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Abstract: Although the reverse transcription-polymerase chain reaction (RT-PCR) is considered a
standard-of-care assay for the laboratory diagnosis of SARS-CoV-2, several limitations of this method
have been described. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) is
an alternative molecular assay and is potentially able to overcome some intrinsic shortcomings of
RT-PCR. In this study, we evaluated the diagnostic performance of the novel HG COVID-19 RT-
LAMP assay. In this retrospective analysis, a total of 400 routinely collected leftover nasopharyngeal
samples with a known RT-PCR result were tested by means of the HG COVID-19 RT-LAMP assay.
The overall sensitivity and specificity values of HG COVID-19 RT-LAMP versus RT-PCR were
97.0% (95% CI: 93.6–98.9%) and 98.5% (95% CI: 95.7–99.7%), respectively. Inter-assay agreement
was almost perfect (κ = 0.96). Concordance was perfect in samples with high viral loads (cycle
threshold < 30). The average time to a positive result on RT-LAMP was 17 min. HG COVID-19
RT-LAMP is a reliable molecular diagnostic kit for detecting SARS-CoV-2, and its performance is
comparable to that of RT-PCR. Shorter turnaround times and the possibility of performing molecular
diagnostics in the point-of-care setting make it a valuable option for facilities without sophisticated
laboratory equipment.

Keywords: COVID-19; SARS-CoV-2; RT-LAMP; RT-PCR; diagnostic accuracy

1. Introduction

The precise laboratory diagnosis of SARS-CoV-2 is crucial to tackling the ongoing
COVID-19 pandemic. The laboratory diagnosis of both symptomatic and asymptomatic
SARS-CoV-2 cases can be achieved by means of both direct (detection of the viral RNA or
antigens) and indirect (detection of specific antibodies) approaches [1–3].

Reverse transcription-polymerase chain reaction (RT-PCR) is considered the standard
method for the laboratory diagnosis of SARS-CoV-2 infection, and several protocols for its
execution have been developed [1,4,5]. However, while the specificity of RT-PCR is deemed
high [6], some issues regarding its sensitivity have been reported. Indeed, a systematic
review by Arevalo-Rodriguez et al. [7] has shown that the false negativity rate (defined as
initial negative result followed by a positive result) may vary from 1.8% to 58% (median of
11%). Other potential shortcomings of the RT-PCR assay include the need for both qualified

Pathogens 2021, 10, 1629. https://doi.org/10.3390/pathogens10121629 https://www.mdpi.com/journal/pathogens

https://www.mdpi.com/journal/pathogens
https://www.mdpi.com
https://orcid.org/0000-0001-9608-8892
https://orcid.org/0000-0002-2433-9610
https://orcid.org/0000-0002-2677-0551
https://orcid.org/0000-0002-4274-0096
https://orcid.org/0000-0002-8463-8487
https://doi.org/10.3390/pathogens10121629
https://doi.org/10.3390/pathogens10121629
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pathogens10121629
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com/article/10.3390/pathogens10121629?type=check_update&version=3


Pathogens 2021, 10, 1629 2 of 9

personnel and sophisticated laboratory equipment, its still suboptimal turnaround time
and its relatively high per-sample costs [3].

In order to overcome the abovementioned intrinsic limits of RT-PCR, some alternative
direct methods have been promptly developed [1–3]. Among these, antigen-detecting
rapid diagnostic tests (Ag-RDTs) have become popular, and dozens of kits have been
commercialized. However, as shown by a recent Cochrane review [8], the diagnostic
performance of Ag-RDTs is highly variable and depends on several factors, including, for
example, viral load, presence or absence of COVID-19 symptoms, time since the onset of
symptoms and brand.

The loop-mediated isothermal amplification (LAMP) assay is another alternative to RT-
PCR for the molecular diagnosis of SARS-CoV-2. LAMP of DNA was originally described
in 2000 [9], and since that time, this method has gained prominence as a rapid, accurate and
cost-effective diagnostic method for a variety of pathogens [10,11]. Typical LAMP reagents
comprise salts, nucleotides, DNA polymerase and a set of 4–6 primers, including loop
primers, forward and reverse inner primers and outer primers [12]. Reverse transcription
LAMP (RT-LAMP) protocols have been developed to detect RNA virus sequences by
adding a heat-stable reverse transcriptase enzyme to the LAMP mixture [13]. Compared
with RT-PCR, the LAMP technique can rapidly amplify and produce up to 100 times more
nucleic acid copies in isothermal conditions of 60–65 ◦C [12].

The first available data suggest that RT-LAMP assays have a high diagnostic per-
formance in detecting SARS-CoV-2. In particular, a recent systematic review and meta-
analysis [14] showed pooled sensitivity values of RT-LAMP versus RT-PCR of 94%
(95% CI: 90–96%) and 78% (95% CI: 65–87%) for extracted and fresh samples, respectively.
Specificity was 100% (95% CI: 99–100%) and 96% (95% CI: 95–99%) for extracted and fresh
specimens, respectively.

The HG COVID-19 assay (HiberGene Diagnostics, Republic of Ireland) is among
the first RT-LAMP assays intended for the rapid molecular diagnosis of SARS-CoV-2.
The development and commercialization of this assay were supported by the Horizon
2020 Research and Innovation program [15]. The objective of the present study was to
assess the relative (compared with RT-PCR) diagnostic performance of the HG COVID-19
assay in routinely processed nasopharyngeal (NP) specimens.

2. Results

A total of 400 (200 positive and 200 negative) RT-PCR NP swabs were analyzed in
the present study (Supplementary Materials Figure S1). The mean age of subjects was
50.4 ± 21.8 years; 52.5% (95% CI: 47.5–57.5%) were females. RT-PCR-positive and -negative
subjects were similar in terms of age (49.7 ± 21.8 vs. 51.0 ± 21.8 years, respectively; p = 0.56]
and sex [50.0% (95% CI: 42.9–57.1%) vs. 55.0% (95% CI: 47.8–62.0%) of females, respectively;
p = 0.37]. Among RT-PCR-positive samples, Ct values for the N gene ranged from 15 to 39,
with an average of 24.9 ± 5.7. Among the samples tested for lineages (n = 64), all but one
[98.4% (95% CI: 91.6–100%)] belonged to the Alpha variant of concern.

Table 1 reports the raw data on the comparison between the RT-PCR and HG COVID-
19 RT-LAMP assays in terms of SARS-CoV-2 detection in NP samples. Briefly, a total of
nine [2.3% (95% CI: 1.0–4.2%)] discordant results were documented: six [3.0% (95% CI:
1.1–6.4%)] were judged false negatives, while the other three [1.5% (95% CI: 0.3–4.3%)] were
false positives. Therefore, the overall diagnostic accuracy, sensitivity and specificity values
were 97.8%, 97.0% and 98.5%, respectively. Moreover, the overall inter-assay concordance
was judged almost perfect (κ = 0.96) (Table 2).

The nine discordant results were then analyzed in detail. All six NP swabs that tested
negative on RT-PCR had N gene cycle threshold (Ct) values > 30 (range: 31–38). Indeed, as
shown in Table 3, the relative sensitivity of the HG COVID-19 assay was 100% for NP samples
with Ct < 30 and 97.0% for those ≤ 39. By contrast, of the three false-positive NP samples, two
had tested positive on RT-PCR 1–3 weeks earlier with Ct values > 30. The sensitivity for low
viral load samples (Ct ≥ 30) was 88.0% (95% CI: 76.2–94.4%).



Pathogens 2021, 10, 1629 3 of 9

Table 1. Two-per-two table on the performance of the HG COVID-19 RT-LAMP assay, as compared
with RT-PCR (Results are reported as % (n)).

RT-LAMP
RT-PCR

Total
Positive Negative

Positive 97.0 (194) 1.5 (3) 49.3 (197)
Negative 3.0 (6) 98.5 (197) 50.7 (203)

Total 50.0 (200) 50.0 (200) 100 (400)

Table 2. Diagnostic performance indicators of the HG COVID-19 RT-LAMP assay, as compared
with RT-PCR.

Parameter Estimate 95% CI

Diagnostic accuracy, % 97.8 95.8–99.0
Sensitivity, % 97.0 93.6–98.9
Specificity, % 98.5 95.7–99.7

Cohen’s κ 0.96 0.86–1

Table 3. Sensitivity of the HG COVID-19 RT-LAMP assay, as compared with RT-PCR, by N gene
cycle threshold value.

N Gene Cycle Threshold (n) Estimate, % 95% CI

<20 (50) 100 92.3–100
<25 (100) 100 96.4–100
<30 (150) 100 97.6–100
<33 (178) 99.4 96.9–100
<36 (195) 97.4 94.1–99.2
≤39 (200) 97.0 93.6–98.9

Among the true positive samples (n = 194), the average time to result on the HG
COVID-19 RT-LAMP assay was 17.0 ± 3.4 min. As expected, there was a clear (r = 0.82,
p < 0.001) relationship between the nucleoprotein (N) gene Ct value and the time to the

result of the HG COVID-19 assay (Figure 1). Indeed, the average time to result for samples
with high viral loads (Ct < 20) was only 13.9 ± 1.9 min.

Figure 1. Correlation between N gene cycle threshold values and time to positive result on the HG
COVID-19 RT-LAMP assay.
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3. Discussion

This study is among the first independent on-field evaluations of the HG COVID-19
RT-LAMP assays. Our findings confirmed the high diagnostic performance of this assay
in detecting SARS-CoV-2 in NP samples with a wide (15–39) range of Ct values. We also
demonstrated that the recent predominance of the Alpha variant of concern did not affect
the analytical performance of the kit. Indeed, the HG COVID-19 assay targets the highly
conserved N region, while the novel variants of concern present key mutations in the S
region. These mutations may affect the diagnostic performance of RT-PCR; indeed, so-
called “S-gene target failure” is very common in samples positive for the Alpha variant of
concern [16,17]. Finally, our study is the first to validate the HG COVID-19 assay on an
alternative extraction platform, which shows that RT-LAMP can be run successfully on
different types of laboratory equipment.

According to the manufacturer’s instructions for use, the relative (vs. RT-PCR) sen-
sitivity and specificity values of the HG COVID-19 extracted format in symptomatic
patients are 100% (95% CI: 84.5–100%) and 100% (95% CI: 89.1–100%), respectively. In
asymptomatic individuals, these parameters are 88.5% (95% CI: 75.9–95.2%) and 97.1%
(95% CI: 92.9–98.9%), respectively. Considering that our sample included both symptomatic
and asymptomatic subjects, our findings are consistent with the on-label analytical perfor-
mance and testify to the generalizability of our results. On the other hand, for low viral
load samples (Ct ≥ 30), the relative sensitivity RT-LAMP vs. RT-PCR dropped to 88%.

Our results are also in line with the meta-analytical estimates obtained by Subsoontorn
et al. [14]. In their systematic review, the pooled (n = 26 studies) sensitivity and specificity
values of the extracted RT-LAMP format versus RT-PCR were 94% (95% CI: 90–96%) and
100% (95% CI: 99–100%), respectively. When the analysis was restricted to high viral load
samples (Ct < 30), the pooled estimates (n = 10 studies) were 100% (95% CI: 89–100%)
and 100% (95% CI: 99–100%), respectively [14]. In our study, while some false negatives
with high RT-PCR Ct values (>30) were expected, some comments on the “false positives”
should be made. It has been suggested that some non-specific amplifications may occur
during RT-LAMP [18]. We documented a total of three false-positive results; of these,
however, two subjects had proved positive on RT-PCR 1–3 weeks earlier. On the one
hand, it is well-known that the RT-LAMP technique can amplify up to 100 times more
RNA copies than RT-PCR [12]. On the other hand, the RT-PCR assay used in this study
(Allplex 2019-nCoV; Seegene Inc., Seoul, South Korea) considers samples with Ct ≤ 40
to be positive [19]. It is therefore likely that the two abovementioned subjects with false-
positive results could have had Ct values over 40. In turn, this may also mean that the
reported specificity of the HG COVID-19 assay might have been underestimated. There
is an ongoing debate on the association between infectiousness and RT-PCR Ct values. It
is generally believed that infectiousness is significantly lower for clinical specimens with
Ct values > 30 [20,21]. However, a substantial number of samples with Ct > 35 may still
produce a viable virus [22–24]. Moreover, Ct values across different RT-PCR protocols may
vary significantly [25].

The possibility of rapidly obtaining a precise result makes RT-LAMP technology
an attractive point-of-care or near-the-patient tool. This feature of RT-LAMP resembles
that of Ag-RDTs. The World Health Organization [26] recommends that SARS-CoV-2 Ag-
RDTs should have sensitivity and specificity values of at least 80% and 97%, respectively,
while the European Centre for Disease Control and Prevention [20] has suggested that the
sensitivity of point-of-care tests should be at least 90%. The HG COVID assay satisfies
these criteria. An assessment of several Ag-RDTs recently performed at our laboratory [27]
showed overall sensitivity of 78.7% (95% CI: 73.2–83.3%); this, however, varied significantly
by Ct value and brand. We concluded that Ag-RDTs are convenient for screening purposes
in moderate-to-high intensity settings [27]. In the present study, the analytical performance
of the HG COVID-19 assay was comparable to that of RT-PCR; the assay may therefore
be an alternative molecular diagnostic tool for SARS-CoV-2 detection, independently
of the purpose and the viral epidemiology. On the other hand, it is likely that not all
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commercially available RT-LAMP kits perform well. For instance, a real-world evaluation
of the diagnostic performance of the Isopollo COVID-19 RT-LAMP assay (M Monitor,
Daegu, Korea) showed a sensitivity of only 61.9% [28]. Independent and setting-specific
pilot evaluations would therefore be beneficial before the widespread implementation of
RT-LAMP assays.

Like that of most available Ag-RDTs, the HG COVID-19 readout is qualitative. The
absence of Ct values in the final readout may be seen as an intrinsic limitation of this
method. However, the time to threshold is a good proxy of viral load. Indeed, we observed
a strong linear association between the HG COVID-19 time to result and RT-PCR Ct values.
Results that are available in less than 15–20 min are highly suggestive of high viral loads
(Ct < 30). Although no RT-PCR samples with inconclusive results were tested, the short
turnaround time of the RT-LAMP assay makes it attractive for use as a “resolver” test.

Our study is not without limitations. First, for ethical reasons, we were not able
to link the RT-PCR readout to the clinical characteristics of patients (e.g., presence of
symptoms, days after the onset of symptoms, etc.). According to the manufacturer’s
instructions for use, the performance of the HG-COVID assay is better in symptomatic cases,
especially when the test is performed soon after the onset of symptoms. Second, we cannot
completely rule out misclassification bias. Although RT-PCR is currently considered the
“gold standard” assay for the laboratory diagnosis of both symptomatic and asymptomatic
cases [1,4,5], its sensitivity is not perfect [7]. In our study, two samples from patients with
previously confirmed SARS-CoV-2 infection were positive on RT-LAMP but negative on
RT-PCR. This means that, in some instances, RT-LAMP may be more sensitive than RT-PCR,
and that the reported relative specificity of RT-LAMP might have been underestimated.
Third, the study was carried out in a period when the Delta variant of concern did not
circulate in Italy. We, however, believe that this possible limitation has a limited impact on
the study conclusions for two reasons. First, the HG COVID-19 assay targets the highly
conserved N region, while the key mutations of the Delta variant are located in the S region.
Second, our subsequent routine use of the HG COVID-19 assay was able to detect isolates
belonging to the Delta variant (results not shown). Another possible shortcoming is that
RT-PCR Ct values may differ by brand and protocol; the reported diagnostic accuracy
estimates by the Ct category may differ from those observed in other laboratories. For
instance, we have previously shown [25] that compared with the extraction-based RT-PCR
technique, the extraction-free protocol adopted in the present study is associated with an
average increase in Ct values by 2–3 units. Finally, although highly conserved, the N gene
may be subject to mutations affecting molecular diagnostics of SARS-CoV-2 infection [29].
Future studies should explore the diagnostic accuracy of the HG COVID-19 assay for
isolates presenting, for example, the N gene target failure on the commercially available
RT-PCR kits.

In conclusion, HG COVID-19 RT-LAMP is a reliable assay for the molecular diagnosis
of SARS-CoV-2 in NP samples and yields a final diagnosis in less time than RT-PCR. RT-
LAMP technology is promising for use in small and medium-sized hospitals, emergency
departments and general practices without sophisticated laboratory equipment.

4. Materials and Methods
4.1. Reporting Quality

For the purpose of reporting, we adopted the STARD (Standards for Reporting of
Diagnostic Accuracy Studies) statement [30]. The checklist is available in Supplementary
Materials Table S1.

4.2. Overall Study Design, Sampling and Setting

The NP samples analyzed in this study came from routine SARS-CoV-2 molecular
diagnostics and were collected between 8 April and 9 May 2021. All samples were processed
at the regional reference laboratory for COVID-19 diagnostics, located at San Martino
Policlinico Hospital, Hygiene Unit (Genoa, Italy). This laboratory performs SARS-CoV-2
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RT-PCR on both in- and outpatient specimens, independently of the purpose of testing
(laboratory confirmation of symptomatic cases, screening, clinical follow-up, etc.). No
clinical data associated with a given sample were available. All samples were taken by
means of a flocked swab kit and were eluted in universal transport medium (UTM, Copan
Diagnostics Inc., Murrieta, CA, USA).

The index test was the HG COVID-19 assay, while the reference test was RT-PCR,
which is currently considered the “gold standard” technique for the laboratory diagnosis
of SARS-CoV-2 [1,4,5]. Following a successful RT-PCR run, the anonymized leftover
samples were tested by means of RT-LAMP, and therefore the positivity status was known
beforehand. All RT-PCR tests were executed within 8 h of the arrival of specimens at
the laboratory.

Any NP samples with a known RT-PCR readout were potentially eligible for the study.
Specimens showing Ct values ≤ 40 were deemed positive. This cut-off was chosen on the
basis of the RT-PCR assay available at our laboratory and considers samples with Ct ≤ 40
to be positive [19].

The sample size of 400 (200 positive and 200 negative RT-PCR samples) specimens was
judged sufficiently powered to assess the diagnostic performance of the HG COVID-19 as-
say. Indeed, according to the Foundation for Innovative New Diagnostics [31], a minimum
of 100 RT-PCR positive and 100 RT-PCR negative samples is needed for the compara-
tive evaluation of Ag-RDTs. Two-hundred routinely analyzed positive specimens were
collected by means of quota sampling. Specifically, on the basis of RT-PCR Ct values,
positive samples were first categorized into four groups: (i) <20; (ii) 20–24.9; (iii) 25–29.9
and (iv) ≥ 30, and consecutively fulfilled in a 1:1:1:1 ratio (i.e., 50 specimens per group).
Given that the HD COVID RT-LAMP assay targets the N gene, samples were categorized
according to the RT-PCR Ct value of this gene. All 200 negative samples were gathered
according to convenience.

During the study period, most (>90%) detections (as shown by a random sample of
specimens sequenced by our laboratory on a regular basis) were attributable to the Alpha
variant of concern of SARS-CoV-2. For the purpose of this study, we further analyzed
a sample of 64 RT-PCR-positive specimens (Ct < 30) to determine their lineage. This
was done by means of the RT-PCR-based Variant Catcher system by Clonit (Milan, Italy),
which is able to distinguish between the so-called wild-type (Wuhan-like) and Alpha and
Beta/Gamma variants of concern.

4.3. Real-Time Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

As per the internal SARS-CoV-2 diagnostic protocol adopted by the San Martino
Policlinico Hospital, all NP samples were processed by means of a validated [25] unheated
RNA extraction-free RT-PCR method. We have previously shown [25] that this technique
displays perfect agreement with a traditional extraction-based approach. Briefly, an input
volume of 5 µl of specimen was first diluted (1:3) and set up for RT-PCR. RT-PCR was
run on a CFX96 instrument (Bio-Rad Laboratories, Hercules, CA, US) by using the Allplex
2019-nCoV (Seegene Inc., Seoul, South Korea) assay. This multiplex assay is able to
simultaneously detect three gene targets, namely N, RNA-dependent RNA-polymerase
(RdRp)/spike (S) and envelope (E) regions. Amplification was performed at 50 ◦C for
20 min, 95 ◦C for 15 min, 45 cycles at 95 ◦C for 10 s, 60 ◦C for 15 s with first acquisition
and 72 ◦C for 10 s with second acquisition on the CFX96 thermal cycler. A total of 5 µL
of the extracted RNA in a final volume of 20 µL was used for each reaction. The average
time-to-result of the unheated RNA extraction-free RT-PCR method is 156 min [25].

For the purpose of this study, only “valid” (i.e., when the internal control successfully
amplified) RT-PCR samples were eligible.

4.4. HG COVID-19 Assay

The index test was the HG COVID-19 (HiberGene Diagnostics, Dublin, Ireland) assay.
This is a LAMP-based assay that targets the highly conserved N region. The reaction
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strips contain both complete lyophilized reaction mixes for SARS-CoV-2 and an extraction
control, which is used to demonstrate the absence of inhibitors. The HG COVID-19 assay
can be performed in two formats: (i) direct (i.e., from the fresh sample) and (ii) extracted.
In this validation study, the extracted option was used. Total RNA of NP specimens was
extracted by means of the STARMag Universal Cartridge Kit (Seegene Inc., Seoul, Korea)
on the automated Nimbus IVD (Seegene Inc., Seoul, Korea) platform. The extracts obtained
were eluted in 140 µL of the viral elution buffer provided with the kit.

Subsequently, a total of 25 µL of the lysed samples obtained was added to target and
control wells, vortexed for 5 s and centrifuged for 10 s at 3000 rcf. The reaction was run on
the HG Swift instrument (HiberGene Diagnostics, Dublin, Ireland).

The final readout is qualitative and may be displayed as “positive”, “negative” or
“invalid”. According to the manufacturer, positive results are available in < 30 min, while
negative results can be recorded in < 60 min. For positive samples, the time to result was
automatically collected. In the case of an inconclusive result, the test was repeated.

4.5. Data Analysis

Categorical variables are expressed as proportions with 95% CIs, and approximately
normally distributed continuous variables as means ± standard deviations. Chi-square
and t-tests were used to compare proportions and continuous variables, respectively. There
were no missing data (Supplementary Materials Dataset S1).

The diagnostic performance of the HG COVID-19 assay was compared with the output
of RT-PCR in terms of overall diagnostic accuracy, Cohen’s κ, sensitivity and specificity.
These statistics were also calculated according to the RT-PCR Ct values for the N gene.

For true positive samples, the average time to the result of the HG COVID-19 assay
was calculated. Pearson’s r coefficient was used to establish a correlation between the
RT-PCR Ct value for the N gene and time to the result provided by RT-LAMP.

The raw dataset used is available in Supplementary Materials Dataset S1. All analyses
were performed in R stats packages v. 4.0.3 (R Foundation for Statistical Computing,
Vienna, Austria) [32].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pathogens10121629/s1, Figure S1: STARD (Standards for Reporting of Diagnostic Accuracy
Studies) flowchart; Table S1: STARD (Standards for Reporting of Diagnostic Accuracy Studies)
checklist; Dataset S1: Raw data used in the study.
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