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A B S T R A C T   

Background: Reversal learning reflects an individual’s capacity to adapt to a dynamic environment with changing 
stimulus–reward contingencies. This study focuses on the potential influence of anxiety on reversal learning 
skills. 
Methods: We asked 40 participants with a high level of trait anxiety (HTA) and 40 counterparts with a low 
anxiety level (LTA) to finish a probabilistic reversal learning task with event-related potential (ERP) recording, 
during which stimulus–reward contingencies are reversed after players have learned the optimal choice. 
Results: We found that compared to their LTA counterparts, the HTA participants showed worse learning per-
formance and were less likely to make lose-shift choices. The FRN amplitude might help interpret these 
behavioral results, which is suggested to be associated with punishment sensitivity and was positively correlated 
with the number of lose-shift in this study. Seeing that anxiety level predicted the FRN amplitude for lose-shift, 
we explain that anxious individuals’ inflexible behavioral responses to losses are due to their impaired sensitivity 
to negative feedback. 
Conclusions: A higher level of anxiety is associated with weaker reversal learning performance, possibly because 
of abnormal sensitivity to negative outcomes. These findings have implications for the understanding of 
behavioral symptoms in anxiety.   

1. Introduction 

Anxiety, an unpleasant emotional state that directs an organism’s 
response to potentially threat-related stimuli, plays an important role in 
our everyday life (Clark, 1999). Although anxiety is evolutionarily 
adaptive, inappropriate anxiety reactions to the environment may 
damage daily functioning and life quality (Gulpers et al., 2016; Mathews 
& MacLeod, 2005). Depending on its duration and intensity, the nega-
tive impacts of anxiety extend beyond aversive feelings and involve 
disruptions in cognitive functions and goal-directed behaviors (Hartley 
& Phelps, 2012; Paulus & Yu, 2012). It is well established that a 
heightened level of anxiety is associated with aberrant cognitive task 
performance, including an attentional bias toward irrelevant stimulus 

and limited working memory capacity (for reviews, see Bishop, 2009; 
Bishop et al., 2004). Recently, a series of studies have revealed that 
anxious individuals show abnormalities in feedback learning (e.g., Blair 
et al., 2016; Hein et al., 2021; Hunt et al., 2019; Reilly et al., 2020). For 
instance, Jiang et al. (2018) reported that compared to their non- 
anxious counterparts, anxious participants made more pessimistic 
outcome expectation and allocated fewer attentional resources to 
negative outcomes, indicated by event-related potentials (ERPs) (see 
also Andreatta et al., 2017). Seeing that feedback learning allows in-
dividuals to predict future outcomes and therefore helps optimize gains 
and minimize losses (Cohen et al., 2011), investigating anxious people’s 
feedback learning performance should be meaningful to understand 
cognitive behavioral symptoms associated with anxiety. 
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Environmental contingencies are usually not static but vary over 
time, requiring information updating and corresponding behavioral 
adjustment to attain desirable outcomes (Blair & Cipolotti, 2000; 
Donaldson et al., 2016). Thus, the present study focuses on reversal 
learning skills, which are critical for survival and adaptation to a 
changing circumstance (Gorrindo et al., 2005). According to the litera-
ture, a typical reversal learning paradigm: (1) needs participants to ac-
quire stimulus-outcome associations through trial-and-error feedback 
learning; (2) these associations would be reversed without explicit 
warning after participants reach a learning criterion for accuracy (Cools 
et al., 2002; Hampton & O’Doherty J, 2007; Izquierdo & Jentsch, 2012). 
Difficulties with reversal learning is associated with behavioral prob-
lems including impulsiveness, disinhibition, and reactive aggression 
(Fellows & Farah, 2003; Greening et al., 2011; Hornak et al., 2004). 
Experimental studies commonly model this process with either deter-
ministic (i.e., fully predictive) or probabilistic reversal learning (PRL) 
tasks. For example, in a two-armed bandit PRL task, rewards are sto-
chastically related to two stimuli A and B. At the beginning of the task, 
choosing A may lead to a reward more often than choosing B (e.g., 80% 
vs. 20%). Nonetheless, after participants have learned the rule and 
consistently select A, the stimulus-outcome mapping would be reversed 
such that B becomes the more frequently rewarded option; finally, the 
same thing may happen again after participants consistently select B 
(Bartolo & Averbeck, 2020). The learned association between stimuli 
and outcomes needs to be inhibited when facing unexpected changes in 
reward contingency (Bari & Robbins, 2013). Reversal learning tasks 
have been frequently used to study behavioral flexibility (Bartolo & 
Averbeck, 2020; Rudebeck et al., 2013). 

A potential relationship between anxiety and reversal learning has 
been implicated in the literature. From a behavioral perspective, many 
studies have confirmed that anxious individuals are impaired at shifting 
from a previously effective strategy to a currently valid strategy (Ansari 
et al., 2008; Eysenck et al., 2007; George et al., 2015). For example, 
Browning et al. (2015) found that participants with a higher anxiety 
level are less capable of adjusting outcome expectancies between stable 
and volatile environments (see also Huang et al., 2017). From a 
neuroscientific perspective, a wide range of brain structures are 
involved in reversal learning, including the prefrontal cortex, anterior 
cingulate cortex (ACC), parietal regions, amygdala, and striatum (Bar-
tolo & Averbeck, 2020; Cools et al., 2002; Fellows & Farah, 2003; 
Mitchell et al., 2008; Robinson et al., 2010; Rudebeck et al., 2013; Xue 
et al., 2008); the activities of these brain areas are sensitive to both 
clinical and non-clinical anxiety (Domschke & Dannlowski, 2010; Grupe 
& Nitschke, 2013). However, a behavioral study by Dickstein et al. 
(2010) recruited thirty pediatric patients (aged 7–17 years) suffering 
from generalized anxiety disorder, separation anxiety disorder, or social 
phobia, but failed to detect any difference in reversal learning compared 
to healthy controls. To explain the null results, Dickstein et al. (2010) 
suggested that employing more homogeneous samples would help 
determine whether and how anxiety is associated with reversal learning 
deficits. Thus, this study only considered young adults who showed 
subthreshold anxiety symptoms. 

In short, the relationship between anxiety and reversal learning ab-
normalities has been indicated in the literature. Taking a step further, 
the current study aims to understand the cognitive mechanisms of 
anxious individuals’ reversal learning biases with the help of neurosci-
ence techniques. As pointed out by Bari and Robbins (2013), the un-
derstanding of reversal learning deficits are often masked by the 
relatively simplicity of PRL tasks. Actually, reversal learning involves 
multiple cognitive factors that monitor ongoing actions, stim-
ulus–outcome relationships, and future actions based on outcome his-
tory (Greening et al., 2011; Park & Moghaddam, 2017). Here, the first 
major factor is reward/punishment sensitivity (Bari & Robbins, 2013). 
After a reversal, as the previously rewarded stimuli could no longer 
maximize gains, individuals with a higher level of reward/punishment 
sensitivity might be more capable to notice changes in the reinforcement 

value of different stimuli (Greening et al., 2011). Interestingly, anxiety 
interferes with behavioral and neural responses to punishment (e.g., Gu 
et al., 2010a, 2010b; Jiang et al., 2018; Takács et al., 2015; Xu et al., 
2013; Zhang & Gu, 2018). For instance, the association between anxiety 
and impoverished adaptation of learning rate could be observed in the 
loss condition but not in the gain condition (Bishop & Gagne, 2018). 
Therefore, it is reasonable to predict that punishment sensitivity during 
reversal learning would be modulated by anxiety. 

The second pertains to the capacity of updating reinforcement values 
associated with different responses to stimuli (Xue et al., 2008). As 
pointed out by Izquierdo and Jentsch (2012), reversal learning requires 
individuals to efficiently update the representation of reinforcement 
contingencies. In a volatile task environment, people build beliefs about 
choice-outcome mappings for estimating the incentive value of different 
choices; these beliefs should be adjusted according to environmental 
changes, so as to ensure that behavioral adaptation is timely and suc-
cessful (Bartolo & Averbeck, 2020; Hein et al., 2021). Damage to brain 
regions that contribute to information updating, such as the orbital 
prefrontal cortex, negatively affects reversal learning performance 
(Fellows & Farah, 2003; Hornak et al., 2004). A relationship between 
anxiety and information updating deficit has been implicated in recent 
studies (Browning et al., 2015; Jiang et al., 2018). For instance, Hein 
et al. (2021) discovered that anxious individuals’ beliefs about reward 
contingencies are more resistant to new information, leading to im-
pairments in reward-based learning. Consequently, the factor of infor-
mation updating is also taken into account in this study. 

To dissociate different cognitive processes that may overlap in the 
time domain, the ERP technique was engaged in this study regarding its 
exquisite temporal resolution (Amodio et al., 2014). Specifically, the 
feedback-related negativity (FRN) and P3 component were chosen for 
data analysis, both of which have been successfully applied to investi-
gate reversal learning (Donaldson et al., 2016; Peterson et al., 2011; von 
Borries et al., 2013). The FRN is a frontal-midline distributed, negative- 
going wave that reaches its maximum approximately from 250 to 400 
ms following feedback presentation (Chase et al., 2011; Gehring & 
Willoughby, 2002); this ERP component has been considered as one of 
the most important ERP indexes of outcome evaluation (Nieuwenhuis 
et al., 2004; Walsh & Anderson, 2012). While its cognitive function is 
still debated (Ferdinand et al., 2012; Heydari & Holroyd, 2016; Proudfit, 
2015; Talmi et al., 2013), the most consistent feature of the FRN is that 
its amplitude becomes more negative-going for negative feedback (e.g., 
performance errors and monetary losses) compared to positive feedback 
across studies (Sambrook & Goslin, 2015; San Martín, 2012). For this 
reason, the FRN has been closely associated with the sensitivity of 
outcome feedback, especially punishment (Balconi & Crivelli, 2010; 
Ferdinand et al., 2016; He et al., 2017; Lange et al., 2012; Marco- 
Pallares et al., 2008). Santesso et al. (2011) discovered that self- 
reported scores of punishment sensitivity were positively correlated 
with FRN amplitude. Further, Cohen and Ranganath (2007) reported 
that a larger FRN elicited by negative feedback predicted subsequent 
behavioral adjustment (i.e., more lose-shift choices) in a reinforcement 
learning task. 

Following the FRN, the P3 is a centro-parietal distributed, positive- 
going wave that peaks between 400 and 600 ms after feedback pre-
sentation (San Martín et al., 2013; Wu & Zhou, 2009). This component 
has been associated with various cognitive functions depending on 
experimental design (Polich, 2007; Polich & Criado, 2006). In the field 
of decision-making, the feedback P3 has been suggested to reflect in-
formation updating of salient outcomes (for reviews, see Glazer et al., 
2018; San Martín, 2012). That is, outcome-related information (e.g., 
probability and magnitude) derived from the ongoing feedback are in-
tegrated into human memory systems to guide future decision for the 
goal of reward maximization (San Martín et al., 2013; Wu & Zhou, 2009; 
Zhang et al., 2013). We consider the P3 as an ERP index of information 
updating process during reversal learning, an idea that has been sup-
ported by the literature (Donaldson et al., 2016; von Borries et al., 
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2013). In some of our previous studies, the FRN (but not P3) amplitude 
was sensitive to individual level of trait anxiety (Gu et al., 2010a, 
2010b). Nevertheless, it should be pointed out that these studies applied 
a simple gambling task in which the winning probability was set at 
chance level regardless of participants’ choices, therefore the reversal 
learning process was not involved. 

Here, we measured personal level of trait anxiety and divided the 
participants into two groups according to their self-reported scores. Both 
the high-trait anxiety (HTA) and low-trait anxiety (LTA) groups finished 
a two-armed bandit PRL task. We made between-group comparison of 
behavioral data and predicted that the reversal learning rate would be 
lower among HTA participants. Additionally, electroencephalographic 
(EEG) signals were recorded and analyzed to unravel the underlying 
mechanisms of the relationship between anxiety and reversal learning. 
Specifically, the FRN and P3 elicited by feedback presentation were used 
to investigate two cognitive factors of reversal learning, that is, outcome 
sensitivity and information updating. Our ERP analyses were aimed to 
explore whether anxiety influences reversal learning by modulating 
either or both of these factors. Seeing that anxiety is associated with 
abnormalities in punishment sensitivity and information updating (see 
above), we suggest that the amplitudes of both the FRN and P3 would be 
sensitive to individual level of trait anxiety. 

2. Methods 

2.1. Participants 

In 2016, all the freshman students (n = 6903) in Shenzhen University 
were asked to complete the Chinese version of the Trait form of Spiel-
berger’s State–Trait Anxiety Inventory (STAI-T: Shek, 1993; Spielberger 
et al., 1983), which was one part of an annual mass screening for mental 
disorder using multiple self-report psychometric questionnaires 
including the Symptom Checklist-90-revised (Derogatis, 1977), Uni-
versity Personality Inventory (Hirayama, 2011), and Minnesota multi-
phasic personality inventory (Hathaway & McKinley, 1940). 788 of the 
STAI-T questionnaires were unfinished or not returned. As a result, the 
total effective sample was 6115 (effective rate = 88.6%). In this sample, 
individuals with STAI-T scores in the upper and lower 25% of the dis-
tribution were considered as HTA and LTA participants, respectively 
(see also Gu et al., 2010a; Luo et al., 2014; Xia et al., 2017, 2020 for 
similar grouping methods). The Chinese version of the Beck Depression 
Inventory Second Edition (BDI-II: Beck et al., 1996; Wang et al., 2011) 
was used to assess self-reported symptoms of depression. In view of the 
fact that anxiety and depression are highly comorbid (Brown et al., 
2001; Garber et al., 2016) and that depressive individuals also have 
deficits in PRL tasks (Murphy et al., 2003; Pizzagalli et al., 2008), we 
only recruited nondepressed participants with high vs. low trait anxiety 
in this study. Specifically, only the participants with BDI-II scores < 13 
(indicating minimal depression: see Beck et al., 1996) were considered 
for the formal study. From those who met these criteria, we randomly 
recruited 80 students as paid participants (40 in the HTA group and 40 in 
the LTA group). The trait anxiety levels of the two groups were generally 
consistent with the standardized norm of Chinese college students (high 
anxiety: 52.51; low anxiety: 34.11) proposed by Li and Qian (1995). 
Participants in the HTA group reported a higher STAI-T score than those 
in the LTA group, while there was no significant difference between the 
two groups with respect to age, handedness, and BDI-II scores (see 
Table 1). The STAI-T and BDI scores were not significantly correlated (r 
= 0.124, p = 0.275). 

Exclusion criteria for both groups were: (1) any Axis I and II disor-
ders according to the Diagnostic and Statistical Manual (DSM-V: 
American Psychiatric Association, 2013); (2) seizure disorder; (3) his-
tory of head injury with possible neurological sequelae; and (4) sub-
stance abuse or dependence in the past six months. Here, the first 
criterion was assessed during the mass screening mentioned above. The 
other criteria were assessed according to participants’ self-reports before 

the experiment. The study was approved by the Ethics Committee of 
Shenzhen University. 

2.2. Procedures 

The PRL task (see Fig. 1) was adopted from Hampton et al. (2007). At 
the beginning of each trial, participants chose one of two Hebrew letters
 in dark color as two alternative options on the (shin) ”ש“ and (aleph) ”א“
left and right-hand sides of a fixation cross. The locations of these op-
tions were counterbalanced across trials. Participants had up to 1500 ms 
to finish the decision, then the chosen option increased in brightness for 
1000 ms. After a jitter screen (300 to 500 ms) on which only the fixation 
cross was left, participants received the outcome (“+0.5”/“− 0.5”) of 
their choice for 1000 ms, that is, winning or losing 0.5 Chinese RMB 
(approximately 8 US cent). If the participants did not make a decision 
within 1500 ms, then the outcome of this trial would be “− 1,” indicating 
minus one RMB. Finally, the fixation cross appeared again as an inter- 
trial interval for 500 ms. The formal task consisted of two blocks (100 
trials per block) and participants had a short break between them. 

At the beginning of the task, one option was randomly set as the 
optimal choice, of which the winning probability was 70%. Meanwhile, 
the winning probability of the other option was set as 40%. However, 
after the participants chose the optimal option in four consecutive trials 
(which was defined as an index of successfully learning the winning 
rule), the winning probability of the optimal option would decrease for 
25% when it was selected again, while that of the other option would 
increase for 25% (Hampton et al., 2007). In that case, the other option 
would become the new optimal choice (65% vs. 45%). After that, the 
reversal process would occur again if the new optimal option was also 
chosen for four consecutive times. No information was given about the 
winning probabilities or the potential reversals. 

Prior to the task, the participants were instructed to choose the op-
tion that they expected to get rewarded from, so as to maximize their 
final incomes. They also performed a training session (20 trials) to 
familiarize with the task. During this training, no reversal occurred. 
After the whole task, the participants were paid according to their task 
performance (range: 40～80 RMB) and were debriefed. 

2.3. EEG recording and analysis 

Brain electrical activity was recorded referentially against left mas-
toid and off-line re-referenced to the average of the left and right mas-
toids, by a 64-channel amplifier with a sampling frequency of 250 Hz 
(Brain Products, Gilching, Germany). EEG data were collected with 
electrode impedances kept below 5 kΩ. Ocular artifacts were removed 
from EEGs using a regression procedure implemented in NeuroScan 
software (Scan 4.3, NeuroScan Inc., Herndon, VA). 

The recorded EEG data were filtered (0.01–30 Hz; slope 12 dB/oct; 
zero phase) and segmented beginning 200 ms prior to the onset of 

Table 1 
Demographic data of high- (HTA) and low-trait anxiety (LTA) participants.  

Characteristics LTA (n =
40) 

HTA (n =
40) 

Statistics 

Mean age (year) 19.05 ±
0.64 

19.23 ±
0.70 

t(78) = − 1.17, p = 0.245 

Sex (male/female) 20/20 20/20  
Handedness (right/ 

left) 
40/0 40/0  

STAI-T 29.68 ±
5.77 

56.05 ±
7.42 

t(78) = − 17.749, p <
0.001 

BDI 5.00 ± 1.85 5.48 ± 1.92 t(78) = − 1.125, p =
0.264 

STAI-T, Trait form of Spielberger’s State-Trait Anxiety Inventory; BDI, Beck 
Depression Inventory (second edition). Descriptive data are presented as mean 
± standard deviation. 
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outcome and lasted for 1200 ms. All epochs were baseline-corrected 
with respect to the mean voltage over the 200 ms preceding the onset 
of outcome, followed by averaging separately for each participant and 
each condition (win-stay, win-shift, lose-stay, and lose-shift). Trials 
contaminated with large artifacts (peak-to-peak deflection exceeded ±
100 μV) and behavioral responses longer than 1500 ms (overall 16 trials 
across all participants; 0.2 ± 0.54 trials on average) were excluded from 
further analyses. As a result, 2.96 ± 2.11 trials, 1.16 ± 2.79 trials, 1.58 
± 2.33 trials, and 1.98 ± 2.33 trials were rejected for each participant in 
the win-stay, win-shift, lose-stay, lose-shift conditions, respectively. The 
rejected trials were <10% of the total trials (see also Xia et al., 2017, 
2020; Yang et al., 2015). The remaining trial numbers after artifact 
rejection did not show significant difference between the four 
conditions. 

We analyzed the mean amplitudes of the frontal-midline FRN and 
centro-parietal P3. These measures were averaged based on different 
sets of electrodes according to grand-mean ERP topographies and rele-
vant literatures (Huang et al., 2009; Kim et al., 2007; Righi et al., 2009). 
Specifically, the mean amplitude of the FRN was measured using the 
average data across the electrode sites Fz, F1, F2, FC1, FC2, FCz, C1, C2, 
and Cz, within a time window of 280–350 ms (see also Holroyd & Kri-
golson, 2007). Meanwhile, the mean amplitude of the P3 was measured 
using the average data across the electrode sites Pz, P1, P2, P3, P4, CPz, 
CP1, CP2, CP3 and CP4, within a time window of 370–440 ms (see also 
Wu et al., 2016). The time windows were selected according to visual 
detection on grand-mean ERP waveforms. 

2.4. ERP source localization 

The standardized low resolution brain electromagnetic tomography 
(sLORETA, the version updated on December 22th, 2015), downloaded 
from the official website (http://www.uzh.ch/keyinst/loreta.htm), was 
employed to determine the possible neuronal generators of the ERP 
components (Pascual-Marqui, 1999, 2002; Pascual-Marqui et al., 1994). 

2.5. Statistics 

Statistical analysis was performed using SPSS Statistics 21.0 (IBM, 
Somers, NY). Descriptive data were presented as mean ± standard de-
viation. The significance level was set at 0.05. Significant interactions 
were analyzed using simple effects model. Partial eta-squared (η2

p ) was 
reported to demonstrate the effect size in ANOVA tests. 

Regarding the mean number of choices, accuracy, response time 
(RT), and the mean amplitude of the FRN and P3, three-way repeated- 
measures ANOVAs were performed, with outcome valence (win vs. loss) 
and subsequent choice (stay vs. shift) as the within-subject factors, and 
group (HTA vs. LTA) as the between-subject factor. We also calculated 
two behavioral indexes associated with rule reversals, that is, “the total 
number of rule reversals throughout the task” and “the number of trials 
that each participant needed to shift to the other option after rule re-
versals” (see also Hampton et al., 2007a, 2007b); we analyzed inde-
pendent sample t test (rather than ANOVAs) on these two indexes, seeing 

that rule reversal could only happen after wins but not losses. Further, 
two-tailed Pearson’s r correlation and linear regression were performed 
between the two self-reported measures (STAI-T and BDI-II) and 
behavioral/ERP indexes. Correction for multiple comparisons was based 
on Bonferroni’s method. 

3. Results 

3.1. Behavioral indexes 

3.1.1. Mean number of choices 
The main effect of group was not significant (F(1, 78) < 1; p = 0.930, 

η2
p < 0.001). The main effect of outcome valence was significant (F(1, 

78) = 77.779, p < 0.001, η2
p = 0.499), indicating that the participants 

won for more times (56.18 ± 33.98) than lost (43.22 ± 19.67). The main 
effect of subsequent choice was significant (F(1, 78) = 56.467, p <
0.001, η2

p = 0.420), indicating that the participants were more willing to 
keep choosing the same option in adjacent trials (58.85 ± 31.63) rather 
than shift to the other option (40.55 ± 21.38). 

The two-way interaction of outcome valence by subsequent choice 
was significant (F(1, 78) = 81.415, p < 0.001, η2

p = 0.511): simple effect 
analysis indicated that the participants were more willing to keep 
choosing the same option (81.23 ± 25.67 times) rather than shift to the 
other option (31.14 ± 19.88 times) after wins (F(1, 78) = 104.07, p <
0.001, η2

p = 0.568), but the reverse was true after losses (36.48 ± 18.48 
times vs. 49.96 ± 18.58 times; F(1, 78) = 13.04, p = 0.001, η2

p = 0.142). 
The three-way interaction of outcome valence by subsequent choice 

by group was significant (F(1, 78) = 4.221, p = 0.043, η2
p = 0.051; 

Fig. 2): simple-simple effect analysis indicated that lose-shift happened 

Fig. 1. Illustration of an exemplar trial of the probabilistic reversal learning task, in which a player chooses the left stimulus and loses 0.5 Chinese RMB.  

Fig. 2. Mean number of different kinds of choices. Error bars indicate one 
standard deviation. LTA: the low-trait anxiety group; HTA: the high-trait anx-
iety group. ***: p < 0.001. 
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less frequently in the HTA group (41.75 ± 16.29 times) than in the LTA 
group (58.18 ± 17.18 times; F(1, 78) = 19.25, p < 0.001, η2

p = 0.197); 
however, this group difference did not achieve the significance level for 
win-stay (F(1, 78) < 1, p = 0.749, η2

p = 0.001; HTA = 82.15 ± 24.74 
times, LTA = 80.30 ± 26.85 times), win-shift (F(1, 78) = 2.78, p =
0.100, η2

p = 0.034; HTA = 34.80 ± 19.59 times, LTA = 27.48 ± 19.73 
times), or lose-stay (F(1, 78) = 2.98, p = 0.088, η2

p = 0.037; HTA =
40.00 ± 18.00 times, LTA = 32.95 ± 18.50 times). 

Concerning that the number of win vs. loss trials might differ due to 
randomness in the task, we also calculated the proportion of lose-shift 
trials out of all loss trials, as well as the proportion of win-shift trials 
out of all win trials, for each participant. A two-way repeated-measures 
ANOVA which takes outcome valence and group into account reveals that 
the main effect of group was not significant (F(1, 78) = 3.936; p = 0.051, 
η2

p = 0.048). The main effect of outcome valence was significant (F(1, 
78) = 68.728, p < 0.001, η2

p = 0.468). Most importantly, the two-way 
interaction of outcome valence by group was significant (F(1, 78) =
5.613, p = 0.02, η2

p = 0.067): the proportion of lose-shift was lower in the 
HTA group (51.45 ± 19.10%) than the LTA group (64.49 ± 15.64%; p =
0.001, η2

p = 0.125), but the group difference did not achieve the sig-
nificance level for win-shift (HTA = 30.50 ± 18.90%, LTA = 26.77 ±
21.81%; p = 0.416, η2

p = 0.008). 

3.1.2. Accuracy 
The main effect of group was significant (F(1, 78) = 6.760, p = 0.011, 

η2
p = 0.080; Fig. 3); the HTA group (55.88 ± 7.53%) showed a lower 

accuracy than the LTA group did (60.39 ± 7.98%). The main effect of 
outcome valence was significant (F(1, 78) = 21.263, p < 0.001, η2

p =

0.214): the accuracy following wins (61.91 ± 21.35%) were higher than 
that following losses (54.36 ± 16.48%). The main effect of subsequent 
choice was significant (F(1, 78) = 38.043, p < 0.001, η2

p = 0.328): the 
decision of staying on the same option (63.17 ± 18.87%) showed a 
higher accuracy than shifting to the other option (53.10 ± 18.69%). 

Neither the interaction of outcome valence by group nor that of 
subsequent choice by group was significant (ps > 0.05). The two-way 
interaction of outcome valence by subsequent choice was significant 
(F(1, 78) = 112.562, p < 0.001, η2

p = 0.591): simple effect analysis 
indicated that staying on the same option after wins (76.67 ± 13.23%) 
showed a higher accuracy than shifting between options (47.15 ±

17.37%; F(1, 78) = 157.32, p < 0.001, η2
p = 0.666), but the reverse was 

true after losses (49.67 ± 13.13% vs. 59.05 ± 18.16%; F(1, 78) = 12.73, 
p = 0.001, η2

p = 0.139). 
The three-way interaction of outcome valence by subsequent choice 

by group was significant (F(1, 78) = 4.410, p = 0.039, η2
p = 0.054; 

Fig. 3): simple-simple effect analysis indicated that the accuracy for lose- 
shift was lower in the HTA group (51.91 ± 17.05%) than in the LTA 
group (66.20 ± 16.52%; F(1, 78) = 14.51, p < 0.001, η2

p = 0.157); 
however, this group difference did not achieve the significance level for 
win-stay (F(1, 78) < 1, p = 0.415, η2

p = 0.009; HTA = 75.46 ± 13.22%, 
LTA = 77.89 ± 13.29%), win-shift (F(1, 78) < 1, p = 0.974, η2

p < 0.001; 
HTA = 47.08 ± 17.14%, LTA = 47.21 ± 17.82%), or lose-stay (F(1, 78) 
< 1, p = 0.687, η2

p = 0.002; HTA = 49.07 ± 13.15%, LTA = 50.27 ±
13.25%). 

3.1.3. Number of rule reversals 
The number of rule reversals in the HTA group (4.80 ± 2.47 times) 

was smaller than that in the LTA group (6.15 ± 3.25 times; t(78) =
2.089, p = 0.040, d = 0.467). 

3.1.4. Number of trials of shifting to the other option after rule reversals 
The number of trials after rule reversals for participants to shift 

choice in the HTA group (3.52 ± 2.73 times) was larger than that in the 
LTA group (2.50 ± 1.31 times; t(78) = − 2.118, p = 0.037, d = 0.474). 

3.1.5. RT 
The main effect of group was significant (F(1, 78) = 4.787, p = 0.032, 

η2
p = 0.058; Fig. 4): the HTA group (654.56 ± 127.40 ms) responded 

faster than the LTA group did (712.66 ± 109.44 ms). The main effect of 
outcome valence was significant (F(1, 78) = 26.286, p < 0.001, η2

p =

0.252): the RT following wins (636.03 ± 165.64 ms) was faster than that 
following losses (731.19 ± 184.72 ms). The main effect of subsequent 
choice was significant (F(1, 78) = 10.571, p = 0.002, η2

p = 0.119): the RT 
of the decision to stay (663.92 ± 174.70 ms) was faster than that of the 
decision to shift (703.29 ± 178.65 ms). 

Neither the interaction of subsequent choice by group, nor that of 
outcome valence by subsequent choice, nor that of outcome valence by 
subsequent choice by group was significant (ps > 0.05). The interaction 
of outcome valence by group was significant (F(1, 78) = 4.409, p =

Fig. 3. Accuracy of different kinds of choices. Error bars indicate one standard 
deviation. LTA: the low-trait anxiety group; HTA: the high-trait anxiety group. 
*: p < 0.05; ***: p < 0.001. 

Fig. 4. Response time of different kinds of choices. Error bars indicate one 
standard deviation. LTA: the low-trait anxiety group; HTA: the high-trait anx-
iety group. *: p < 0.05; **: p < 0.01. 
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0.039, η2
p = 0.054; Fig. 4): simple effect analysis indicated that the RT 

following losses was faster in the HTA group (682.65 ± 178.40 ms) than 
in the LTA group (779.72 ± 179.11 ms; F(1, 78) = 9.009, p = 0.004, η2

p 

= 0.103); however, this group difference did not achieve the signifi-
cance level following wins (F(1, 78) < 1, p = 0.557, η2

p = 0.004; HTA =
626.46 ± 156.83 ms, LTA = 645.59 ± 156.86 ms). 

3.2. ERP indexes 

3.2.1. FRN 
The main effect of group was significant (F(1, 78) = 14.226, p <

0.001, η2
p = 0.154): the HTA group (8.23 ± 2.85 μV) showed a smaller (i. 

e., less negative-going) FRN than the LTA group did (6.92 ± 2.59 μV). 
The main effect of outcome valence was significant (F(1, 78) = 46.40, p 
< 0.001, η2

p = 0.373): a larger FRN was evoked by losses (6.39 ± 2.64 
μV) compared to wins (8.76 ± 2.43 μV). The main effect of subsequent 
choice was significant (F(1, 78) = 44.146, p < 0.001, η2

p = 0.361): a 
smaller FRN was associated with shift choices (7.17 ± 2.98 μV) 
compared to stay choices (7.98 ± 2.55 μV). 

The interaction effect of outcome valence by group was significant (F 
(1, 78) = 4.328, p = 0.041, η2

p = 0.053): simple effect analysis indicated 
that the FRN in the loss condition was smaller in the HTA group (7.41 ±
2.50 μV) compared to the LTA group (5.38 ± 2.38 μV; F(1, 78) = 18.533, 
p < 0.001, η2

p = 0.192); however, this group difference did not achieve 
the significance level in the win condition (F(1, 78) = 1.309, p = 0.256, 
η2

p = 0.017; HTA = 9.05 ± 2.42 μV, LTA = 8.47 ± 2.43 μV). 
The interaction effect of subsequent choice by group was significant 

(F(1, 78) = 18.438, p < 0.001, η2
p = 0.191): simple effect analysis 

indicated that the FRN associated with shift choices (6.25 ± 3.04 μV) 
was larger than stay choices (7.59 ± 2.50 μV) in the LTA group (F(1, 78) 
= 59.822, p < 0.001, η2

p = 0.434); however, this difference did not 
achieve the significance level between shift choices (8.08 ± 2.63 μV) and 
stay choices (8.37 ± 2.56 μV) in the HTA group (F(1, 78) = 2.762, p =
0.101, η2

p = 0.034). 
The interaction effect of outcome valence by subsequent choice was 

significant (F(1, 78) = 12.380, p = 0.001, η2
p = 0.137): simple effect 

analysis indicated that the FRN associated with shift choices (5.71 ±

2.58 μV) was larger than stay choices (7.07 ± 2.53 μV) in the loss con-
dition (F(1, 78) = 46.439, p < 0.001, η2

p = 0.373); however, this dif-
ference did not achieve the significance level between the FRN 
associated with shift choices (8.62 ± 2.62 μV) and stay choices (8.89 ±
2.24 μV) in the win condition (F(1, 78) = 1.916, p = 0.170, η2

p = 0.024). 
The three-way interaction of outcome valence by subsequent choice 

by group was significant (F(1, 78) = 15.598, p < 0.001, η2
p = 0.167; 

Fig. 5): simple-simple effect analysis indicated that the FRN for lose-shift 
was smaller in the HTA group (7.30 ± 2.46 μV) than in the LTA group 
(4.13 ± 1.53 μV; F(1, 78) = 47.72, p < 0.001, η2

p = 0.379); however, this 
group difference did not achieve the significance level for win-stay (F(1, 
78) = 1.78, p = 0.186, η2

p = 0.022; HTA = 9.23 ± 2.26 μV, LTA = 8.56 ±
2.20 μV), win-shift (F(1, 78) = 0.72, p = 0.399, η2

p = 0.009; HTA = 8.87 
± 2.59 μV, LTA = 8.37 ± 2.66 μV), or lose-stay (F(1, 78) = 2.53, p =
0.116, η2

p = 0.031; HTA = 7.52 ± 2.57 μV, LTA = 6.63 ± 2.43 μV). 

3.2.2. P3 
The main effect of group was marginally significant (F(1, 78) =

2.884, p = 0.093, η2
p = 0.036). The main effect of outcome valence was 

significant (F(1, 78) = 73.890, p < 0.001, η2
p = 0.486): a larger (i.e., 

more positive-going) P3 was evoked by losses (8.91 ± 2.69 μV) 
compared to wins (6.56 ± 2.58 μV). The main effect of subsequent 
choice was significant (F(1, 78) = 19.874, p < 0.001, η2

p = 0.203): a 
larger P3 was associated with shift choices (8.24 ± 3.06 μV) compared to 
stay choices (7.23 ± 2.61 μV). 

The interaction effect of outcome valence by group was significant (F 
(1, 78) = 14.023, p < 0.001, η2

p = 0.152): simple effect analysis indicated 
that the P3 associated with losses was smaller in the HTA group (8.10 ±
2.76 μV) compared to the LTA group (9.72 ± 2.38 μV; F(1, 78) = 12.485, 
p = 0.001, η2

p = 0.138); however, this group difference did not achieve 
the significance level for wins (HTA = 6.77 ± 2.62 μV, LTA = 6.36 ±
2.54 μV; F(1, 78) = 0.930, p = 0.338, η2

p = 0.012). Neither the inter-
action of subsequent choice by group, nor that of outcome valence by 
subsequent choice, was significant (ps > 0.05). 

The three-way interaction of outcome valence by subsequent choice 
by group was significant (F(1, 78) = 6.368, p = 0.014, η2

p = 0.075; 

Fig. 5. Grand-mean waveforms (time-locked to the onset of outcome) averaged across the electrode sites of Fz, F1, F2, FCz, FC1, FC2, Cz, C1, and C2, where the 
feedback-related negativity (FRN) was analyzed. The scalp topographies of the difference wave between losses and wins are presented beneath. LTA: the low-trait 
anxiety group; HTA: the high-trait anxiety group. 
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Fig. 6): simple-simple effect analysis indicated that the P3 for lose-shift 
was smaller in the HTA group (8.30 ± 3.07 μV) than in the LTA group 
(10.79 ± 2.32 μV; F(1, 78) = 16.88, p < 0.001, η2

p = 0.178); however, 
this group difference did not achieve the significance level for win-stay 
(F(1, 78) < 1, p = 0.990, η2

p < 0.001; HTA = 6.19 ± 2.35 μV, LTA = 6.20 
± 2.79 μV), win-shift (F(1, 78) = 2.20, p = 0.142, η2

p = 0.027; HTA =
7.36 ± 2.77 μV, LTA = 6.51 ± 2.30 μV), or lose-stay (F(1, 78) = 2.31, p 
= 0.133, η2

p = 0.029; HTA = 7.90 ± 2.45 μV, LTA = 8.64 ± 1.93 μV). 

3.2.3. Source localization 
After combining all conditions in the whole sample, we found that 

the FRN and the P3 component may have been generated from the ACC 
(Brodmann area 10, Montreal Neurological Institute [MNI] coordinates 
= [− 3, 52, 1]) and the parietal cortex (Brodmann area 40, MNI co-
ordinates = [67, − 25, 29]), respectively (Fig. 7). 

3.3. Relationship between anxiety and behavioral/ERP indexes 

We further conducted simple linear regression analyses in the whole 
sample, using the two self-reported scores (STAI-T and BDI) as inde-
pendent variables simultaneously, and the seven behavioral/ERP in-
dexes which were sensitive to the grouping factor as dependent variables 
(i.e., the mean number of lose-shift, the accuracy associated with lose- 
shift, the RT following losses, the number of rule reversals, the num-
ber of trials to shift to the other option after rule reversals, as well as FRN 
and P3 amplitudes associated with lose-shift). Results showed that the 
STAI-T (but not BDI) score was a significant predictor of: (1) the number 
of lose-shift choices, (2) the accuracy of lose-shift choices, (3) the RT 
following losses, (4) the FRN amplitude associated with lose-shift, and 
(5) the P3 amplitude associated with lose-shift (see Table 2 for details). 

We also conducted two-tailed Pearson correlation analyses between 
RT and accuracy associated with win-stay, win-shift, lose-stay, and lose- 
shift, so as to examine whether the behavioral differences between 

Fig. 6. Grand-mean waveforms (time-locked to the onset of outcome) averaged across the electrode sites of Pz, P1, P2, P3, P4, CPz, CP1, CP2, CP3, and CP4, where 
the P3 component was analyzed. The scalp topographies for wins and losses are presented beneath. LTA: the low-trait anxiety group; HTA: the high-trait anxi-
ety group. 

Fig. 7. sLORETA images of the standardized current density maximum associated with the FRN (left panel) and P3 (right panel) in the whole sample (combining all 
conditions). The results at the peak latency of the FRN (312 ms) and P3 (396 ms) are illustrated. 
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groups could be explained by a speed-accuracy tradeoff. In total, we 
performed eight (4 × 2) correlations in the HTA and LTA groups 
(Table 3). Results showed one significant correlation before correction 
for multiple comparisons, that is, RT and accuracy associated with lose- 
shift was positively correlated with one another in the LTA group (r =
0.389, p = 0.013). 

3.4. Relationship between behavioral and ERP indexes 

We finally examined the relationship between the above behavioral 
indexes and ERP indexes with two-tailed Pearson correlation analyses. 
In total, we performed 10 (5× 2) correlations (Table 4). These analyses 
are exploratory. Results showed only one significant correlation after 
correction for multiple comparisons. Specifically, the number of lose- 
shift (r= − 0.318, p= 0.004, corrected p= 0.04) was correlated with 
the FRN amplitude elicited by lose-shift. The FRN is a negative-going 
component, therefore this negative correlation indicates that a larger 
FRN was associated with a higher frequency to shift choice after losses. 

4. Discussion 

Reversal learning is critical for individuals to overcome old habitual 

behaviors and take adaptive goal-directed actions in dynamic environ-
ments (Xue et al., 2008). The current study compared HTA and LTA 
participants’ ability to track changes of stimulus-reward contingencies 
in a PRL task. We found that both behavioral strategies and electro-
physiological activity were sensitive to STAI-T scores, indicating that a 
higher level of trait anxiety is associated with impaired reversal learning 
performance. More specifically, participants with a high trait anxiety 
level were less capable of finding out the optimal strategy, thus they 
encountered fewer reversals throughout the task compared to their low- 
anxiety counterparts. This phenomenon might be resulted from dimin-
ished sensitivity to negative outcomes, seeing that a higher level of trait 
anxiety was related to fewer lose-shift choices and weaker ERP responses 
to lose-shift. 

In the whole sample, participants won more frequently than lost 
during the PRL task, indicating that they have learned the winning rule 
to some extent. In addition, participants were more likely to keep 
choosing the same option rather than shift to the other option after wins, 
but the reverse was true after losses, indicating the application of the 
“win-stay/lose-shift” strategy. In fact, behavioral results showed that 
using this strategy in our task was more effective than “win-shift/lose- 
stay” (see also Starcke & Brand, 2016). Regarding anxiety, we found that 
the HTA group had a lower task accuracy (as well as a shorter RT) 
compared to the LTA group. To explain this phenomenon, we further 
discovered that HTA participants made fewer lose-shift decisions than 
LTA participants, while the accuracy of these decisions was also lower in 
the HTA group. According to Bari and Robbins (2013), the frequency of 
lose-shift is associated with punishment sensitivity in PRL paradigms. 
Further, HTA participants require more trials to shift to the other option 
after a rule reversal happens, indicating a lower learning rate of 
discovering the new optimal choice after rule reversals. Meanwhile, the 
RT following losses (but not wins) was faster in the HTA group than in 
the LTA group. Finally, the LTA group might have used a speed-accuracy 
tradeoff strategy when making lose-shift choices (that is, sacrificing RT 
for a higher accuracy), but the same was not true for the HTA group. 
Overall, the behavioral data strongly suggest that anxious people’s 
reversal learning deficits are mainly due to their processing of negative 
outcomes, that is, they not only show weaker sensitivity to negative 
outcomes, but also are less efficient in adjusting their decision strategy 
according to these outcomes (see Huys et al., 2013; Starcke & Brand, 
2016, for explanation). 

The above opinion is supported by our ERP results. Consistent with 
the classic literature (Gehring & Willoughby, 2002; Miltner et al., 1997), 
the FRN was larger (i.e., more negative-going) for losses than wins. Most 
critically, the HTA group showed a smaller FRN than the LTA group did 
(see also Gu et al., 2010a, 2010b; Jiang et al., 2018; Takács et al., 2015), 
and this between-group difference was significant for lose-shift but not 
for other conditions. Further, the FRN amplitude was correlated with the 
number of lose-shift, such that the participants who showed a smaller 
FRN were less likely to make lose-shift choices; this result highlights the 
FRN as a learning signal that guides behavioral adjustment (Cohen & 
Ranganath, 2007; Frank et al., 2005; Luu et al., 2003). Finally, 

Table 2 
The results of simple linear regression analyses in the whole sample.  

dependent 
variables 

F R2 STAI-T: 
beta 
value 

STAT- 
T: p 
value 

BDI: 
beta 
value 

BDI: p 
value 

lose-shift 21.005*** 0.336 − 0.565 <

0.001 
− 0.128 0.169 

accuracy 6.475** 0.122 − 0.360 0.001 − 0.774 0.441 
RT in loss 3.904* 0.068 − 0.294 0.009 − 0.048 0.660 
NRR 2.653 0.040 − 0.246 0.029 − 0.038 0.736 
NRR-shift 2.046 0.026 0.214 0.059 0.046 0.683 
FRN 44.243*** 0.523 0.718 <

0.001 
0.075 0.342 

P3 7.410** 0.140 − 0.403 <

0.001 
0.008 0.939 

STAI-T, the Trait form of Spielberger’s State-Trait Anxiety Inventory; BDI, Beck 
Depression Inventory (second edition). Lose-shift, the number of lose-shift 
choices; accuracy, the accuracy associated with lose-shift choices; RT, the re-
action time following losses; NRR, the number of rule reversals; NRR-shift, the 
number of trials after rule reversals for participants to shift choice. FRN, the FRN 
amplitude associated with lose-shift; P3, the P3 amplitude associated with lose- 
shift. *: p < 0.05; **: p < 0.01; ***: p < 0.001. 

Table 3 
The correlation matrix between RT and accuracy in four experimental condi-
tions (win-stay, win-shift, lose-stay, and lose-shift) in the LTA and HTA group, 
respectively.    

RT in win- 
stay 

RT in win- 
shift 

RT in loss- 
stay 

RT in loss- 
shift 

LTA ACC in 
win-stay 

r = 0.092 (p 
= 0.572)    

ACC in 
win-shift  

r = -0.103 (p 
= 0.526)   

ACC in 
loss-stay   

r = -0.152 (p 
= 0.350)  

ACC in 
loss-shift    

r = 0.389 (p 
= 0.013) 

HTA ACC in 
win-stay 

r = 0.242 (p 
= 0.132)    

ACC in 
win-shift  

r = -0.034 (p 
= 0.836)   

ACC in 
loss-stay   

r = -0.023 (p 
= 0.888)  

ACC in 
loss-shift    

r = -0.005 (p 
= 0.974) 

LTA, the low-trait anxiety group; HTA, the high-trait anxiety group. 

Table 4 
The correlation matrix (before correction for multiple comparisons) between 
five behavioral and two ERP indexes, all of which were sensitive to the grouping 
factor.   

Loss-shift Accuracy RT NRR NRR-shift 

FRN r = -0.323 
(p = 0.003) 

r = -0.266 (p 
= 0.017) 

r = -0.259 
(p = 0.021) 

r = -0.100 
(p = 0.378) 

r = 0.108 
(p = 0.341) 

P3 r = 0.189 
(p = 0.092) 

r = 0.056 (p 
= 0.621) 

r = 0.065 
(p = 0.566) 

r = 0.150 
(p = 0.185) 

r = -0.240 
(p = 0.032) 

FRN, the FRN amplitude associated with lose-shift; P3, the P3 amplitude asso-
ciated with lose-shift. Lose-shift, the number of lose-shift choices; accuracy, the 
accuracy associated with lose-shift choices; RT, the reaction time following 
losses; NRR, the number of rule reversals; NRR-shift, the number of trials after 
rule reversals for participants to shift choice. 
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individual trait anxiety level predicted not only the number of lose-shift 
choices, but also the FRN amplitude associated with lose-shift. Taken 
together, we suggest that anxiety modulates punishment sensitivity 
(indexed by the FRN) during reversal learning, to the extent that anxious 
people’s ability of adjusting strategies according to negative outcomes is 
significantly weakened. 

Seeing that anxiety is characterized as stronger reactions to poten-
tially threat-related information (Bishop et al., 2004; Etkin et al., 2004; 
Mogg & Bradley, 2018), one might question why anxious participants’ 
sensitivity to negative outcomes would decrease during reversal 
learning. To clarify this issue, it should be noted that anxiety evolves 
from defense mechanisms that enhance our chances for survival, thus 
anxiety is essentially associated with threatening stimuli rather than 
economically disadvantageous outcomes (Grillon, 2002b; LeDoux, 
1998). As pointed out by Schonberg et al. (2011), the cognitive and 
neural mechanisms involved in naturalistic risk-taking are dissociated 
from those involved in economic risk-taking. We therefore suggest that 
the relationship between anxiety and diminished sensitivity to monetary 
losses should not be surprising (see also Giorgetta et al., 2012 for similar 
results). 

Numerous studies have demonstrated that anxiety consistently leads 
to a pessimistic outcome expectation, such as in economic games 
(Eisenberg et al., 1998; Lauriola & Levin, 2001; Shepperd et al., 2005; 
Stöber, 1997). In other words, anxious people are more prone to predict 
that they would get unfavorable outcomes in the future (Butler & 
Mathews, 1987; MacLeod et al., 1991; Mitte, 2007; Wray & Stone, 
2005). In our opinion, this phenomenon may help understand why 
anxiety reduces punishment sensitivity. That is, negative outcomes are 
more likely to meet anxious individuals’ prior expectation and thus are 
unable to attract sufficient attention. Consequently, the diminished 
punishment sensitivity associated with pessimistic expectation hinders 
anxious individuals from detecting changes in stimulus-reward contin-
gencies. Many ERP studies have provided support for the above expla-
nation (Gu et al., 2010a, 2010b; Jiang et al., 2018). 

Meanwhile, the P3 amplitude associated with lose-shift (but not 
other conditions) was smaller in the HTA group compared with the LTA 
group. In the whole sample, individual trait anxiety level predicted the 
P3 amplitude in this condition. These results suggest that anxiety also 
affects information updating targeting on negative outcomes, which are 
consistent with our experimental hypothesis. Unlike the FRN, we found 
that the P3 amplitude showed no relationship with behavioral indexes. 
Accordingly, we believe that anxious participants’ impaired reversal 
learning performance could not be attributed to their abnormalities in 
information updating, but this idea should be treated with caution since 
it is based on null results. A study by Donaldson et al. (2016) found that 
the P3 amplitude predicted behavioral adjustment during reversal 
learning. Regarding these heterogeneous findings, we notice that 
Donaldson et al. (2016) used visually complex picture (human faces and 
landscape scenes) as options to learn, while we used alphabetic symbols. 
It is possible that visual complexity of experimental stimuli interferes 
with the learning process, manifesting as different patterns of electro-
physiological activity (see also Luyckx et al., 2019). 

According to the results of our ERP source analysis, the FRN and the 
P3 were originated from the ACC and the parietal cortex, respectively. 
These results are supported by many previous studies including those 
using simultaneous ERP-functional magnetic resonance imaging 
recording (Gehring & Willoughby, 2002; Hauser et al., 2014; Linden, 
2005). Further, these results indicate that compared to other key nodes 
within the neural networks of reversal learning (Budhani et al., 2007; 
Hampton et al., 2007; Hampton & O’Doherty J, 2007), the ACC and the 
parietal cortex are particularly susceptible to emotional influence, 
which might be of clinical significance. Indeed, these two regions have 
been considered to play important roles in the etiology of anxiety dis-
orders (Grupe & Nitschke, 2013; Tovote et al., 2015) as well as in the 
relationship between anxiety and decision-making behavior (Amemori 
& Graybiel, 2012; Aupperle & Paulus, 2010; Krain et al., 2008). Follow- 

up brain-imaging studies should test our findings to account for the 
limited accuracy of ERP source localization (Zhukov et al., 2000). 

Recently, Aylward et al. (2019) reported that anxious individuals 
under stress showed a better learning rate in response to negative out-
comes, which is inconsistent with our findings. The reason for this 
discrepancy is unclear to us, but we note some methodological differ-
ence between the two studies. First, in the learning task designed by 
Aylward et al. (2019), reward contingencies fluctuated over time auto-
matically, not depending on participants’ performance. This difference 
in probabilistic structure may have modulated the effect of anxiety. 
Second, Aylward et al. (2019) applied stress manipulation before the 
learning task, while this study focuses on trait anxiety. Another possi-
bility lies in the fact that the two studies were conducted under different 
cultural backgrounds (United Kingdom vs China). In our opinion, the 
relationship between anxiety and feedback learning might be sensitive 
to culture-emotion interaction – that is, emotional influence on behavior 
manifest in different ways for people from different cultures (Boiger & 
Mesquita, 2012; Kitayama & Park, 2007). This possibility could be 
examined with a cross-cultural experimental design in the future. 

In our opinion, a main strength of our study is that we have 
controlled the potential influence of depression. It is well known to 
clinical researchers that anxiety and depression have a high comorbidity 
rate (Brady & Kendall, 1992; Dobson, 1985; Stavrakaki & Vargo, 1986). 
Thus, we only recruited participants with a low BDI-II scores to ensure 
that our findings were not modulated by depression (see also Beuke 
et al., 2003). Meanwhile, a few limitations should be pointed out for 
future research to consider. First, this study selectively investigates trait 
anxiety, therefore the impact of transient anxiety state remains unde-
termined (but see Aylward et al., 2019). Second, we recruited our par-
ticipants from extreme groups, which is a common practice in many 
studies but may have resulted in a bimodal distribution of anxiety scores 
across groups; alternative grouping methods (e.g., median split) could 
be considered in future research. Moreover, our task did not manipulate 
reward magnitude; modulating this factor would help examine anxious 
individuals’ learning performance under varied motivational levels. 
Likewise, it would be interesting to explore the effect of task difficulty 
(e.g., by changing the number of available options) on the relationship 
between anxiety and reversal learning. 

In short, the present study enriches the knowledge about the impact 
of anxiety on feedback learning. Considering the association between 
abnormal learning ability and behavioral symptoms in anxiety (Britton 
et al., 2011; Grillon, 2002a), our findings may provide insights into the 
nature of anxiety with the perspective of targeted interventions. Also, 
our findings may help understanding reversal learning deficits associ-
ated with other types of emotional symptoms; this transdiagnostic 
perspective is supported by recent studies indicating common abnor-
malities in reward processing across traditional diagnostic boundaries 
(Husain & Roiser, 2018; Nusslock & Alloy, 2017; Treadway & Zald, 
2013). In this study, participants in the HTA group were not formally 
diagnosed with anxiety. Some recent studies have indicated that anxiety 
disorders are related to increased punishment learning rates, but their 
tasks did not involve a reversal process (Laufer et al., 2016; Morris & 
Rottenberg, 2015). We suggest that follow-up research should directly 
compare clinical and nonclinical samples with the same behavioral 
paradigm, so as to determine the robustness of our findings in clinical 
populations. Moreover, as pointed out by Izquierdo and Jentsch (2012), 
the neurobiological basis of reversal learning is complicated, including 
“a circumscribed neural circuitry” and “an orchestrated balance of 
neurotransmitters” (see also Chudasama & Robbins, 2003). Regarding 
that, investigating the treatment effects of non-invasive brain stimula-
tion (e.g., Sturm et al., 2003) and neurotransmitter modulation (e.g., 
Nuss, 2015) on anxious individuals’ reversal learning performance 
would be fruitful. 
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