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Neutrophils are one of the first immune cell types that are recruited to injury and

infection site. As a vital component of the immune system, neutrophils are heterogeneous

immune cells known to have phagocytic property and function in inflammation. Recent

studies revealed that neutrophils play dual roles in tumor initiation, development, and

progression. The multifunctional roles of neutrophils in diseases are mainly due to

their production of different effector molecules under different conditions. N1 and N2

neutrophils or high density neutrophils (HDNs) and low density neutrophils (LDNs) have

been used to distinguish neutrophils subpopulations with pro- vs. anti-tumor activity,

respectively. Indeed, N1 and N2 neutrophils also represent immunostimulating and

immunosuppressive subsets, respectively, in cancer. The emerging studies support

their multifaceted roles in autoimmune diseases. Although such subsets are rarely

identified in autoimmune diseases, some unique subsets of neutrophils, including low

density granulocytes (LDGs) and CD177+ neutrophils, have been reported. Given the

heterogeneity and functional plasticity of neutrophils, it is necessary to understand the

phenotypical and functional features of neutrophils in disease status. In this article, we

review the multifaceted activates of neutrophils in cancer and autoimmune diseases,

which may support new classification of neutrophils to help understand their important

functions in immune homeostasis and pathologies.
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SUMMARY POINTS

- Neutrophils play multifaceted functions under different pathological conditions by releasing
various effector molecules and cytokines. Neutrophils are more heterogeneous than previously
thought and different subpopulations have distinct activities in diseases.
- Neutrophils in cancer could be divided into N1 and N2 subsets, or high density neutrophils, and
low density neutrophils based on functional characteristics.
- Neutrophils in certain autoimmune diseases may also be classified into different subsets, with low
density granulocytes (LDGs) representing pro-inflammatory neutrophils and Gr-1high or CD177+

neutrophils exhibiting anti-inflammatory effects.
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INTRODUCTION

Neutrophils are the most abundant leukocytes in the circulating
system, making up 50–70% of the whole white blood cells
in human (1, 2). They constitute the first line of defense
and protect the host from pathogen assaults via multiple
mechanisms including phagocytosis, release of granules,
production of cytokines, and formation of neutrophil
extracellular traps (NETs) (3). Neutrophils are not only an
important component of innate immunity, but also participate
in regulation of adaptive immunity through interplays with
various adaptive immune cells. In addition to the host defense,
neutrophils are also involved in the pathogenesis of many
diseases, including cancer and autoimmune disorders (2).

Although neutrophils have long been found to be present
in different type of tumors, these tumor-associated neutrophils
(TANs) were believed to be functionally neutral due to their
short lifespan (2). Increasing studies over the past few years
began to reveal the differential roles of neutrophils in cancer.
Only recently, the level of neutrophils in the tumor tissues was
considered as a marker for a poor prognosis of cancer patients
(4). According to their functions, TANs are divided into two
subgroups with anti-tumor (N1) or pro-tumor (N2) activity (5–
7), which is similar to tumor-associated macrophages (8, 9).
Recently, it was suggested that circulating neutrophils can also
be classified into high density neutrophils (HDNs) and low
density neutrophils (LDNs), which functionally mirrors N1 and
N2 neutrophils, respectively (10, 11).

While neutrophils have also been reported to show
multifaceted functions in many autoimmune diseases (12–17),
few researchers have attempted to distinguish subpopulations
of neutrophils in autoimmune diseases. Most immune cells,
including T cells, dendritic cells, and macrophages have
been classified into different subsets that exert different or
even opposite roles in different disease contexts (18–21).
In this article, we summarize our current understanding of
neutrophils, the most abundant leukocytes in circulation, and
their multifaceted functions in different diseases, particularly
autoimmune conditions. We describe the various effector
molecules produced by neutrophils that define its functions in a
disease-specific context, which may provide some insights into
the potential classification of neutrophils.

THE DIVERSITY OF NEUTROPHILS IN
CANCERS

Cancer cells can produce various chemokines and cytokines,
which recruit neutrophils to the tumor milieu (22, 23).
Although neutrophils have previously thought to be terminally
differentiated cells due to their short life span (24, 25), the
plasticity of neutrophils has been unveiled in the recent years.
These cells may be divided into different subsets based on
their differential effects on cancer initiation, development,
and progression. Neutrophils in cancer, also known as tumor
associated neutrophils (TANs), are functionally classified as
tumor-suppressing N1 or tumor-promoting N2 phenotype.

Alternatively, they can be divided into high density neutrophils
(HDNs) and low density neutrophils (LDNs) based on the density
of circulating neutrophils in cancer patients.

N1 and N2 subpopulations of TANs display distinct functions
in cancer. N1 neutrophils have potent anti-tumor activity mainly
due to their release of pro-inflammatory or immunostimulatory
cytokines, such as interleukin (IL)-12, tumor necrosis factor
(TNF)-α, CCL3, CXCL9, CXCL10, which facilitates recruitment
and activation of CD8+ T cells (26, 27). In contrast,
N2 neutrophils have strong immunosuppressive and tumor-
promoting activity, including promotion of tumor angiogenesis,
invasion and metastases via various factors, such as hepatocyte
growth factor (HGF) (28), oncostatin M (6), reactive oxygen
species (ROS) (29), reactive nitrogen species (RNS) (29), matrix
metalloproteinase (MMPs) (30), and neutrophils elastase (NE)
(4, 30). TANs were shown to locate at the margin of tumor site in
early stage cancer, but they can massively infiltrate into the center
of tumor at late stage (31). Research in mouse lung carcinoma
and mesothelioma models suggests that TANs have a tumor-
suppressing N1 phenotype at the early stage of tumor, whereas
they convert into a tumor-promoting N2 phenotype during
tumor progression (31). Such a phenotypic transformation may
be induced by the factors produced by cancer cells and/or other
immune cells in the tumor microenvironment. Recent studies
have shown that the cytokine TGF-β and type I interferons
are major factors involved in polarization of neutrophils. In
the presence of TGF-β, neutrophils are skewed toward an N2
phenotype, whereas the blockade of TGF-β facilitates neutrophil
development into an N1 phenotype (32). In contrast, type
I interferons polarize neutrophils to an N1 phenotype while
the impaired type I interferon signal results in polarization of
neutrophils to an N2 phenotype (33). A recent study reported
that angiotensin converting enzyme inhibitors (ACEI) or
angiotensin II type I receptor (AGTR1) antagonist also promoted
an N1 phenotype of neutrophils, which was association with
inhibition of tumor growth. However, addition of angiotensin II
reversed this process (34). Furthermore, ACEI treatment resulted
in a reduction of serumTGF-β in tumor-bearingmice, suggesting
that angiotensin II regulates neutrophils polarization through
induction of TGF-β and further underscores an important role
of TGF-β in N1-N2 polarization.

HDNs and LDNs represent another classification for
circulating neutrophils in cancer paients. Density gradient
centrifugation is the most common and validated approach to
separate mononuclear and polymorphonuclear leukocytes (10).
Mature neutrophils were thought to exist in the high density
sedimentary fraction of leukocytes with segmented nucleus (35).
However, recent findings showed that some neutrophils also exist
in the low density fraction (11, 36). In addition to classification
of HDNs and LDNs in blood, LDNs can further be divided
into mature and immature populations based on the shape of
their nucleus. The latter is also known as granulocytic-myeloid
derived suppressor cells (G-MDSCs), which have a characteristic
of banded or ring-shaped nucleus (37–39). Compared with
HDNs, LDNs show a larger cellular size, reduced anti-tumor
cytotoxicity, decreased phagocytic activity, impaired migratory
capacity, and less oxidative burst, instead, these cells exhibit
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highly anti-inflammatory and tumor-promoting activity (11). In
this context, HDNs are functionally similar to N1 neutrophils,
while LDNs resemble N2 neutrophils. Interestingly, HDNs can
be converted into LDNs by TGF-β (11), indicating the plasticity
of these cells. However, this phenomenon was only observed
in HDNs from tumor-bearing mice not those from tumor-free
mice (11), suggesting that HDNs may need to be primed before
their conversion into LDNs in the presence of TGF-β. Given
the functional similarity of LDNs and N2 neutrophils, they are
likely to belong to the same subpopulations of neutrophils that
are present in different sites. However, it is difficult to test this
possibility due to a lack of validated surface markers currently
available to define N2 neutrophils or LDNs. Therefore, further
investigation is necessary to understand the developmental
relationship between N1/N2 neutrophils and HDNs/LDNs and,
more importantly, to phenotypically identify these different
subtypes of neutrophils as well as signals or factors involved in
regulation of their polarization.

THE DUAL ROLES OF NEUTROPHILS IN
CANCERS

As an important immune cell type, neutrophils are present in
circulation and tumor milieu. These cells display either pro- or
anti-tumor activity in a context-specific manner (Figure 1).

The anti-tumor activity of neutrophils is executed mainly
through antibody-dependent cellular cytotoxicity (ADCC) and
target-specific antibody cytotoxicity (40, 41). Many potential
cytotoxic mediators produced by neutrophils, including TNF-
α, NO, and H2O2, can contribute directly to their tumor-
suppressive activity (6, 31). Certainly cytokines, such as GM-
CSF and IFN-γ, upregulate co-stimulatorymolecules (e.g., CD86,
CD54, OX40L, and 4-1BBL) on neutrophils at the early stage of
tumorigenesis, which enable these cells to function as antigen-
presentation cells for priming proliferation and activation of
tumor-reactive T cells (42, 43).

The role of neutrophils have been described in various
cancer types, including colorectal cancer (44, 45), glioblastoma
(46), hepatocellular carcinoma (47), renal cell carcinoma (48),
melanoma (49, 50), pancreatic ductal carcinoma (51), and head
and neck cancer (52). Some studies have shown that increased
number of neutrophils in tumor tissue or elevated ratio of
neutrophil vs. lymphocyte in peripheral blood is associated
with a poor prognosis of cancer patients (45–49, 51, 52).
More specifically, neutrophils exhibit their tumor-promoting
effect by facilitating tumor initiation, invasion, angiogenesis, and
metastasis. Firstly, neutrophils can promote tumor initiation
through production of reactive oxygen species (ROS) and
reactive nitrogen species (RNS). These reactive radicals are likely
to cause DNA damage and genetic instability in some models of
chemical induced carcinogenesis (29). In addition, neutrophils
accelerate tumor growth and progression by secreting a variety
of mediators (4). Neutrophils produce certain growth factors,
such as hepatocyte growth factor (HGF), to enhance invasion
of human pulmonary adenocarcinoma cells (28). Interestingly,
HGF induces release of NO by neutrophils in a autocrine

fashion to kill cancer cells, suggesting a negative feedback loop
involved in interplays between neutrophils and transformed
cells during tumor progression (53). Neutrophils can also
release oncostatin M and matrix metalloproteinase (MMP-9)
to induce production of vascular endothelial growth factor,
which can promote angiogenesis and invasion of tumor cells
in multiple cancer models (54–56). Furthermore, NE and
MMPs released by neutrophils promote tumor progression by
remodeling tumor extracellular matrix (ECM) (30). Similar to
G-MDSCs, neutrophils can also produce arginase 1 to inhibit
effector function of T cells (57). In patients with gastric cancer,
neutrophils display T cell suppressive activity in association with
surface expression of the immune checkpoint molecule PD-L1or
programmed death-ligand 1, which is activated by GM-CSF via
the JAK and STAT3 signaling pathways (54–56).

Neutrophils extracellular traps (NETs) are special structure
formed by neutrophils, and consist of chromatin and
antimicrobial granule proteins, including NE, cathepsin G,
and myeloperoxidase (MPO). The presence of NETs within
tumors was reported to correlate with poor outcomes of cancer
patients (52). NETs can execute their tumor-promoting activity
by facilitating proliferation and inhibiting apoptosis of cancer
cells (4). Although the precise mechanism remains unclear,
this pro-tumor effect of NETs is believed to involve several
tumor-promoting molecules, e.g., NE, cathepsin G and MMP-9
(58). NETs can also enhance adhesion of circulating tumor cells
to promote metastasis of lung carcinoma (49). Of note, NETs was
also shown to reduce the threshold of T cell activation through
direct contact and/or TCR signaling, thereby promoting an
adaptive immune response that may help eliminate cancer cells
(59). However, the definite evidence supporting NETs-mediated
anti-tumor activity is still lacking.

NEUTROPHILS IN AUTOIMMUNE
DISEASES

Accumulating evidence supports the involvement of neutrophils
in pathogenesis of many autoimmune diseases. They can
influence autoimmune processes either directly via various
effector molecules or indirectly through interactions with other
immune cells (Table 1). Indeed, neutrophils are believed to
be a major cause for induction of autoantibodies in certain
autoimmune diseases (2). It is now recognized that neutrophils
display phenotypic or functional abnormalities in diverse
autoimmune diseases.

Multiple Sclerosis
Study of experimental autoimmune encephalomyelitis (EAE), a
widely used mouse model of human multiple sclerosis (MS)
showed that the number of neutrophils increased significantly
at the acute phase but declined at the remission phase in the
lesion (82). Administration of anti-Ly6G or anti-Gr-1 antibody
to deplete neutrophils limits EAE development, suggesting that
neutrophils may play a detrimental role in EAE or MS. In
contrast, use of G-CSF to promote recruitment and activation
of neutrophils can exacerbate EAE (83). A recent study showed
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FIGURE 1 | Different role of N1 and N2 neutrophils in cancer. Neutrophils could be polarized into N1 phenotype under the induction of TGF-â and polarized into N2

phenotype under the induction of type I IFNs. N1 neutrophils could inhibit the development of cancer through tumor cells cytotoxicity, ADCC and activate T cells. N2

neutrophils could promote the development of cancer through promoting carcinogenesis, tumor growth, cancer metastasis, and cancer angiogenesis as well as

suppress immunity.

that the ratio of neutrophil vs. lymphocyte may be a predictor
for the progression of disability in patients with MS (12). Indeed,
neutrophils from the peripheral blood of MS patients exhibit
an inflammatory phenotype with increased degranulation, ROS
production and NETs formation (84, 85). These neutrophils also
show reduced apoptosis, which may contribute to the chronic
inflammation and repeated relapse of MS (85). In addition, they
can facilitate the disease pathogenesis by compromising blood-
brain-barrier (BBB) and inducing oxidative stress via generation
of ROS (60, 61). BBB destruction by neutrophils is likely to result
from increased production of myeloperoxidase (MPO) because
inhibition of MPO restores integrity of BBB and ameliorates
severity of disease (62).

Despite the potential harmful effect of neutrophils on MS, Gr-
1high neutrophils from central nervous system of EAE mice were
shown to significantly suppress proliferation of myelin-reactive T
cells, which is dependent on IFN-γ production (86), suggesting
the existence of a negative feedback pathway that limits the
function of auto-reactive T cells in EAE. It is possible that Gr-
1high neutrophils maybe a subset of neutrophils with disease-
protective activity in EAE. Given that G-MDSCs were previously
characterized as CD11b+Gr-1high immature cells in mice (87),
these T cell-suppressive Gr-1+ neutrophils observed in EAEmice
may represent a subpopulation of G-MDSCs. In this context, it
is reasonable to believe that the majority of neutrophils in EAE
and MS are disease-promoting highly pro-inflammatory cells,
and those with T cell-suppressive activity, e.g., Gr-1+ neutrophils
or G-MDSCs, are unable to limit exacerbated inflammation to

impact on disease progression. However, experimental evidence
is required to support this possibility.

Systemic Lupus Erythematosus
An increase of a subpopulation of neutrophils, known as low
density granulocytes (LDGs), was reported in systemic lupus
erythematosus (SLE) many years ago (88). These cells display
enhanced pro-inflammatory activity and increased synthesis
of type I interferons (89). Intriguingly, normal high density
neutrophils, upon incubation with the plasma from SLE patients,
can be converted into LDGs. This decrease in their density may
be caused by activation of normal neutrophils by certain soluble
factors (e.g., immune complexes and complements), which is
known to be associated with neutrophils degranulation and
increased cell size (88). LDGs may promote the development of
SLE by enhancing apoptosis of endothelial cells and impairing
vascular repair. In this context, LDGs are also associated
with an increased risk of vascular injury in SLE due to
their endothelial cytotoxicity. LDGs also participate in the
pathogenesis of SLE through increased NETs formation (63,
90). It was reported that the blockade of NETs formation
alleviates the severity of disease (91). In this case, NETs not
only can kill directly endothelia cells (63), but also enhance
the production of inflammatory cytokines, including IL-1β and
IL-18,via activation of the nucleotide-binding oligomerization
domain-like receptors protein 3 (NLRP3) inflammasome in
macrophages and promotion of IFN-α synthesis by plasmacytoid
dendritic cells (pDC) (14). In addition, LDGs from SLE patients
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TABLE 1 | Neutrophils in autoimmune diseases.

Diseases Species Effector

molecules

Functions References

MS Mouse ROS Destructing

blood-brain-barrier

(60, 61)

Mouse MPO Destructing

blood-brain-barrier

(62)

SLE Human IFN-á Damaging vascular

endothelia

(13)

Human NETs Killing endothelial cells

and activating

plasmacytoid dendritic

cells

(14, 63)

RA Mouse PADI 4 Related to the

generation of

autoantibodies

(15)

Human TNF Attracting T cells (64)

Human B-lymphocyte

stimulator

Activating B cells (65, 66)

Mouse ROS Decreased ROS levels

is associated with

autoimmune and

chronic inflammation

(67, 68)

Human MMPs Destructing cartilage (69, 70)

Mouse RANKL Resorbing bone (71)

T1D Human NE Related to the

generation of â-cells

antigens autoantibodies

(72)

Human Proteinase 3 Related to the

generation of â-cells

antigens autoantibodies

(72)

Mouse ROS Destructing pancreatic

â-cells

(73)

Mouse CRAMP Activating plasmacytoid

dendritic cells

(16)

IBD Mouse ROS Killing bacteria and

damaging intestinal

mucusa

(74, 75)

Human MMP-9 Degrading the

extracellular matrix and

vascular repairement

(76–78)

Human NE Disrupting intestinal

barrier

(79, 80)

Mouse IL-22 Repairing epithelial

integrity and resoling

colitis

(81)

produce higher levels of pro-inflammatory cytokines, such as
IFN-α and TNF-α, compared to autologous HDNs. However,
the phagocytic capability of LDGs is significantly reduced (13),
which is similar to the LDNs in cancer. Compared with LDNs
from renal cell carcinoma patients, LDGs in SLE patients contains
more percentage of immature neutrophils (10 vs. 40%) (92).
While LDNs in cancer express higher levels of CD11b and
CD66b than HDNs, there is no difference in the levels of these
activating markers between LDGs and HDGs in SLE (13, 92).
Together, LDGs with a pro-inflammatory phenotype play a
deleterious role in SLE development. While LDGs and LDNs

in the circulations of cancer patients share similar phagocytic
capability, LDNs are shown to have a distinct anti-inflammatory
phenotype, suggesting that the density of neutrophils may not
be a suitable marker to classify neutrophils subsets in different
disease settings.

Rheumatoid Arthritis
It has been shown that neutrophil-to-lymphocyte ratio (NLR)
correlates with the disease activity of rheumatoid arthritis (RA)
(93–95). When combined with platelet-to-lymphocyte ratio, it
can serve as a prognostic biomarker for RA (96). The detrimental
role of neutrophils in RA may result from their association with
the production of autoantibodies against citrullinated peptides,
which is supported by finding that neutrophils in inflamed joints
express peptidylarginine deiminase (PADI) 4 enzyme capable
of catalyzing the citrullination of arginine (15). Neutrophils
are involved in the recruitment and activation of T or B
cells in RA. Neutrophils are an important source of TNF-α,
which can induce production of CCL18 to recruit T cells to
inflamed sites (64). Neutrophils can also release B-lymphocyte
stimulator to activate B cells in RA (65, 66). In addition, delayed
apoptosis of neutrophils, due to activation of anti-apoptotic
signals and inhibition of pro-apoptotic pathways by various
cytokines, contributes to the perpetuation of inflammation and
development of RA (15). Moreover, neutrophils participate in
the destruction of cartilage by stimulating synoviocytes to release
MMPs and activating osteoclast through receptor activator of
nuclear factor-kB ligand (RANKL) signaling (69–71). In this
context, they can promote bone adsorption and inhibit bone
remodeling in RA.

While neutrophils from peripheral blood of patients with
active synovitis generate less ROS than those from normal
donors and arthritis patients at clinical remission, those in the
synovial fluid (SF) of patients display increased ROS production
(97). This phenomenon may be explained by the recruitment
of primed neutrophils with high ROS production from the
blood to the joint during disease progression. These findings
indicate that there are at least two subsets of neutrophils
with different capability of ROS production in RA. Reduced
production of cellular ROS in circulating neutrophils increases
the susceptibility of autoimmune diseases and the risk of chronic
inflammation, whereas elevation of ROS in SF neutrophils may
directly participate in injury of joints tissues (67, 68). Although
specific phenotype of these neutrophils in RA has not been
defined, clearly there exist two different subsets of neutrophils
with different ROS production, both of which are deleterious
to patients possibly through distinct mechanisms in circulation
and SF.

Type 1 Diabetes
Type 1 diabetes (T1D) is an autoimmune disease with a
characteristic of immune-mediated destruction of pancreatic-β
cells (98). T1D patients in prediabete stage or within 1 year
after diagnosis show decreased number of neutrophils, and these
cells increase to the normal level in those with T1D for more
than 1 year (72). The reduction of neutrophils in T1D patients
may be attributed, at least in part, to NETosis, that enhances
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formation of NETs and release of NE and proteinase 3 (PR3).
The elevated levels of circulating NE and PR3 positively correlate
to the increased seropositivity of autoantibodies reactive with
β-cell antigen. NE and PR3 are also increased substantially
even in autoantibody negative patients (72), suggesting that
abnormal activity of neutrophil serine proteases may be involved
in generation of autoantibodies and pathogenesis of disease at
the early stage of T1D. However, a recent study reported that
diabetic patients diagnosed within 3 years display decreased
NE and PR3 levels (99). The discrepancies in the change of
NE and PR3 may be caused by the differences in patient ages,
disease severity, and stages. Therefore, the role of NETosis and its
associated markers in the development of T1D need to be further
investigated.

ROS, another important product of neutrophils, has also been
reported to be elevated in patients with T1D (100),which may
help initiate destruction of pancreatic β-cell (73). In addition,
a number of cytokines produced by neutrophils, including IL-
1, TNF-α, and IFN-γ, can also participate in the initiation of
pancreatic-β cell destruction by stimulating production of toxic
free radical or indirectly by inducing recruitment and activating
of other immune cells (73). Since these cytokines are produced
not only by neutrophils but also by other immune cell types and
these immune cells are known to have pleiotropic and redundant
effects, it is difficult to distinguish the role of individual cytokines
in T1D. Other than their direct cytokine effect, the indirect
effect of neutrophils on activation of other immune cells has
also been documented. In non-obese diabetic (NOD) mice,
DNA–anti-DNA IgG complexes stimulate formation of NETs
and production of cathelicidin-related antimicrobial peptide
(CRAMP). Subsequent activation of pDC and concurrent release
of IFN-α promotes T cell-mediated autoimmune response at
the early stage of T1D (16). Therefore, neutrophils in T1D
appear to contribute to immune pathology by facilitating
auto-antibody-mediated β-cell destruction and by enhancing
inflammation. Given the heterogeneity of this cell population,
it is intriguing to address the question as to whether anti-
inflammatory and disease-protective neutrophils are present
in T1D.

Inflammatory Bowel Diseases
Inflammatory bowel diseases (IBD), including Crohn’s disease
(CD), and ulcerative colitis (UC), are characterized by chronic,
relapsing inflammation in gastrointestinal tract, which are
resulted from dysregulation of immune responses at intestinal
mucosa (101). The role of neutrophils in the pathogenesis of
IBD remains controversial. The neutrophil count in patients
with IBD is significantly increased when compared to that in
normal individuals (102). The number of infiltrating neutrophils
is associated with the severity of UC (103). Patients with active
UC often have a higher neutrophil-to-lymphocyte ratio than
normal controls (104). These results suggest that neutrophils
recruited to the lesion may be deleterious to the development
of UC. Neutrophils can also be involved in regulation of
disease development via MMP-9-mediated degradation of ECM.
MMP-9 deficiency alleviates an inflammatory response and
intestinal injury in DSS-induced IBD mice (76), and the

inhibition of MMP-9 reduces disease severity (77). In addition,
increased activity of NE in UC patients support potential
involvement of NE in the pathogenesis of IBD (105). Over-
reactive NE can disrupt intestinal barrier by degrading E-
cadherins or zonula occludens-1 (79), and inhibit mucosal
repair by suppressing proliferation of intestinal epithelial cells
(80). However, defect of neutrophil recruitment contributes
to the inefficient bacteria clearance and chronic inflammation
in CD (106–108). Neutrophils from peripheral blood of CD
patients produce increased ROS (109), which exhibit important
antimicrobial properties known to protect host against microbial
infections (74). However, over produced ROS can cause intestinal
mucosal damage, thereby increasing mucosal permeability due
to the degradation of polyunsaturated acids in the membrane
of intestinal epithelial cells (75). Therefore, the suppression of
ROS production, such as anti-TNF-α (infliximab) therapy, will
be beneficial for IBD patients (110).

A recent study reported that CD177+ neutrophils exhibit
a protective role against IBD. CD177 is a surface marker
expressed exclusively on human neutrophils (111) and 45–60%
of neutrophils in periphery blood of healthy individuals are
CD177 positive (112). The CD177+ neutrophils have enhanced
antimicrobial activity, which is associated with increased
production of ROS, MPO, NETs as well as bactericidal peptides
(17). Compared to CD177− counterparts, CD177+ neutrophils
display lower levels of pro-inflammatory cytokines, such as IFN-
γ, IL-6, and IL-17A, but higher level of IL-22 (17), which promote
restoration of epithelial integrity and resolution of colitis. CD177
knockout mice develop more severe colitis induced by DSS and
compromised intestinal barrier integrity than wild-type mice
(81). CD177 deficiency may impair accumulation of neutrophil
to infected sites at the early stage of disease and therefore cause
increased intestinal mucosa destruction (113). This association
of neutrophils accumulation at the inflamed sites with CD177-
dependent protection from colitis induced by DSS suggests these
CD177+ neutrophils are anti-inflammatory and IBD-protective
and appear to be distinct from pro-inflammatory LDGs found
in SLE.

CONCLUSION AND FUTURE
PERSPECTIVE

Neutrophils demonstrate multifaceted functions in cancers and
autoimmune diseases, which are determined by their context
dependent production of different effector molecules. These
cells are generally divided into N1/N2 subsets in tumor site or
alternatively HDNs/LDNs in peripheral blood of cancer patients.
Although HDNs and LDNs can be distinguished based on their
differences in density, currently there are no validated surface
markers to phenotypically identify N1 and N2 neutrophils.
However, LDGs in SLE and LDNs in cancer are functionally
distinct, which raise a question of using density for neutrophils
classification. It is clear that there are at least two subsets
of neutrophils defined as immune-stimulatory/-suppressive or
pro-/anti-inflammatory. These two subsets of neutrophils are
highly plastic and can be skewed toward either direction, which is
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exemplified by type I interferon-driven polarization of immune-
suppressive neutrophils into ones with an immunostimulatory
phenotype.

Currently, neutrophils in autoimmune diseases do not have
a clear classification. In most cases, they display a pro-
inflammatory phenotype and promote the disease pathogenesis
through multiple mechanisms (secretion of inflammatory
molecules, activation of other immune cells, facilitate production
of auto-antibodies). However, anti-inflammatory and disease-
protective neutrophils have been identified in autoimmune
conditions, including Gr-1high neutrophils in EAE and CD177+

neutrophils in IBD, which supports the functional complexity
of these heterogeneous immune cells. Although the tumor-
promoting activity of N1 neutrophils has been well documented,
little studies have been performed to target these cells for
cancer therapy so far. A better understanding of these anti-
inflammatory and disease-protective neutrophils associated with
some autoimmune pathology may provide a potential new target
for the treatment of these autoimmune disorders.

Understanding of the role of neutrophils is far from
being complete. In the future, more research is needed to
address the following questions. What are proper phenotypic
markers to distinguish immuno-stimulatory/-suppressive or
pro-/anti-inflammatory neutrophils? Are anti-inflammatory or
immunosuppressive neutrophils exist broadly in all autoimmune
diseases or are only present in specific autoimmune setting?
Can TGF-β and type I interferons induce reciprocal polarization

of pro- or anti-inflammatory neutrophils in the context
of autoimmune diseases? What is the relationship between
anti-inflammatory neutrophils in autoimmune diseases and
immunosuppressive neutrophils in cancer? Can they be classified
into the same subpopulation? Answers to these questions will
provide important insights into the development and function of
neutrophils in cancer and autoimmune diseases, which may lead
to development of novel approaches to disease intervention.
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