genes identified in previous GWAS of pancreatic cancer,40,41 
including ABO, NR5A2, and CLTPM1L-TERT, as well as 
candidate genes FTO, ACDC, PPARG, PRKAA2, PRKAB2, 
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under simulation Configuration 5. Each gene has two disease loci, and 
only two of the loci in one gene have main effects.
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under simulation Configuration 6. Each gene has two disease loci, and 
none of the loci has main effect.
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PRKAB1, and LOC730242. Genotyping was performed 
on genomic DNA from peripheral blood samples using the 
TaqMan method.42

To test the interaction between smoking and the pan-
creatic cancer susceptibility SNP-set defined by the 19 SNPs 
in the 10 genes, we applied the proposed Tukey’s 1-df score 
test (Model 8), the generic LRT [Model (6)] and the SSU 
test [Model (4)] to the above-described UT MD Anderson 
study of pancreatic cancer with 534 cases and 552 controls. 
For the former two PC-based tests, we included the lead-
ing 11 PCs that explained 87% of the total genetic varia-
tion in the interaction model with smoking status (never/
ever). Tukey’s 1-df test and the generic LRT test gave simi-
larly significant results: the P-values were 0.019 and 0.018, 
respectively. On the other hand, the SSU test result was not 
significant, with a P-value = 0.148. When applied to the 11 
PCs, the SSU test had a significant P-value of 0.024. Of 
note, one of the 19 SNPs was the top hit in the GWAS of 
pancreatic cancer40 (rs505922 in gene ABO), and its inter-
action with smoking on the risk of pancreatic cancer was 
highly significant (P-value = 0.002 by SNP × smoking test 
based on Model (2) and P-value = 0.038 after the Bonfer-
roni correction). This significant interaction identified by the 
SNP-set-based G × E tests warrants further replication in 
independent samples.

discussion
In this paper we proposed a powerful gene-based test for 
detecting G × G or G × E interactions by combining two par-
simonious statistical models, namely, the PCA and Tukey’s 
1-df form of interaction. We derived a score test that is compu-
tationally fast and numerically stable for the proposed Tukey’s 
1-df interaction model. Using extensive simulations based 
on the HapMap phased haplotype data, we showed that the 

proposed score test for Tukey’s 1-df interaction model con-
trolled the Type I error rate at the nominal level satisfactorily 
and was more powerful than the PC-based generic LRT that 
tests pairwise interactions and the multiple-SNP-based SSU 
test as a representative of variance-component score tests. We 
demonstrated the utility and efficiency gains of the proposed 
test with applications to detecting G × G interactions for CD 
using the WTCCC GWAS data and to detecting SNP-set by 
smoking (G × E) interaction using a case–control study of pan-
creatic cancer. As demonstrated in the latter application, we 
recommend first using gene-based interaction tests to identify 
significant genes, and then performing SNP-based interaction 
tests within the genes to identify which SNPs significantly 
interact.

We have focused on gene-based G × G/G × E tests 
for common SNPs (MAF .5%) based on GWAS data. It 
would be of interest to extend the Tukey’s 1-df test to test-
ing G × G/G × E interactions for rare variants (MAF ,5% 
or 1%) based on the next-generation sequencing (NGS) data. 
Although PCA is an effective approach to summarize a 
large number of common SNPs into a few uncorrelated PCs 
to be used in subsequent testing of genetic main effects or 
G × G/G × E interactions, it may not work well in captur-
ing the genetic variation dominated by rare variants. A pos-
sible alternative is via functional principal component analysis 
(FPCA), which has been shown to be a powerful method for 
reducing the dimension of a large number of rare variants.43,44 
Further research is warranted.

The proposed method has some potential limitations. 
First, the PCA step is solely based on the SNP data and does 
not take the disease–SNP correlations into account. As a 
result, it is possible that the leading PCs may not capture the 
information of the most relevant SNP(s) in association with 
the disease. Alternative dimension reduction techniques, eg, 

Table 2. top G × G interactions for Crohn’s disease (P-values ,0.1 by either tukey’s 1-df score test or generic Lrt) ordered by tukey’s 1-df test 
P-values.

GENE 1 Pmarginal GENE 2 Pmarginal PTukey P
lrt

PSSU PPI in STRING

IL12RB2 0.0002 IL12B 0.0005 0.012 0.128 0.128 Yes

STAT3 0.0004 IL12RB1 0.058 0.034 0.188 0.175 no

IL12B 0.0005 IL23A 0.095 0.050 0.149 0.157 Yes

IL23R ,0.0001 IL18R1 0.017 0.058 0.358 0.353 no

STAT3 0.0004 RORC 0.0048 0.061 0.281 0.294 no

STAT3 0.0004 IL18R1 0.017 0.072 0.071 0.082 no

IL23R ,0.0001 IL18RAP 0.0111 0.074 0.209 0.431 no

IL12B 0.0005 IL12RB1 0.058 0.076 0.223 0.288 Yes

RORC 0.005 IL10 0.093 0.096 0.792 0.813 no

STAT3 0.0004 IL18RAP 0.011 0.194 0.016 0.023 no

IL12RB2 0.0002 TNFα 0.011 0.295 0.029 0.035 no

IL18R1 0.017 IL23A 0.095 0.370 0.090 0.105 no

TNFα 0.011 IL23A 0.095 0.929 0.075 0.090 no

Note: Interaction P-values less than 0.1 are in bold.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Tukey’s 1-df test for G x G and G x E interactions

217CanCer InformatICs 2015:14(s2)

the partial least squares (PLS) method,45 could be employed 
to find linear combinations of the SNPs that are most cor-
related with the disease status. However, because of the use 
of the disease status in the first-stage PLS, the test statistic 
in the second-stage interaction model will no longer follow a 
χ 2-distribution under the null hypothesis of no interactions, 
and computationally intensive permutation or parametric 
bootstrap procedure is needed to obtain the null distribu-
tion of the test statistic.7 Second, the parsimonious Tukey’s 
1-df form of interaction model assumes that the interac-
tion effect is approximately proportional to the genetic main 
effects. Although it appeared to be powerful and robust 
across different simulation scenarios in our study, even in the 
absence of genetic main effects, it might lose power under 
some scenarios as investigated in Ref. 45. As the true inter-
action model is hardly known a priori in real data analysis 
and likely varies across genes, the proposed method is a com-
petitive and complementary approach to existing gene-based 
interaction tests.

The current paper focuses on case–control analyses. It is 
well known that for SNP-based G × E analysis, the case-only 
test is more powerful than the standard case–control interac-
tion test [Model (2)] if the assumption of gene–environment 
independence holds in the general population.46 Specifically, 
the case-only analysis tests the association between the envi-
ronmental exposure and the SNP of interest in the cases. It 
would be interesting to extend the SNP-based case-only test 
to a gene-based test by testing the association between the 
environmental exposure and the leading PCs for the multiple 
SNPs in a gene. Another possible direction of future research 
is to extend the existing SNP-based tests for nonremovable 
interactions47 to gene-based tests. Finally, as the Tukey’s 
1-df interaction model is in the regression framework, it is 
not limited to binary disease phenotypes and can be easily 
extended to G × G/G × E tests for quantitative traits. R pro-
grams implementing the proposed Tukey’s 1-df score test will 
be posted on our website at: https://sites.google.com/site/
utpengwei/.
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