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The apoptosis repressor with caspase recruitment domain (ARC) plays a critical role in extrinsic apoptosis initia- 

tion via death receptor ligands, physiological stress, infection response in a tissue-dependent manner, endoplasmic 

reticulum (ER) stress, genotoxic drugs, ionizing radiation, oxidative stress, and hypoxia. Recent studies have sug- 

gested that regulating apoptosis-related pathways can improve outcomes for patients with neurological diseases, 

such as hemorrhagic stroke. ARC expression is significantly correlated with acute cerebral hemorrhage. How- 

ever, the mechanism by which it mediates the anti-apoptosis pathway remains poorly known. Here, we discuss 

the function of ARC in hemorrhagic stroke and argue that it could serve as an effective target for the treatment 

of hemorrhagic stroke. 
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Hemorrhagic stroke usually refers to non-traumatic spon-

aneous hemorrhage in the brain parenchyma, including sub-

rachnoid hemorrhage and intracerebral hemorrhage. [1] Its

lobal incidence rate is gradually increasing, especially in

ow- and middle-income countries. [2] Hemorrhagic stroke de-

elops rapidly and is often clinically accompanied by severe

eadaches, increased intracranial pressure, brain herniation,

espiratory failure, disturbance of consciousness, and immuno-

uppression. [3] , which seriously threatens the life and health of

atients. [3] Moreover, post-hemorrhagic stroke brain injury can

ead to neurological dysfunction through a mechanism closely

elated to inflammation, oxidative stress, mitochondrial dys-

unction, autophagy, and apoptosis. [1,4,5] 

Microglia are inflammatory cells considered early responders

n pathological stimuli after cerebral hemorrhage. [6] Activated

icroglia can adopt two phenotypes (M1 and M2) [7,8] , which dy-

amically participate in the damage and repair of brain tissue af-

er a hemorrhagic stroke. Additionally, reactive oxygen species

an alter the cellular membranes and hinder genetic material
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ynthesis, leading to neuronal damage and even death in hemor-

hagic stroke patients. [4] Moreover, neuronal autophagy is acti-

ated in hemorrhagic stroke and participates in this pathophys-

ological process. Autophagy mainly exerts a degradation effect

y activating inflammasomes consisting of a cytosolic pattern-

ecognition receptor, an adaptor protein, and an effector com-

onent. [9] Altogether, the outcome of hemorrhagic stroke de-

ends on a delicate balance between the recovery and pathology

athways. If the injury process is faster than recovery, the body

ay initiate cell death mechanisms (apoptosis, necrosis, and au-

ophagy). [10] and then actively eliminate apoptotic cells. [11] 

The cysteine-aspartic protease (Caspase) family plays an im-

ortant role throughout the programmed cell death process by

nteracting with numerous activators or inhibitors. [12,13] Cas-

ases are divided into two categories based on their N -terminal

ro-domain function and amino acid length: initiator Caspases

Caspase-8, − 9, and-12) and effector Caspases (Caspase-3, − 6,

nd-7). [14] Meanwhile, apoptosis repressor with caspase recruit-

ent domain (ARC) is an endogenous anti-apoptotic protein

ontaining a proline- and glutamate-rich C -terminal region and

n N -terminal caspase recruitment domain (Pro-domain) of 23–
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19 amino acids. [15] It was initially shown to specifically inhibit

aspase-2 and Caspase-8, thus blocking apoptosis [16,17] . More-

ver, ARC is essential for apoptosis and necrosis regulation and

s related to many human diseases, and may thus be an optimal

arget for therapeutic intervention. [18–20] 

he Molecular Characterization of ARC 

ARC is a protein with an anti-endogenous apoptosis function,

nd its anti-apoptotic effect depends on its structural and func-

ional domains. As an apoptosis regulation protein, ARC plays a

trong cardioprotective role during myocardial injury. [21] and is

lso found in the brain. [22] , granulosa cells. [23] , islet 𝛽-cells [24,25] ,

nd liver cells. [26,27] Furthermore, ARC expression levels in the

ouse cortex may decrease with age. [28] In a mouse model,

ong-term drinking decreased the expression of ARC in the cere-

ellum, which may be related to the increased cerebellar cell

poptosis induced by alcohol consumption. [29] In addition, ARC

an also inhibit the amyloid-induced activation of the c-Jun N-

erminal kinase (JNK) pathway and apoptosis in 𝛽 cells, thereby

educing the loss of 𝛽 cells in patients with type 2 diabetes. [25] 

dditionally, the protein transduction of ARC can directly in-

ibit JNK and JNK-dependent tumor necrosis factor 𝛼 produc-

ion, thus saving mice from fulminant liver failure. [26] Previous

tudies have mainly demonstrated that ARC exerted its anti-

poptotic effects by either directly binding to Caspase-2 and − 8

r by indirectly decreasing mitochondrial Ca 2 + [30] However,

ther potential molecular features and functions of ARC need

o be further studied and explored. 

ytoprotection and Anti-apoptosis Mechanisms of ARC 

Currently, ARC is known to be involved in two classical apop-

osis pathways in the cytoplasm, namely the extrinsic pathway

mediated by death receptors) and the intrinsic pathway (me-

iated by mitochondria). [31] Mitochondrial apoptosis is mainly

egulated by B-cell lymphoma-2 (Bcl-2) family proteins, which

an have pro-apoptotic effects (e.g., Bax, Bok) or anti-apoptotic

ffects (e.g., Bid, Bcl-2). [32] During the response to danger sig-

als or stress, the levels of expression and activation of Bcl-

 family members determine whether programmed cell death

s initiated or inhibited. [32,33] Members of this protein family

ontrol neuronal apoptosis by acting on the integrity and en-

rgetics of the mitochondrial outer membrane, and they reg-

late Ca 2 + homeostasis in mitochondria and the endoplasmic

eticulum. Several studies have shown that the deletion of a

ingle pro-apoptotic gene, Bax, can exert a neuroprotective ef-

ect. [34] When a pro-apoptotic protein is released into the cy-

oplasm, it initiates the caspase cascade. Caspase-3 is the last

xecutive enzyme in the apoptosis cascade; it cleaves proteins,

nzymes, and nucleotides, leading to cell homeostasis disor-

ers, and resulting in cell death. [35,36] During apoptosis, the

ell membrane structure is retained until the end of the pro-

ess. [37] Concurrently, ARC can also directly bind to p53 and

ther apoptosis regulatory factors and release Bcl-2, exerting

n intrinsic anti-apoptotic function. [38] In summary, ARC is a

nique inhibitor of death in the central nervous system because

f its key role in both intracellular and extracellular apoptotic

athways. 
139 
esearch Progress on the Caspase Recruitment Domain in 

emorrhagic Stroke 

poptosis in hemorrhagic stroke 

It is generally believed that cell death occurs after con-

act with blood metabolites or damaged cells. Recent research

emonstrated that programmed cell death, especially apopto-

is, plays a vital role in the pathophysiology of hemorrhagic

troke. [39] During hemorrhagic stroke, apoptosis mainly occurs

n central nerve cells, such as microglia and cerebral vascular

ndothelial cells. In the early hemorrhagic stroke stage, a series

f pathophysiological events, such as energy failure, excitotoxic-

ty, oxidative stress, inflammation, and finally, apoptosis, lead to

euronal cell death after hours or days. [40] Moreover, the sever-

ty of this disease depends on the duration, severity, and location

f the hemorrhagic stroke within the brain. [41] Interestingly, the

arkers of apoptosis and necrosis can appear in the same cell

t the same time, indicating that multiple death programs may

ccur simultaneously. However, the exact mechanism of these

ew types of cell death remains unclear. Recent studies have

hown that regulating the toll-like receptor 4 (TLR4) signaling

athway can mediate nerve cell apoptosis. Jung et al. [42] found

hat activating two TLR4-related signaling pathways could in-

uce apoptosis in microglia. In addition, Wang et al. [41] found

hat TLR4 could upregulate matrix metallopeptidase 9 (MMP-

) expression and initiate apoptosis by binding to high mobility

roup box 1 (HMGB1), opening the signal transduction pathway

n a subarachnoid hemorrhage model. However, after low-dose

ipopolysaccharide pretreatment, activation of the TLR4 signal

athway down-regulated MMP-9 and Caspase-3 expression, thus

nhibiting apoptosis and exerting neuroprotection. Moreover,

he Fas/FasL signaling pathway also participates in persistent

poptosis, and it triggers the production of pro-inflammatory

ytokines through external apoptosis signal cascades. [43] Addi-

ionally, the hematopoietic growth factor erythropoietin inhibits

poptosis and protects neurons from ischemic damage. [44] These

ndings suggest that death receptors participate in apoptosis in-

uction after a hemorrhagic stroke, and their inhibition may im-

rove neuronal survival. 

In recent years, research about anti-neuronal apoptosis drugs

as also made significant progress. For example, ginsenoside

g1 can significantly inhibit apoptosis in cerebral cortex neu-

ons. [45] Overall, physiological and pharmacological inhibitors

argeting apoptosis may be an important part of this new treat-

ent strategy against early brain injury caused by hemorrhagic

troke. 

ole of ARC in hemorrhagic stroke 

Two types of caspases regulate apoptosis: promoters and ef-

ectors. Promoter caspases activate effector caspases by cleavage

f the inactive form. Then, the effector caspases (e.g., Caspase-

 and − 7) activate endonucleases, resulting in DNA cleavage,

ventually destroying the whole cell structure. [46] In some cases,

poptosis can also be triggered in a caspase-independent man-

er. [47] Although apoptosis is not a new concept, the com-

lex mechanisms of apoptosis in hemorrhagic stroke are still

eing explored ( Figure 1 ). Some studies have shown that

aspase-dependent cascades are crucial for local hemorrhagic
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Figure1. Role of ARC in hemorrhagic stroke. ARC has a key role in two classical apoptosis pathways. One is an extrinsic pathway mediated by death receptors, the 

other is an intrinsic pathway mediated by mitochondria. 

ARC: Apoptosis repressor with caspase recruitment domain; Bax: BCL2-associated x apoptosis regulator; FADD: Fas-associated with death domain protein; Fas: Fas 

cell surface death receptor; p53: Protein 53. 
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njury, whereas caspase-independent cascades are more in-

olved in neurotoxin-induced apoptosis. [48] Hemorrhagic stroke

s an acute and critical neurovascular and cerebrovascular dis-

ase. Many studies have shown that regulating apoptosis-related

athways can improve the outcome of central nervous system

iseases, including hemorrhagic stroke. [19,49] ARC is widespread

n neurons and protects them by inducing the rapid proteasome

egradation of receptor-interacting protein kinase 3, weaken-

ng the response to hemorrhagic/ischemic death signals. [50] A

tudy found that cerebral injury significantly decreased ARC ex-

ression in the hippocampal CA1 region in a time-dependent

anner. Therefore, neuronal death caused by ischemia/hypoxia

ay occur through the down-regulation of ARC in hippocampal

eurons. [50] However, most of these results are preliminary, and

urther clinical studies are needed to determine whether ARC

lays a pathological and physiological role in preventing apop-

osis after cerebral hemorrhage injury. 

emorrhagic stroke in translational research 

Finding more effective therapeutic methods requires a

eeper exploration of the application prospect of ARC in the

reatment of hemorrhagic stroke from the perspective of trans-

ormation. As research on the mechanisms of hemorrhagic

troke has progressed, many clinical trials on new therapeutic

trategies offer real hope for hemorrhagic stroke patients. Un-

ike prior studies, an increasing amount of research has focused
140 
n drugs enhancing the organism’s defense mechanisms, such as

efense responses, inflammation, and immune responses. This

epresents an extremely significant advance over earlier studies.

or instance, sulforaphane, a component of broccoli, is a strong

uclear factor erythroid 2-related factor 2 (Nrf2) activator and

rotects the nervous system from many diseases through the

rf2 pathway, including brain injury in hemorrhagic stroke. [51] 

urthermore, peroxisome proliferator-activated receptor- 𝛾

PPAR- 𝛾) agonist exerts its positive activity through upregulat-

ng cellular defenses. [52] Therefore, the study of ARC-related

linical drugs and combined therapy against apoptosis may be

ne of the best ways to reduce cerebral hemorrhage injury. 

RC in other diseases 

Besides maintaining the normal development of the body

nd the stability of the internal environment, ARC affects the

athophysiology of other diseases. [15] Numerous studies have

uggested that it can inhibit apoptosis in various diseases in a

ariety of ways ( Table 1 ), and has the potential as a treatment

arget. 

RC and myocardial ischemia/reperfusion injury (MI/RI) 

As a powerful cardioprotective factor, ARC plays an

mportant protective role in mediating anti-apoptosis and

mproving cardiac function after MI/RI. [53] Recent studies
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141 
emonstrated that the caspase enrichment domain could protect

ardiomyocytes from oxidative stress by inhibiting the Caspase-

-mediated mitochondrial pathway in a rat model of MI/RI,

roviding a new strategy for heart protection. [54] Additionally,

RC can regulate myocardial programmed necrosis and reduce

he area of myocardial infarction by preventing the opening of

he mitochondrial permeability transition pore (mPTP). Further-

ore, low-dose aldosterone antagonists can cause ARC degra-

ation via the ubiquitin-proteasome pathway, whereas spirono-

actone or eplerenone can reduce ARC degradation, thereby in-

ibiting cardiomyocyte apoptosis. [55] These results indicate that

RC may be an effective interventional target for the clinical

revention and treatment of MI/RI. 

RC and heart failure 

Under pathological conditions, down-regulation of ARC ex-

ression may also lead to various heart diseases, such as heart

ailure. Representative studies have shown that 36.7% of ter-

inal heart failure patients had reduced ARC protein expres-

ion in cardiac tissue [56] Li et al. [57] revealed that adenoviral-

nduced ARC overexpression could reduce the activity of cas-

ases, thereby inhibiting exogenous and endogenous apoptosis

n a heart failure mouse model. Confirming the anti-heart fail-

re effect and mechanism of ARC in myocardial tissue, Wang

t al. [58] showed that TgARC mice also had myocardial protec-

ion in the heart failure model. Moreover, miRNA-223, a posi-

ive regulator of heart failure, induced further deterioration in

ice with heart failure by inhibiting the expression of its down-

tream target, ARC. These results confirm that ARC may be an

ttractive therapeutic target in heart failure therapy. 

RC and cancers 

Most colon cancer cell lines and primary colon cancer have

igh ARC levels. [59,60] Furthermore, well-, moderately-, and

oorly-differentiated cancer tissues had higher cytoplasm ARC

evels than healthy tissues, suggesting that ARC may be a new

arker of human colon cancer. [61] In recent years, studies

ave demonstrated that the down-regulation of ARC in vari-

us cancers could induce apoptosis and reduce chemotherapy

esistance. This could thus become a new path to overcome

hemotherapy resistance. Additionally, ARC can regulate cell

eath induced by the second mitochondrial cysteine pro-

ease mimic in acute myeloid leukemia (AML) through

IRC2/MAP3K14 signaling, indicating that ARC may improve

he therapeutic potential of the cysteine protease mimic. [38] ARC

erived from AML cells is upregulated by Mesenchymal stem

ells (MSCs) through mitogen-activated protein kinase (MAPK)

nd phosphatidylinositide 3-kinases (PI3K) signaling pathways

n vitro and in vivo Thus, AML survival advantages would be sig-

ificantly increased by protecting them from apoptosis induced

y chemotherapy and selective endogenous or exogenous apop-

otic drugs. [62] 

onclusions 

ARC is an important regulatory factor in the occurrence, de-

elopment, and outcome of various diseases through its anti-

poptotic properties. The continuous clarification of the regu-

atory mechanisms of ARC and its upstream regulatory targets
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n hemorrhagic stroke indicate that regulating ARC-mediated

poptosis can reduce neuronal damage, providing novel per-

pectives for clinical therapy strategies. Therefore, the anti-

poptotic effect of ARC makes it an effective target for neuronal

rotection. It is crucial to further explore and validate the role of

RC in hemorrhagic stroke, as this knowledge would lay a the-

retical foundation for the scientific and rational formulation of

revention and control measures. 
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