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Biosynthesis of thiocarboxylic acid-containing
natural products

Liao-Bin Dong® ', Jeffrey D. Rudolf® !, Dingding Kang?, Nan Wang', Cyndi Qixin He3, Youchao Deng?,
Yong Huang?, K. N. Houk3, Yanwen Duan? & Ben Shen® 4>

Thiocarboxylic acid-containing natural products are rare and their biosynthesis and biological
significance remain unknown. Thioplatensimycin (thioPTM) and thioplatencin (thioPTN),
thiocarboxylic acid congeners of the antibacterial natural products platensimycin (PTM) and
platencin (PTN), were recently discovered. Here we report the biosynthetic origin of the
thiocarboxylic acid moiety in thioPTM and thioPTN. We identify a thioacid cassette encoding
two proteins, PtmA3 and PtmU4, responsible for carboxylate activation by coenzyme A and
sulfur transfer, respectively. ThioPTM and thioPTN bind tightly to p-ketoacyl-ACP synthase I
(FabF) and retain strong antibacterial activities. Density functional theory calculations of
binding and solvation free energies suggest thioPTM and thioPTN bind to FabF more
favorably than PTM and PTN. Additionally, thioacid cassettes are prevalent in the genomes of
bacteria, implicating that thiocarboxylic acid-containing natural products are under-
appreciated. These results suggest that thiocarboxylic acid, as an alternative pharmacophore,
and thiocarboxylic acid-containing natural products may be considered for future drug
discovery.
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hiocarboxylic acids are an underappreciated pharmaco-
I phore in drug discovery and development. In contrast to
carboxylic acids, which are one of the most 1mportant and
biologically active pharmacophores in modern therapeutics!, the
significance of thiocarboxylic acids is often overlooked due to
their intrinsic 1nstab111ty, difficult preparation, and rare occur-
rence in nature’™*. In addition, the scarcity of thiocarboxylic
acid-containing natural products, of which there are only two,
thioquinolobactin (TQB)>® and pyridine-2,6-dithiocarboxylic
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Fig. 1 In vivo characterization of thiocarboxylic acid biosynthesis. a Genetic

PTM cassette

acid (PDTC)’, has hindered their biosynthetic and biological
studies (Supplementary Fig. la).

Thioplatensimycin (thioPTM, 1) and thioplatencin (thioPTN,
2) are newly discovered thiocarboxylic acid-containing congeners
of the antibacterial natural products platensimycin (PTM, 3) and
platencin (PTN, 4) (Fig. la- ¢)%. PTM and PTN were originally
isolated from Streptomyces platensis MA7327 and MA7339,
respectively, representing a class of promising natural product
antibiotics that target bacterial and mammalian fatty acid
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organization of the ptm gene clusters from the dual PTM-PTN producers

S. platensis MA7327, S. platensis CBO0O739, and S. platensis CBOO765. b Genetic organization of the ptn gene cluster from the PTN-exclusive producer
S. platensis MA7339. The thioacid cassette investigated in this study, ptmU4 and ptmA3, are present and highlighted (red rectangle) in both the ptm and ptn

gene clusters. ¢ Structures of thioplatensimycin (1, thioPTM), thioplatencin

(2, thioPTN), platensimycin (3, PTM), and platencin (4, PTN). The aliphatic

ketolide and 3-amino-2,4-dihydroxybenzoic acid (5, ADHBA) moieties are highlighted in blue and red, respectively. d Structures of ADHBA (5) and 3-
amino-2,4-dihydroxythiobenzoic acid (ADHBSH, 5-SH). e UV at 280 nm from LC-MS analysis of metabolites from SB12039 (AptmA3), SB12040

(AptmU4), SB12041 (AptmST), SB12042 (AptmS2), and SB12043 (AptmS4)

using the PTM-PTN dual overproducer, SB12029, as a positive control.

f Extracted ion chromatograms (EIC, m/z at both 170 and 186) from LC-MS analysis of metabolites from heterologous reconstitution of 5-SH in model
Streptomyces hosts. SB12306 was individually scanned using m/z 170 and 186. std standard
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synthases’™!!. Structurally, they are comprised of two distinct
moieties, a diterpene-derived lipophilic ketolide and a 3-amino-
2,4-dihydroxybenzoic acid (ADHBA, 5), linked by an amide bond
(Fig. 1c, d)!'>13. We recently developed a dual PTM-PTN over-
producing strain, SB12029, through the inactivation of the
negative transcriptional regulator ptmR1 in the ptm gene cluster
of Streptomyces platensis CB00739 (Fig. 1a, b), which is now used
as a model strain for the study of PTM and PTN biosynthesis'*1>,
When following previously reported procedures for the production
of 3 and 4 in SB12029, we discovered that 1 and 2 were also
produced in high titers®. Although 1 and 2 were not isolated, we
unambiguously established that 1 and 2 possessed thiocarboxylic
acid moieties by a combination of high-resolution electrosg)ray
ionisation mass spectrometry and chemical transformation®. A
sulfur-containing PTM pseudodimer, PTM DI, was also isolated
supporting the presence of 1 and 2 in SB120298. The discovery of 1
and 2, and natural congeners thereof (Supplementary Fig. 1b)'®17,
questioned whether 3 and 4 were final biosynthetic products of
the ptm and ptn biosynthetic gene clusters and set the stage to
study thiocarboxylic acid biosynthesis and explore the chemistry
and biology of thiocarboxylic acid-containing natural products.

Here we report the (i) production of 1 and 2 by both wild-type
strains and engineered overproducers known to produce both 3
and 4 or only 4, supporting the legitimacy of the thioacid con-
geners as natural products; (ii) identification and in vivo and
in vitro characterization of a thioacid cassette, which, in combi-
nation with the sulfur-carrier protein machinery, is responsible
for thiocarboxylic acid biosynthesis; (iii) discovery that the
thioacid cassette is broadly distributed in nature; (iv) biological
implications of 1 and 2 as antibiotics; and (v) preliminary sub-
strate promiscuity studies of the thioacid cassette, highlighting its
potential as a pair of biocatalysts for thiocarboxylic acid synthesis.
This work provides clear biochemical evidence supporting that
the thioacid cassette, which encodes PtmA3 and PtmU4, is
responsible for carboxylate activation by coenzyme A (CoA) and
sulfur transfer, respectively, and works together with the sulfur-
carrier protein trafficking system for thioPTM and thioPTN
biosynthesis. Furthermore, given the subtleties in properties
between carboxylic and thiocarboxylic acids and the proven
activities of thioPTM and thioPTN, thiocarboxylic acid and
thiocarboxylic acid-containing natural products in general should
now be considered as an alternative pharmacophore in future
drug discovery efforts.

Results

ptm and ptn gene clusters producing thioPTM and thioPTN.
As 1 and 2 were initially discovered from SB12029, we were
curious if the thiocarboxylic acid congeners were simply a result
of the overproducing nature of the strain. We selected eight
strains, four wild-type strains and four engineered overproducers
known to produce both 3 and 4 or only 4. The wild-type strains
S. platensis MA7327° and MA7339'7, S. platensis CB00739, and S.
platensis CB00765 (an alternative PTM-PTN dual producer)ls,
and the overproducing strains SB12001 (MA7327 AptmRI)'S,
SB12600 (MA7339 AptmRI)'®, SB12026 (CB00739 AptmRI)',
and SB12027 (CB00765 AptmR1)15 were fermented under con-
ditions known for 1 and 2 production (Supplementary Methods).
Liquid chromatography-mass spectrometry (LC-MS) analysis of
all eight strains revealed the production of both 1 and 2 (along
with 3 and 4) in the PTM-PTN dual producers or 2 (along with
4) in PTN-exclusive producers (Supplementary Fig. 2a, b). A
time-course of SB12029 fermentation revealed that only 1 and 2
were detected on day 1, with increasing amounts of 3 and 4 as the
fermentation continued (Supplementary Fig. 2c, d). These find-
ings support that 1 and 2, rather than 3 and 4, might be the bona
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fide natural products of the PTM and PTN biosynthetic
machineries.

Comparison of the ptm and ptn gene clusters (Fig. 1a, b
with gene clusters known for biosynthesis of the thiocarboxylic
acid- or thioester-containing natural products TQB (gbs)>®,
PDTC (pdt)’, and yatakemycin (YTK, ytk)*° revealed two
conserved genes encoding an acyl-CoA synthetase [PtmA3,
~30% protein sequence identity with QbsL (32%), Orf] (28%,
from pdt), and YtkG (32%)] and a type III CoA-transferase
[PtmU4, ~36% identity with QbsK (37%), OrflI (36%, from pdt),
and YtkF (35%)]. We individually inactivated ptmA3 and ptmU4
in the PTM-PTN dual overproducer SB12029 (Supplementary
Tables 1 and 2, Supplementary Data 1, and Supplementary
Figs. 3-6). The resultant mutants SB12039 (AptmA3) and
SB12040 (AptmU4) lost their ability to produce 1 and 2 but still
produced 3 and 4 (Fig. 1e). The production of 3 and 4 in SB12039
and SB12040 implies that (i) 3 and 4 are directly converted into 1
and 2, respectively, or (ii) 5 is converted into 5-SH prior to its
coupling with the ketolides (Fig. 2a, b)'>?!. To verify the timing
of thiocarboxylic acid formation in the biosynthesis of 3 and 4, we
introduced ptmBI, ptmB2, and ptmB3, which encodes the
biosynthesis of 5 (Fig. 2a)?!, together with ptmA3 and ptmU4
into four model Streptomyces hosts to afford S. albus SB12303,
S. lividans SB12304, S. coelicolor SB12305, and S. avermitilis
SB12306 (Supplementary Fig. 7). LC-MS analysis revealed that,
while SB12303-SB12305 did not produce either 5 or 5-SH,
SB12306 produced both 5 and 5-SH (Fig. 1f). Production of 5-SH
in the heterologous host S. avermitilis confirms that PtmA3 and
PtmU4 are required for thiocarboxylic acid biosynthesis, while
the sulfur donor for thiocarboxylic acid formation is conserved
between S. platensis and S. avermitilis (Supplementary Table 3),
and likely among all Streptomyces species.

)15,19

Utilizing sulfur-carrier proteins as the sulfur donor. Thio-
carboxylic acids at the C-termini of small sulfur-carrier proteins
are utilized as direct sulfur donors for the biosynthesis of essential
cofactors including thiamine and molybdenum cofactor in nearly
all bacteria species’>?3, The biosynthesis of this protein thio-
carboxylate species is well-established and occurs via nucleophilic
attack of a protein-tethered persulfide on an adenylated carbox-
ylate of a C-terminal glycine (G)*>%3. Given that 5-SH was readily
produced in S. avermitilis, and the fact that the tgb and pdt gene
clusters possess their own cognate members of the sulfur-carrier
protein system®~’, we suspected that the native sulfur donor for 1
and 2 is from similar primary metabolism machinery. Since no
homologs are present in the ptm gene cluster, we searched the
genome of CB00739 for potential candidates. Four sulfur-carrier
proteins (PtmS2, PtmS3, SpSCP1, and SpSCP2), one MoaZ
homolog (PtmS4), and one JAMM family metalloprotease
(PtmS1) were encoded within the genome (Supplementary
Fig. 8). Both PtmS2 and PtmS3 have capped C-termini with either
two residues (MV) or a single residue (C) following the GG motif,
respectively (Supplementary Fig. 9); SpSCP1 and SpSCP2 have
exposed C-terminal GG sequences. Typically, sulfur-carrier pro-
teins with capped C-termini require a protease, as exemplified by
QbsD in TQB biosynthesis and whose biochemical function was
previously reported, to expose the C-terminal GG sequence for
subsequent activation and sulfur transfer’%. Since the protease-
encoding ptmSI was found clustered with the capped sulfur-
carrier protein-encoding ptmS2 in CB00739 (Supplementary
Fig. 8), we hypothesized that PtmS2 may be utilized for the
biosynthesis of 1 and 2. Similar two-gene cassettes were found in
the tqb and pdt gene clusters®, as well as in the genome of .
avermitilis (Supplementary Table 3).
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Fig. 2 Proposed biosynthetic pathway and in vitro characterization of thiocarboxylic acid biosynthesis. a 5-SH is the enzymatic product of the

transformation of 5 by the thioacid cassette, PtmA3 and PtmU4, capturing a

sulfur atom from the sulfur-carrier protein machinery. The C-terminal GG

motif and capped residues (MV in PtmS2) are highlighted in red and blue, respectively. SCP sulfur-carrier protein (circled), ASA aspartate semialdehyde,
DHAP dihydroxyacetone phosphate, AHBA (6) 3-amino-4-hydroxybenzoic acid, ADHBCoA (5-CoA) S-(3-amino-2,4-dihydroxybenzoate) coenzyme A.

b ThioPTM (1) and thioPTN (2) result from the coupling of 5-SH with platensicyl- and platencinyl-CoA, respectively. ¢ UV at 260 nm from HPLC analysis
of in vitro PtmA3 reactions with 5 and 6. std standard. d UV at 260 nm from HPLC analysis of in vitro PtmU4 reactions with 5-CoA using the native sulfur

donor. Sodium thiosulfate (Na,S,053) was used as the inorganic sulfur source

We individually inactivated ptmSI, ptmS2, and ptmS4 in
SB12029, yielding mutants SB12041 (AptmSI), SB12042
(AptmS2), and SB12043 (AptmS4), respectively (Supplementary
Figs. 10-15). Similar to SB12039 and SB12040, both SB12041 and
SB12043 lost their ability to produce 1 and 2 but still produced 3
and 4 (Fig. le). In contrast, SB12042 retained its ability to
produce 1 and 2 (Fig. le), indicating that PtmS2 may be
functionally redundant (e.g., complemented by PtmS3)?°. The
inability of SB12041 and SB12043 to produce 1 and 2
corroborates the use of capped sulfur-carrier proteins (i.e., PtmS2
and PtmS3), as opposed to proteins with pre-exposed GG motifs
(i.e., SpSCP1 and SpSCP2), by the PTM and PTN biosynthetic
machineries.

Reconstituting thiocarboxylic acid biosynthesis in vitro. Upon
incubation of 5, ATP, and CoA in the presence of PtmA3 (Sup-
plementary Fig. 16a, c), high-performance liquid chromatography
(HPLC) analysis of the reaction mixture revealed the

4 | (2018)9:2362

disappearance of 5 and concomitant production of S-(3-amino-
2,4-dihydroxybenzoate) coenzyme A (ADHBCoA, 5-CoA,
Fig. 2a, c and Supplementary Figs. 17 and 18). Substitution of 5
with 3 or 4 under the same assay conditions failed to afford any
new products, confirming that 3 and 4 are not the precursors of 1
and 2, respectively (Supplementary Fig. 19). Steady-state kinetics
of PtmA3, using 5 or 3-amino-4-hydroxybenzoic acid (AHBA, 6,
Fig. 2a, ¢, Supplementary Figs. 20a, b, 21, and 22), revealed 12-
fold higher catalytic efficiency (ke K1) for 5 over 6 (Table 1),
supporting 5 as the native substrate of PtmA3. When 5-CoA,
ATP, and either PtmS29C or PtmS35C [the C-terminal caps were
removed during cloning?* as the native sulfur donor, supple-
mented with sodium thiosulfate (Na,$,03)%>2°, were incubated
with PtmS4 and PtmU4 (Supplementary Fig. 16a-c), LC-MS
analysis of the assay mixture revealed the appearance of free CoA
and 5-SH (Fig. 2d). Replacement of the native sulfur donor with
potassium hydrosulfide (KSH) as a sulfur donor surrogate?® led to
increased 5-SH formation (Supplementary Fig. 23a), isolation of
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Table 1 Summary of the steady-state kinetics of PtmA3

Substrate K., (1M) K (uM) Ky (min")  rel K K, !
5 229+£3.0 18424 14109 1

6 470+ 60 638+89 238+22 0.082

7 (124 £0.11)%10°  na. 6.89+0.3 0.009

8 709+50 n.a. 1.03+0.02 0.024

9 29021 n.a. 1.39+0.03 0.008

10 322+15 n.a. 15.8+0.3 0.079

All experiments were performed in triplicate and the data are listed with standard deviations The
relative rates are compared to the native substrate 5. n.a. not applicable

which allowed unambiguous structural characterization by 'H
and '3C NMR (Supplementary Figs. 24 and 25).

PtmU4 catalyzing sulfur transfer. PtmU4 was bioinformatically
predicted to possess two type III CoA-transferase domains. CoA-
transferases, which typically perform reversible CoA transfer
reactions from CoA-thioester donors to various organic acid CoA
acceptors are classified into three subgroups (types I-III) based
on differences in their protein sequences and reaction mechan-
isms (Supplementary Fig. 26)*”. Canonical type III CoA-
transferases are proposed to utilize a conserved Asp residue to
form mixed anhydride and covalent thioester intermediates with
the CoA donor and CoA moiety, respectively; the liberated donor
free acid is not released prior to binding the CoA acceptor (Fig. 3a
and Supplementary Figs. 26a and 27)%”?%. Type III CoA-
transferases can be further separated into one-domain and two-
domain proteins. Members of the two-domain family have tan-
dem CoA-transferase domains, which have highest homology at
the N-termini of the individual domains, separated by a poorly
conserved linker?”. DAdD, the only characterized two-domain
type III CoA-transferase, dually functions as a CoA-transferase
and a lyase mediating the first two steps of dimethyl sulfide
release from  dimethylsulfoniopropionate  (Supplementary
Fig. 26¢)*°. Phylogenetic analysis of selected one- and two-
domain type III CoA-transferases from bacteria revealed that
PtmU4/PtnU4 clades with other two-domain type III CoA-
transferases and separated from all one-domain type III CoA-
transferases and DddD (Fig. 3b)%°. DddD forms an outgroup
from both the one-domain and two-domain type III CoA-
transferases.

Sequence alignment of PtmU4 and its homologs revealed that
they indeed possess a conserved Asp at the C-terminal CoA
transferase domain (Fig. 3a and Supplementary Fig. 27). To
determine if PtmU4 requires this conserved Asp for thiocar-
boxylic acid formation, Asp430 was mutated to Ala, Glu, or Asn
by site-directed mutagenesis (Supplementary Fig. 16d). Circular
dichroism indicated that the structures of these mutants were not
significantly perturbed relative to native PtmU4 (Supplementary
Fig. 16e and Supplementary Methods). The activities of each
mutant were dramatically reduced (125-400-fold), supporting
Asp430 as a key residue in PtmU4 catalysis (Supplementary
Fig. 23b). Although trace amounts of 5-SH were identified in the
negative control reaction without a native sulfur donor (Fig. 2d),
the ~3-fold rate enhancement of sulfur transfer by PtmU4 using
either PtmS29C or PtmS35€ (Fig. 2d), along with the near loss of
activity in the Asp430 mutants, confirms genuine enzyme
catalysis.

Thiocarboxylic acids as a potential pharmacophore. If 1 and 2
are the bona fide final metabolites of the PTM and PTN bio-
synthetic machineries, it is fascinating that 3 and 4, non-
enzymatic hydrolyzed metabolites of the PTM and PTN pathway

| (2018)9:2362

(Fig. 2a, b), possess such exquisite biological activity. We isolated
and spectroscopically characterized 1 and 2 (Supplementary
Tables 4 and 5 and Supplementary Figs. 28-37), and tested their
antibacterial activities against Staphylococcus aureus ATCC 25923
and Kocuria rhizophila (previously Micrococcus luteus) ATCC
9431 (Supplementary Methods)®!. Both 1 and 2 retained strong
antibacterial activities with minimum inhibitory concentrations
(MICs) ranging from 1 to 4 pg mL~! (2-8-fold higher than those
of 3 and 4, Table 2 and Supplementary Fig. 38a). As the ADHBA
moiety of 3 and 4 makes key interactions with the target proteins
FabF and FabH*!?, the ADHBSH moieties of 1 and 2 likely bind
in a similar manner. Binding assays, using the Escherichia coli
FabF C163Q mutant, which mimics the acyl-enzyme inter-
mediate®, revealed that the dissociation constants (Kp) for 1 and
2 were ~2-fold tighter than those of 3 and 4 (Table 2 and Sup-
plementary Figs. 38b and 39). Density functional theory (DFT)
calculations were performed on the ADHBA moiety of 3 and 4
and the ADHBSH moiety of 1 and 2 with two interacting resi-
dues, H303 and H340, in the E. coli FabF C163Q mutant (PDB
2GFX, Supplementary Data 3)°. The carboxylate of 5 forms
stronger hydrogen bonds (AG = -12.0 kcal mol~!) with the imi-
dazoles of the His residues than the thiocarboxylate of 5-SH (two
conformations, each AG =~ -9.6 kcal mol !, Fig. 4a). In a three-
residue model (H303, H340, Q163), the geometry of the 5-SH-b
conformation is favored over 5-SH-a by 3.5kcal mol~!; con-
sistent with the two His model, ADHBA binding is favored over
ADHBSH (5-SH-b) by 2.5 kcal mol ! (Fig. 4b). Calculation of
solvation free energies of 5 (-58.2 kcal mol 1) and 5-SH (-55.1
kcal mol™!) revealed that 5-SH is less well-solvated in water
(Fig. 4c). Therefore, although 5 forms a more stable complex, 5-
SH exhibits a higher activity (favored binding) due to a net energy
difference? of 0.6 kcal mol 1.

Biocatalysts for thiocarboxylic acid synthesis. We first examined
the promiscuity of PtmA3 and PtmU4 using a series of aryl acids
with KSH as the sulfur donor. Both PtmA3 and PtmU4 showed
broad substrate promiscuity by efficiently catalyzing the CoA
activation and thiolation, respectively, to afford the correspond-
ing aryl thiocarboxylic acids (Tables 1 and 3, Fig. 5a, and Sup-
plementary Figs. 20c-f and 40-48). When catalysis is coupled,
PtmA3 and PtmU4 convert carboxylic acids into thiocarboxylic
acids in the presence of a catalytic amount of CoA (Fig. 5b, c).
This biocatalytic platform provides a practical solution for thio-
carboxylic acid synthesis of small molecules with future oppor-
tunities to expand the substrate scope through enzyme
engineering.

Discussion

Since the discovery of PTM and PTN as promising antibiotics
over a decade ago, these natural products have garnered con-
siderable attention. Significant progress in understanding the
biosynthetic pathways of 3 and 4 has been made through the use
of microbial genomics'!. Given the amount of time and resources
spent on studying 3 and 4, we were initially surPrised to identify
sulfur-containing congeners of PTM and PTN®!7. The discovery
of the thiocarboxylic acid-containing 1 and 2 raised a provocative
question: which natural products are the true biosynthetic end
products of the ptm and ptn biosynthetic gene clusters? The
current study clearly demonstrates that (i) 1 and 2 are produced
by several wild-type and engineered strains of S. platensis; the
four wild-type strains were isolated from three different con-
tinents (Africa, Europe, and Asia)®1%15 (i) 1 and 2 is produced
prior to the detection of 3 and 4, and in certain conditions, 3 and
4 are non-enzymatic hydrolysis products of 1 and 2, (iii) the
biosynthesis of the thiocarboxylic acid moieties in 1 and 2 is
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Fig. 3 Bioinformatics analysis of type Ill CoA-transferases from bacteria. a Sequence alignment of selected PtmU4 homologs from bacteria. Aligned
residues are colored based on the level of conservation (red box with white character and red character show strict identity and similarity, respectively).
The conserved catalytic residue, aspartic acid (D430), is shown with blue asterisks. A full sequence alignment was included in Supplementary Fig. 27.
b Phylogenetic analysis of the selected type Il CoA-transferase from bacteria. The sequences used in the phylogenetic tree include selected one-domain
and two-domain type Ill CoA-transferases (Supplementary Methods). ¢ A sequence similarity network (SSN) of thioacid group. The BLAST e-value
threshold is 107140 with median 58% sequence identity over 500 residues. All PtmU4 homologs in the thioacid group are from three classes of bacteria:
Actinobacteria, Betaproteobacteria, and Gammaproteobacteria. Each node represents protein sequences sharing 100% sequence identity. Colors represent
different classes in bacteria. Shapes in ¢ represent the thiocarboxylic acid biosynthesis related type Ill CoA-transferases discussed in the paper. A complete
SSN including all 2401 two-domain type Il CoA-transferases in bacteria is shown in Supplementary Fig. 49

MIC (ugmL~")

Table 2 Antibacterial activities and FabF binding experiments with compounds 1-4

Binding assay with E. coli FabF C163Q

S. aureus K. rhizophila k,( (M 1s™ kq s Kp (M)
thioPTM (1) 4 1 (3.0 £ 0.1)x10° (13+0.1)x1073 (4.4£0.3)x10~°
thioPTN (2) 1 0.5 (2.3+1.2)x10° (6.9+1.7)x1073 (33:0.9)x10°8
PTM (3) 0.5 1 (5.8+0.9)x10° (51+£0.9)x1073 (8.8£1.4)x10~°
PTN (4) 0.25 0.25 (6.2 £2.2)x10° (4.5+2.6)x1072 (7.0£1.7)x10~8

Minimum inhibitory concentrations (MICs) were determined in triplicate using the broth dilution method. Binding assays are reported as means with standard deviations of at least two replicates

genetically encoded by at least four genes, two of which are
located inside the ptm gene cluster, and (iv) PtmA3 and PtmU4
convert 5 into 5-SH in vitro and within the context of the native
sulfur donors. While our data supports that 1 and 2, rather than
3 and 4, are the bona fide biosynthetic end products of the PTM
and PTN biosynthetic machineries, we could not rule out if 3
and 4 are the legitimate natural products that would be pro-
duced in its native environment (i.e., the complex environment
of soil).

The identification and characterization of the thioacid cassette
and its functional integration in the biosynthesis of 1 and 2, along
with its presence in the biosynthetic gene clusters of the thio-
carboxylic acid- or ester-containing natural products PDTC,
TQB, and YTK, led us to examine the prevalence of the thioacid
cassette in bacterial genomes. A database search (as of September
5, 2017) of putative thioacid cassettes in bacteria produced 2,401
PtmU4 homologs (i.e., two-domain type III CoA-transferases),
most of which are from Actinobacteria and Proteobacteria
(Supplementary Fig. 49). In a sequence similarity network®? of
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PtmU4 homologs, a thioacid group, including PtmU4 from var-
ious PTM and PTN producers and the homologs involved in the
biosynthesis of PDTC, TQB, and YTK, was found at an e-value
threshold of 10780 (Fig. 3c). In contrast to the relatively conserved
PtmU4 homologs from Proteobacteria, the homologs from
Actinobacteria have more sequence diversity, forming 28 differ-
ent clusters (Fig. 3c). Among the 175 sequences in the thioacid
group, 160 (>90%) were encoded in genetic proximity (<2
genes) to homologs of PtmA3 (Supplementary Data 2 and Sup-
plementary Fig. 50), confirming the broad distribution of the
thioacid cassette in nature. Although it is possible that these
cassettes are nonfunctional genetic remnants of evolution, the
observable functional integration of the thioacid cassettes in
thioPTM, thioPTN, PDTC, TQB, and YTK biosynthesis lead us
to speculate that thiocarboxylic acid-containing natural products,
or their derivatives thereof, are vastly underrepresented among
known natural products.

The isolation of 1 and 2 gave us an opportunity to assess the
biological implications of thiocarboxylic acid-containing natural
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Fig. 4 Density functional theory calculations of binding and solvation free energies of 5 and 5-SH. a Optimized geometries and energies of 5 and 5-SH
(modeled as truncated versions of 1-4) in the presence of two imidazoles (the side chains of H303 and H340) in the gas phase. The units of bond length
(shown as dotted lines) and Gibbs energies are A and kcal mol™", respectively. b Optimized geometries and energies of 5 and 5-SH bound to the sides
chains of three fixed amino acids (H303, H340, Q163) in the gas phase. ¢ Free energies of solvation of 5 and 5-SH

Table 3 Summary of the relative activities of PtmU4

Substrate Rate (s 1) Relative rate (%)
5-CoA (2.43+0.07)x1073 1003

6-CoA (2.46 £ 0.02)x1073 1011

7-CoA (5.82+0.08)x1073 240+3

8-CoA (1.50 £0.2)x10™% 61

9-CoA (5.23+0.2)x10~4 221

10-CoA (2.44+0.1)x1073 1006

All experiments were performed in triplicate and the data are listed with standard deviations.
The relative rates are compared to the native substrate 5-CoA. S-(3-amino-4-chlorobenzoate)
coenzyme A (7-CoA); S-(2-amino-3-hydroxy benzoate) coenzyme A (8-CoA); S-(2-amino-4-
fluorobenzoate) coenzyme A (9-CoA); S-(6-hydroxy-2-naphthalenecarboxylate) coenzyme A

(10-CoA)

products. PTM and PTN inhibit the decarboxylating condensing
enzymes FabF and FabH in bacterial type II fatty acid synthesis
(FASID®!0, The carboxylic acid moiety of 3 and 4 mimics the
malonyl-acyl carrier protein substrate and ionically interacts with
two His residues in the Cys-His-His catalytic triad, resulting in
competitive inhibition’™'!. Structure-activity relationship studies
of 3 and 4 have concluded that modification of their ADHBA
moieties results in loss of antibiotic activity!?1>34, The thio-
carboxylic acid congeners 1 and 2, whose structures only differ
from 3 and 4 at one atom, retained strong antibacterial activities
and were found to bind slightly tighter to FabF. Our DFT cal-
culations were congruent with 1 and 2 being better binders of

| (2018)9:2362

FabF than 3 and 4 while exhibiting minimal differences in their
observed MICs. Similarly, TQB and PDTC, which are bacterial
siderophores, have imé)roved activities compared to their car-
boxylic acid congeners®’. It is still unclear if and why S. platensis
produces 1 and 2 in nature, but the biosynthetic role of the
thioacid cassette and its prevalence in bacterial genomes would
suggest that thiocarboxylic acid-containing natural products
might have important and unsolved biological roles in nature. In
conclusion, thiocarboxylic acids, which have been an under-
appreciated pharmacophore in drug discovery and development,
should now be considered in future studies.

Methods

Bacterial strains, plasmids, and chemicals. Strains, plasmids, and PCR primers
used in this study are listed in Supplementary Information. PCR primers were
obtained from Sigma-Aldrich. Q5 high-fidelity DNA polymerase, restriction
endonucleases, and T4 DNA ligase were purchased from NEB and used by fol-
lowing the protocols provided by the manufacturers. DNA gel extraction and
plasmid preparation kits were purchased from Omega Bio-Tek. DNA sequencing
was conducted by Eton Bioscience. The REDIRECT Technology kit for PCR-
targeting homologous recombination was provided by The John Innes Center
(Norwich, UK)?. pOJ260 was used as a shuttle vector for gene homologous
recombination®®. E. coli ET12567/pUZ8002 was used as the host for intergeneric
conjugations®”. pUWL201PWT, which is a derivative of pUWL201PW?3 con-
taining an oriT sequence that was cloned into its PstI site, was used as the shuttle
vector for gene complementations, biotransformation, and heterologous produc-
tion of PtmU4 in Streptomyces. Cosmid libraries were screened by PCR using
OneTaq 2x Master Mix with GC buffer (NEB). For Southern analysis, digoxigenin
labeling of DNA probes, hybridization, and detection were performed according to
the protocols provided by the manufacturer (Roche Diagnostics Corp.). S. platensis
CB00739'%, CB00765'°, MA7327°, and MA7339'0, and their pathway-specific
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recycled during the reaction. ¢ Chemical scheme for this one-pot reaction transforming carboxylic acid to thiocarboxylic acid. The functional groups
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acid (9); 6-hydroxy-2-naphthalenecarboxylic acid (10)

negative regulator ptmRI inactivation mutants, SB12026'%, SB12029'4, SB12027'%,
SB12001'8, and SB12600'¢ were reported previously. S. albus J1074°, S. lividans
K4-114%, S. avermitilis SUKA22*, and . coelicolor M1146*> were used as model
Streptomyces hosts for small-molecule biotransformation and protein production.
Other common chemicals, biochemical, and media components were purchased
from standard commercial sources.

In-frame deletion of ptmA3 in SB12029 to afford SB12039. To construct the
plasmid for in-frame deletion of ptmA3, two 3-kb fragments of the genes upstream
and downstream of ptmA3 were amplified from cosmid pBS12037, a cosmid
containing a partial ptm gene cluster'”, with the primers 739A3up_F, 739A3up_R,
739A3down_F, and 739A3down_R. Both fragments were cloned into the HindIII
and EcoRI sites of pOJ260 to obtain pBS12075. pBS12075 was transformed into
E. coli ET12567/pUZ8002 and introduced into S. platensis SB12029 by intergeneric
conjugation. After several rounds of passaging the exconjugants, double cross-
overs via homologous recombination were selected by the apramycin-sensitive
phenotype. The genotype of the in-frame deletion mutant SB12039 was verified by
PCR analysis and Southern analysis.

Inactivation of ptmU4 in SB12029 to afford SB12040. The ptmU4 gene was
replaced with the aac(3)IV+oriT resistance cassette from plJ773 using ARED-
mediated PCR-targeting mutagenesis> in E. coli BW25113/pIJ790 harboring
pBS12037, a cosmid containing a partial ptm gene cluster'®. The genotype of the
resultant AptmU4 mutant cosmid, pBS12074, was confirmed by PCR analysis using
primers 739U4ID_F and 739U4ID_R. pBS12074 was transformed into the non-
methylating E. coli ET12567/pUZ8002 and introduced into S. platensis SB12029 by
intergeneric conjugation. Single crossovers of AptmRI1/AptmU4 were selected by
screening for apramycin resistance on ISP4 medium. After another round of
passaging the single-crossover exconjugants in solid ISP4 medium, the AptmR1/
AptmU4 mutant SB12040, a result of double-crossover homologous recombination,
was selected for by screening for an apramycin-resistant and kanamycin-sensitive
phenotype. The genotype of SB12040 was confirmed by PCR and Southern
analysis.

Inactivation of ptmSI, ptmS2, and ptmS4 and disruption of ptmS3 was
performed using the protocol described above for the AptmR1/AptmU4 mutant
SB12040. Each genotype was verified by PCR analysis and Southern analysis.

Heterologous production of 5-SH in model Streptomyces hosts.
pUWL201PWT was used as an E. coli-Streptomyces expression shuttle vector to
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construct a 5-SH production system in model Streptomyces hosts. The candidate
thioacid cassette genes, ptmA3 and ptmU4, were amplified by PCR using the pri-
mers 739U4pUW_F and 739U4pUW_R, and 739A3pUW_F and 739A3pUW_R
from pBS12037 and individually cloned into pET-44b(+). ptmU4 was cloned into
the Ndel and PstI sites and ptmA3, placed downstream of ptmU4, was cloned into
the Pstl and HindIII sites to yield pBS12084. The constructed fragment of
ptmU4-ptmA3 was cut from pBS12084 at the Ndel and HindIII sites and cloned
into pUWL201PWT at the same sites to construct pBS12085.

The three ADHBA biosynthetic genes, ptmBI, ptmB2, and ptmB3, were
amplified as a single fragment by PCR using the primers 739B1B3pUW_F and
739B1B3pUW_R from pBS12037, which was subsequently cloned into the HindIII
and EcoRI sites of pBS12085. The resulting construct, pBS12086, possessed ptmU4-
ptmA3-ptmBI-ptmB2-ptmB3 (Supplementary Figure 7). pBS12086 was
transformed into E. coli ET12567/pUZ8002 and introduced into four Streptomyces
model strains (S. albus J1074, S. lividans K4-114, S. avermitilis SUKA22, and
S. coelicolor M1146) by intergeneric conjugation. Clones containing pBS12086 were
selected with thiostrepton.

PTM fermentation medium, supplemented with thiostrepton, was used for the
production of 5-SH in the model Streptomyces hosts. After fermentation for 2 days
at 28 °C, the fermentation broth was directly used for LC-MS analysis.

Gene cloning. The ptmA3, ptmU4, ptmS2°C, ptm83°C, and ptmS4 genes from

S. platensis CB00739 were amplified by PCR from genomic DNA with Q5 DNA
polymerase (NEB). The PCR product was purified, treated with T4 polymerase, and
cloned into pBS3080*® according to ligation-independent procedures to afford
pBS12087 (harboring ptmA3), pBS12088 (harboring ptmU4), pBS12089 (harboring
ptmS4), pBS12090 (harboring ptm$26C, amino acid residues 1-90), and pBS12091
(harboring ptmS3¢C, amino acid residues 1-91). The E. coli fabF gene containing a
site-directed mutation resulting in FabF C163Q was cloned into pBS3080*3 as
described above, resulting in pBS12096. pUWL201PWT was used as an E. coli-
Streptomyces expression shuttle vector and protein expression of PtmU4 in
Streptomyces. The full-length ptmU4 gene together with an N-terminal Hiss-tag
sequence was amplified by PCR from pBS12088 using the 739StrU4_F and
739StrU4_R primers. Thus, ptmU4 was cloned into the Ndel and HindIII sites of
pUWL201PWT affording pBS12092. For site-directed mutagenesis of ptmU4, the
ptmU4 gene from pBS12092 was amplified in two steps by primer extension*
using the 739StrU4_F and 739Stru4_R primers with internal primers containing
the desired mutation. The mutant ptmU4 genes were then cloned into
pUWL201PWT as described above yielding pBS12093-pBS12095.
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Gene expression and protein production and purification. PtmA3, PtmS26G,
PtmS3%C, and PtmS4 were produced in E. coli. For enzyme activity assays, the
plasmid harboring each gene was transformed into E. coli BL21(DE3) (Life
Technologies) and grown in 1L of lysogeny broth (LB) at 37 °C with shaking at
250 rpm until an ODggg of 0.6 was reached. The culture was cooled to 4 °C, gene
expression was induced with the addition of 0.25 mM isopropyl p-p-1-thioga-
lactopyranoside, and the cells were grown around 18 h at 18 °C with shaking. After
harvesting the cells by centrifugation at 4000 g for 15 min at 4 °C, the pellet was
resuspended in lysis buffer (50 mM Tris, pH 8.0, containing 300 mM NaCl and 10
mM imidazole), lysed by sonication, and centrifuged at 15,000 g for 30 min at
4°C. The supernatant was purified by nickel-affinity chromatography using an
AKTAxpress system (GE Healthcare Life Sciences) equipped with a HisTrap col-
umn. The resultant protein with an N-terminal Hiss-tag was desalted using a
HiPrep desalting column (GE Healthcare Biosciences) and concentrated using an
Amicon Ultra-15 concentrator (Millipore) in 50 mM Tris, pH 7.8, containing 100
mM NaCl, 50 mM KCl, and 5% glycerol. Protein concentrations were determined
from the absorbance at 280 nm using a molar absorptivity constant of each protein.
Individual aliquots of each protein were stored at -80 °C until use.

PtmU4 was produced in S. avermitilis SUKA22 for enzyme activity assays.
pBS12092 was transformed into E. coli ET12567/pUZ8002 and introduced into
S. avermitilis SUKA22 by intergeneric conjugation. Positive colonies were selected
using thiostrepton and named S. avermitilis SB12307. Fresh spores of SB12307 were
inoculated into TSB seed medium supplemented with thiostrepton and cultured for
2 days. Three liters of TSB medium was inoculated with 5% (v/v) seed culture
supplemented with thiostrepton and incubated at 28 °C and 250 rpm for 2 days.
After harvesting the cells by centrifugation at 3750 g for 30 min at 4 °C, the pellet
was resuspended in lysis buffer (50 mM Tris, pH 8.0, containing 300 mM NaCl and
10 mM imidazole) and 1 mg mL~! lysozyme and 1.5 tablets of Protease Inhibitor
Cocktail (Roche) were added. After incubation on ice for 2 h, the pellet was lysed by
sonication, and centrifuged at 15,000 g for 30 min at 4 °C. The supernatant
containing PtmU4 was purified in three steps using an AKTA FPLC system (GE
Healthcare Biosciences): (a) nickel-affinity chromatography equipped with a
HisTrap HP, 5 mL column (GE Healthcare Life Sciences), which was first washed
with 300 mL Wash buffer (50 mM Tris, pH 8.0, containing 300 mM NaCl and 20
mM imidazole) and then eluted with 100 mL 50% Elution buffer (50 mM Tris, pH
8.0, containing 100 mM NaCl and 500 mM imidazole); (b) anion exchange
chromatography equipped with a HiTrap Q HP, 5 mL column (GE Healthcare Life
Sciences) using a gradient increasing the concentration of sodium chloride from 0 to
1M in 50 mM Tris, pH 8.0; (c) size-exclusion chromatography equipped with a
Superdex 200 16/600 column (GE Healthcare Life Sciences) using a buffer of 50 mM
Tris, pH 7.8, containing 100 mM NaCl, 50 mM KCl, and 5% glycerol. The resultant
protein with an N-terminal Hiss-tag was concentrated using an Amicon Ultra-15
concentrator (Millipore). Protein concentrations were determined from the
absorbance at 280 nm using a molar absorptivity constant (e, = 103,280 M1
em™Y). Individual aliquots of PtmU4 were stored at 80 °C until use. Each of the
PtmU4 site-directed mutants was produced and purified as described above.

Enzymatic activity of PtmA3. Preliminary incubations were performed in 50 mM
phosphate, pH 7.6, containing 1 mM ATP, 1 mM CoA, 5 mM MgCl,, 1 mM 5, and
2 uM PtmA3 in a total volume of 50 uL. After incubation at 30 °C for 10 min, 50 uL
of CH;OH were added to quench the reaction. The reaction mixture was then
centrifuged and 2 pL of the supernatant were injected and analyzed by LC-MS.
Substrate and product were detected by monitoring 260 nm with a photodiode
array detector. The reactions conditions for PtmA3 were optimized by monitoring
5-CoA production using the HPLC method with a flow rate of 0.8 mL min~! and a
6 min solvent gradient from 2.5-20% CH3;CN in 10 mM ammonium acetate.
Buffers (Tris and phosphate) and different concentrations of ATP, CoA, and
MgCl, were all tested for improved PtmA3 activity. The optimized reaction con-
ditions were determined to be 50 mM Tris, pH 8.0, containing 2.5 mM ATP, 2.5
mM CoA, and 5mM MgCl,, and used for the kinetic studies of PtmA3.

Kinetic studies of PtmA3. All kinetics assays were performed in the optimized
reaction conditions with varying concentration of aryl acids (5-10) in a total
volume of 50 pL. Each reaction was incubated at 30 °C for 10 min and boiled 1 min
to quench the reaction. After centrifugation, the reaction mixtures were analyzed
by HPLC as described above, but using different solvent gradients (5 and 8,
2.5-20% CH3;CN in 8 min; 6, 7, 9, and 10, 2.5-30% CH;CN in 8 min) and the
integrated area under curve (AUC) at 260 nm was calculated. A standard curve of
5-CoA-10-CoA was used to convert AUC into the amount of product formed.
Each kinetic assay was performed in triplicate.

Enzymatic activity of PtmU4. The reaction was first incubated in 50 mM phos-
phate, gH 7.4, containing 500 uM ATP, 2 mM MgCl,, 2 mM Na,S,03, 100 uM
PtmS25S or 100 uM PtmS3SC and 40 uM PtmS4 at 30 °C for 30 min. Then,

100 uM 5-CoA and 5 pM PtmU4 was added in a total volume of 50 pL. After
incubation at 30 °C for another 30 min, the reaction was quenched by boiling for 1
min. The reaction mixture was then centrifuged and 20 pL of the supernatant were
injected and analyzed by HPLC. Each sample was run on an Agilent 1260 HPLC
system equipped with an Agilent Poroshell 120 EC-C18 column (50 mmx4.6 mm,
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2.7 um) using a 6 min solvent gradient (0.8 mL min~!) of 2.5-20% CH5CN in 10
mM ammonium acetate. Substrate and product were detected by monitoring 260
nm with a photodiode array detector.

When potassium hydrosulfide (KSH) was used to replace the native sulfur
donor (sulfur-carrier protein), the reaction was performed in 50 mM phosphate,
pH 7.4, containing 5 mM KSH, 200 uM 5-CoA, and 5 uM PtmU4 in a total volume
of 50 uL. After incubation at 30 °C for 10 min, the reaction was quenched by
boiling for 1 min. The reaction mixture was then centrifuged and 10 uL of the
supernatant were injected and analyzed by HPLC as described above. The relative
activities of all PtmU4 mutants were determined using a 5-CoA concentration of
500 uM. Due to slower turnovers of all mutants, enzyme concentration and
incubation time were increased to 10 uM and 1 h, respectively, to facilitate product
detection. The reaction mixture was then centrifuged and 10 pL of the supernatant
were injected and analyzed by HPLC as described above. Substrate promiscuity
assays of PtmU4 were determined using 500 uM of different CoA substrates and
0.5 uM PtmU4. The aryl thioacid peaks were collected and analyzed by LC-MS
using either positive or negative mode (Supplementary Fig. 48).

The one-pot reaction to synthesize 5-SH from 5 using a combination of PtmA3
and PtmU4 was performed using 5 (100 uM), CoA (50 uM), ATP (1 mM), Mg2Jr
(4 mM), KSH (2 mM), PtmA3 (10 uM), and PtmU4 (5 uM) in phosphate buffer
(50 mM, pH 7.4) at 30 °C.

Antibiotic binding using surface plasmon resonance. Experiments were per-
formed on a Biacore X100 (GE Healthcare) instrument at 25 °C and data were
analyzed using Biacore X100 evaluation software. HBS-P-+buffer (0.1 M HEPES,
1.5 M NaCl, 0.5% v/v surfactant P20, pH 7.4) containing 0.1% dimethyl sulfoxide
(DMSO) was used as the running buffer. Cells 1 and 2 were used as the reference
and experimental surface, respectively. FabF C163Q was diluted to 0.15uM in
HBS-P+buffer containing 0.1% DMSO and immobilized on an NTA sensor chip
(GE Healthcare) at a flow rate of 30 uL min~!. For kinetic analysis, antibiotics
(1-4) were prepared by two-fold serial dilutions with HBS-P+buffer containing
0.1% DMSO (0.078-10 uM) and injected over both surfaces at a flow rate of 30 uL
min~!. A 120-s association phase was followed by a 350-s dissociation phase.
Signals from the reference surface and buffer blank injections were subtracted and
the corrected results were globally fit to a 1:1 binding model. The association rate
constant (k,) and dissocation rate constant (kg) were used to determine the
equilibrium dissociation constant (Kg) in units of M.

Computational details. The crystal structure of the E. coli FabF C163Q-PTM
complex® (PDB 2GFX) was used to extract the ADHBA moiety of PTM and the
side chains of H303 and H340, or H303, H340, and Q163. For calculations with
ADHBSH, one oxygen in the carboxylic acid group of ADHBA was replaced with a
sulfur atom. Quantum mechanical DFT calculations were performed using Gaus-
sian 09%°. Each of the geometry optimizations were performed at the M06-2X/6-
311+G(d,p) level of theory with the SMD implicit solvation model to account for
the solvation effects of water and the interior of protein (¢ = 4).

Data availability. Proteins from S. platensis CB00739 have been deposited to
protein database of the National Center for Biotechnology Information (NCBI),
under accession code ATW55578 for PtmA3, AIW55577 for PtmU4, AVR47602 for
PtmS1, AVR47603 for PtmS2, AVR47604 for PtmS3, AVR47605 for Ptm$4,
AVR47606 for SpSCP1, and AVR47607 for SpSCP2. All other relevant data that
support the findings of this study are available in the manuscript and the Sup-
plementary Information.
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