
1Scientific RepoRts | 6:30785 | DOI: 10.1038/srep30785

www.nature.com/scientificreports

Identification of metabolic 
biomarkers in patients with type 
2 diabetic coronary heart diseases 
based on metabolomic approach
Xinfeng Liu1,*, Jian Gao2,*, Jianxin Chen2,*, Zhiyong Wang2, Qi Shi2, Hongxue Man1, 
Shuzhen Guo2, Yingfeng Wang1, Zhongfeng Li1,2 & Wei Wang2

Type 2 diabetic coronary heart disease (T2DM-CHD) is a kind of serious and complex disease. Great 
attention has been paid to exploring its mechanism; however, the detailed understanding of T2DM-
CHD is still limited. Plasma samples from 15 healthy controls, 13 coronary heart disease (CHD) patients, 
15 type 2 diabetes mellitus (T2DM) patients and 28 T2DM-CHD patients were analyzed in this research. 
The potential biomarkers of CHD and T2DM were detected and screened out by 1H NMR-based plasma 
metabolic profiling and multivariate data analysis. About 11 and 12 representative metabolites of 
CHD and T2DM were identified respectively, mainly including alanine, arginine, proline, glutamine, 
creatinine and acetate. Then the diagnostic model was further constructed based on the previous 
metabolites of CHD and T2DM to detect T2DM-CHD with satisfying sensitivity of 92.9%, specificity of 
93.3% and accuracy of 93.2%, validating the robustness of 1H NMR-based plasma metabolic profiling to 
diagnostic strategy. The results demonstrated that the NMR-based metabolomics approach processed 
good performance to identify diagnostic plasma biomarkers and most identified metabolites related to 
T2DM and CHD could be considered as predictors of T2DM-CHD as well as the therapeutic targets for 
prevention, which provided new insight into diagnosing and forecasting of complex diseases.

T2DM, a major public health problem in huge population worldwide, acts as a potent and independent risk factor 
for several forms of cardiovascular disease (CVD)1. Coronary heart disease (CHD) has been recognized as the 
most common and costly vascular complication of T2DM2–4. Because of the intimate correlation between T2DM 
and CHD, it has been speculated that there are common pathogenic processes and metabolic defects for them. 
The increasing risk of CHD in T2DM-CHD patients represents one of the main causes for the mortality in this 
population5,6. Undoubtedly a delayed recognition of T2DM undoubtedly worsens the prognosis for survival of 
many T2DM-CHD patients.

In clinical practice, higher levels of cholesterol in large, triglyceride-rich lipoprotein particles, mainly 
very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL), and lower levels of cholesterol in 
high-density lipoprotein (HDL) particles are known to be associated with increasing risk of CHD7,8. However, the 
risk factors identified so far from cross-sectional epidemiological studies are insufficiently powerful to provide a 
clinically useful diagnosis of CHD. Diagnosis of T2DM is typically determined by fasting blood glucose and the 
oral glucose tolerance test that examines an individual’s ability to dispose of a glucose load. Glycated hemoglo-
bin (HbA1c) provides information on glucose management during the months preceding the initial testing9,10. 
Patients with T2DM-CHD always sustain a worse prognosis for the survival than patients with CHD or T2DM 
individually11–13. It is clear that single alteration in traditional risk factors (e.g., raised blood pressure, abnormal 
lipids) cannot explain the excess incidence of CVD in patients with T2DM-CHD. According to the comparison 
among studies about T2DM and CHD, it could be demonstrated that these two diseases are directly associated 
with metabolism disorder14, but the detailed understanding of serum metabolites in T2DM-CHD is still limited, 
let alone the diagnosis of T2DM-CHD. Applying novel technology to study serum metabolome may provide 
useful information to elucidate the mechanism in the development of T2DM-CHD.
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Metabonomics, a postgenomic approach used to rapidly identify global metabolic changes in biological 
systems, has been increasingly applied to diagnose diseases, measure the response to treatment, discover bio-
markers and identify perturbed pathways15–17. Nuclear magnetic resonance (NMR) spectroscopy is a rapid, 
non-destructive and high-throughput analytical method and has been widely used in metabonomic research18–22. 
It has been reported that NMR-based metabolomic approaches instituting a sensitive high-throughput molecular 
screening have already demonstrated promising results in diagnosing a variety of diabetes mellitus and cardio-
vascular system disorders23–25.

In this study, we made a novel attempt to explore the potential biomarkers related to CHD and T2DM and 
validate these potential biomarkers as predictors to diagnose the patients with T2DM-CHD based on the NMR 
non-targeted metabolomics. Serum samples from T2DM and CHD patients were analyzed by NMR metabolic 
profile, principle component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) to screen 
out potential biomarkers. ROC curve analysis for the logistic regression model was constructed by the biomark-
ers of T2DM and CHD patients for T2DM-CHD prediction. This process may accelerate the advancement in 
understanding the mechanism of T2DM-CHD occurrence and progression at the metabolic level and providing 
information for the prediction of early marker metabolites for T2DM-CHD.

Results
Demographics and Clinical Characteristics. Detailed data about patients and controls are presented in 
Table 1. There was no significant difference in gender, age, Body Mass Index (BMI), Systolic Blood Pressure 
(SBP), Diastolic Blood Pressure (DBP), total cholesterol, Blood Urea Nitrogen (BUN) and serum creatinine (SCr) 
among the four groups based on SPSS analysis (p >  0.05). The level of triglycerides and HbA1c in T2DM and 
T2DM-CHD was higher than that of the controls (p <  0.05). Apart from HDL in T2DM (p >  0.05), HDL in other 
two groups were higher than that in the controls (p <  0.05). As expected, FPG, 2 h plasma glucose (2hPG) and 
fasting insulin (FINS) in T2DM-CHD and T2DM were higher compared to the controls (p <  0.05), particularly in 
T2DM-CHD (p <  0.0001). The level of LDL in CHD and T2DM were a little higher than those in healthy subjects 
(HC), perhaps due to the influence of the medication such as stains and insulin. Therefore, the findings cannot be 
attributed to demographic factors.

1H-NMR analysis of Plasma samples. Plasma contains almost all of the low molecular weight species 
in whole blood and a few high molecular weight compounds, thus it can provide valuable bio-information in 
the organism’s metabolism. Figure 1 shows representative 600 MHz 1H NMR CPMG spectra of plasma from the 
healthy controls, T2DM group, CHD group and T2DM-CHD group. The plasma NMR spectra were dominated 
by LDL/VLDL (δ 0.86, δ 1.26), leucine (δ 0.95, δ 0.97), valine (δ 1.03), lactate (δ 1.33, δ 4.12), alanine (δ 1.48), ace-
tate (δ 1.92), glucose (δ 3.2–4.0, 4.66, 5.23) etc. Resonance assignments were performed according to the existing 

Variable HC CHD T2DM-CHD T2DM

N (male/female) 7/8 7/6 15/13 6/9

Age (years) 65.3 ±  6.6 64.7 ±  7.2 67.1 ±  5.8 63.9 ±  7.3

Duration of CHD 0 2.7 ±  4.9 3.4 ±  5.5 0

Duration of T2DM 0 0 5.5 ±  6.2 5.46 ±  4.1

BMI (kg/m2) 25.63 ±  2.04 26.02 ±  2.63 26.31 ±  2.62 24.98 ±  2.93

SBP (mmHg) 121.75 ±  10.65 122 ±  11.46 125.17 ±  12.02 113.64 ±  9.90

DBP (mmHg) 78.66 ±  9.58 75.67 ±  8.63 76.83 ±  11.13 77.10 ±  6.67

Triglycerides (mg/dL) 1.68 ±  0.19 1.95 ±  0.42* 2.12 ±  0.45* 1.34 ±  0.25

LDL (mmol/L) 3.26 ±  0.75 2.75 ±  0.83* 2.68 ±  0.75* 3.05 ±  0.59* 

HDL (mmol/L) 1.30 ±  0.32 1.09 ±  0.29* 1.10 ±  0.25* 1.23 ±  0.28

Total cholesterol (mmol/L) 5.39 ±  0.44 6.04 ±  0.55 5.60 ±  0.13 5.74 ±  0.42

BUN (mmol/L) 4.40 ±  1.11 4.91 ±  1.02 5.70 ±  1.22 5.91 ±  1.41

SCr (mmol/L) 69.78 ±  14.04 68.44 ±  9.84 78.20 ±  15.89 65.32 ±  14.39

HbA1c (%) 6.96 ±  0.48 7.63 ±  1.92 8.81 ±  1.34* 8.59 ±  0.32* 

FPG (mmol/L) 5.83 ±  1.97 5.34 ±  2.64 10.27 ±  3.29* * 8.21 ±  2.94* 

2hPG (mmol/L) 7.29 ±  1.24 6.61 ±  0.85 15.01 ±  4.26* * 10.53 ±  4.53* * 

FINS (ulU/ml) 7.91 ±  3.56 8.96 ±  5.74 17.30 ±  9.33* * 10.14 ±  6.91* 

Medication History

 ACEI or ARB 0 (0) 6 (46.2) 18 (64.3) 0 (0)

 Statins 0 (0) 4 (30.8) 11 (39.3) 0 (0)

 Beta-blocker 0 (0) 5 (38.5) 10 (35.7) 0 (0)

 OHA/insulin 0 (0) 0 (0) 13 (46.4) 3 (20.0)

Table 1.  Characteristics of Study Participants. BMI: body mass index; SBP: systolic blood pressure; DBP: 
diastolic blood pressure; LDL: low density lipoproteins; HDL: high density lipoproteins; BUN: blood urea 
nitrogen; SCr: serum creatinine; HbA1c: glycated hemoglobin; FPG: fasting plasma glucose; 2hPG: 2h plasma 
glucose; FINS: fasting insulin. Data are presented as mean ±  SD. * p <  0.05, compared with control group,  
* * p <  0.0001, compared with control group.



www.nature.com/scientificreports/

3Scientific RepoRts | 6:30785 | DOI: 10.1038/srep30785

literatures26–28 and in-house NMR database and further confirmed with analysis of the 2D NMR spectroscopy 
(the spectra was shown in Fig. S1). Visual inspection of the 1H NMR spectra showed subtle differences in plasma 
metabolites between groups. In the 1H NMR spectral of plasma samples, the dominated change of the signals 
among low molecular weight metabolites like leucine, isoleucine, valine, alanine, glutamine, creatine, proline, 
glucose etc. were detected. Multivariate data analysis was further performed to obtain more detailed analysis of 
metabolic differences between groups.

Multivariate data analysis and the selection of potential biomarkers. PCA was used for the over-
view of the metabonomic data set and the spotting of outliers, and then for the detection of any grouping. This 
type of analysis is designed to highlight systematic variation across series of NMR spectra. It results in the calcu-
lation of a series of principal components (PCs) for each sample. The PCA scores plot was used to reveal obser-
vations lying outside the 0.95 Hotelling’s T2 ellipse. The score plot was obtained with the first two PCs presenting 
47.2% and 14.5% variance, respectively (Fig. 2A). PLS-DA model was established to investigate the metabolic 
differences between four groups. The PLS-DA score plot displayed a good separation between HC group and 
other disease groups (Fig. 2B).

Then, both of the two PLS-DA models with satisfactory discriminating ability were established to assess 
the metabolic differences between two disease groups (CHD and T2DM) and HC group respectively (Fig. 3). 
According to the score plot of the PLS-DA model, CHD patients and HC were discriminated obviously with 
R2X =  18.5%, R2Y =  95.2%, and Q2 =  70.7% (Fig. 3A), and the T2DM patients and HC were discriminated with 
R2X =  17.7%, R2Y =  96.9%, and Q2 =  0.675 (Fig. 3C). The parameters for describing the PLS-DA models were 
significantly elevated (R2Y, Q2 >  0.5), which suggested that the PLS-DA models were robust29. The validation plot 
(Fig. 3B,D) demonstrated that the original PLS-DA models were not random and overfitting as both permutated 
Q2 and R2 values were significantly lower than the corresponding original values.

In order to eliminate the influence of individual difference and conduct an insight into the changed metabo-
lites responsible for the separation between two groups, the OPLS-DA model was constructed using the first prin-
cipal component and the first orthogonal component. In Fig. 4, it reveals the OPLS-DA score plots for pairwise 
comparison of CHD, T2DM and HC group samples, along with the corresponding coefficients plots depicting 
the major discriminators. In the score plot (Fig. 4A, R2Y =  95.2%, Q2 =  0.462), a significant biochemical distinc-
tion between the CHD patients and HC was identified and there was also a significant biochemical distinction 
between the T2DM patients and healthy controls in the score plot (Fig. 4C, R2Y =  96.9%, Q2 =  0.622). The meta-
bolic changes in patients were reflected in the color coded coefficient plots (Fig. 4B,D). Metabolites exhibiting sig-
nificant changes (p <  0.05) were identified based on the absolute cutoff value of correlation coefficients (|r|) and 
VIP value and were listed in Table 2. The resonances assigned to proline and creatine were significantly increased, 
but the levels of isopropanol, alanine, leucine, arginine, acetate, glutamine, glycine, glucose and 3-methylhistidine 

Figure 1. Representative 600 MHz 1H NMR spectra of plasma samples from the patients of CHD, T2DM 
and T2DM-CHD and healthy control subject. Distinguished metabolites: 1 VLDL/LDL, 2 leucine, 3 isoleucine, 
4 valine, 5 isopropanol, 6 lactate, 7 alanine, 8 acetate, 9 arginine, 10 proline, 11 glutamine, 12 EDTA, 13 creatine, 
14 creatinine, 15 glucose, 16 glycine, 17 threonine, 18 serine, 19 tyrosine, 20 3-methylhistidine, 21 formate,  
22 acetone.



www.nature.com/scientificreports/

4Scientific RepoRts | 6:30785 | DOI: 10.1038/srep30785

were statistically decreased in the CHD group compared to those of the HC group. The T2DM group had lower 
levels of isoleucine, leucine, valine, isopropanol, alanine, arginine, glutamine, proline, creatinine, threonine and 
tyrosine, but had higher levels of glucose compared to thoes of the HC group. The potential biomarkers related to 
T2DM and CHD screened out above were used to predict the process and mechanism of T2DM-CHD.

Hierarchical cluster analysis (HCA) of biomarkers for T2DM-CHD diagnosis. HCA could read-
ily be used to assess relatedness and distance of any type of samples characterized by any type of descriptors, 
and the result was displayed as ‘heatmap’. We used the metabolites listed in Table 2 as the variables to conduct 
the HCA, and got the heatmap (Fig. 5). From the heatmap, the similarity of different metabolites and differ-
ent samples could be shown visually. The heatmap showed that the T2DM-CHD patients and healthy controls 
were almost completely separated from each other. It could be observed that the metabolic state of T2DM-CHD 
patients resulted in the decreased levels of isopropanol, glycine, alanine, arginine, proline, glutamine, acetate, 
creatine, 3-methylhistidine, creatinine, isoleucine, tyrosine, valine, threonine and leucine, as well as elevated lev-
els of VLDL/LDL and glucose. The result of HCA further illustrated that these metabolites could distinguish the 
T2DM-CHD patients and HC, so these endogenous metabolites could be used as the potential biomarkers.

Prediction and the diagnostic test to the T2DM-CHD disease. The 17 potential metabolites respon-
sible for discrimination between T2DM-CHD patients and HC were identified. Table 3 shows the variation of 
the integrals of the normalized spectral regions responsible for these 17 metabolites and lists the results from the 
student’s t-test (p <  0.05) for comparison of HC and T2DM-CHD.

As is shown in Fig. 6A, a complete separation of T2DM-CHD patients and HC in PLS-DA score plots based 
on the 17 potential metabolites (R2X =  56.7%, R2Y =  84.9, Q2 =  0.72), suggesting a severe metabolic disturbance 
of the 17 potential metabolites in T2DM-CHD patients by a supervised PLS-DA with a well goodness of fit (dis-
played in Fig. 6B).

Then, ROC curves analysis was performed to validate the clinical effect of these potential biomarkers in diag-
nosing the T2DM-CHD. Areas under the ROC curve (AUC) were generally considered as the method of choice 
for evaluating the performance of potential biomarkers: the greater the AUC, the better the prediction of the 
model. In Fig. 7A, it showed a set of ROC curves for SVM models created using different subsets of metabolites 
selected by the filter approach, and six models were developed. The top 2 important variables (isopropanol and 
glycine) were used to build classification models, the AUC value was 0.983 and 95% confidence interval (CI) 
was 0.933~1. The AUC using a larger number of variables tried to achieve even greater areas under the ROC 
curves, and the maximum value was 0.983 (95% CI, 0.933~1) when we used 2 or 3 metabolites as the variables. 
Meanwhile, the predictive accuracy was the maximum value 93.2% when we use 5 or 7 metabolites as the var-
iables (Fig. 7B). The metabolites in Fig. 7C were ranked by their contribution to distinguish the T2DM-CHD 
from HC. The greater the distance from the Y-axis, the greater the contribution of a particular metabolite in dis-
tinguishing cases from controls. This plot also indicated whether the metabolite concentration was increased or 

Figure 2. PCA and PLS-DA score plot of HC, CHD patients, T2DM patients and T2DM-CHD patients. 



www.nature.com/scientificreports/

5Scientific RepoRts | 6:30785 | DOI: 10.1038/srep30785

decreased in cases related to controls. The metabolites in Fig. 7C included isopropanol, glycine, alanine, arginine, 
proline, glutamine, acetate, glucose, creatine, 3-methylhistidine, creatinine, isoleucine, tyrosine, valine, threonine 
and leucine, and the importance decreased in this order, while the VLDL/LDL was rejected as it made little contri-
bution to distinguish the T2DM-CHD and HC. The predicted class probabilities (average of the cross-validation) 
for each sample using the best classifier (based on AUC) is illustrated in Fig. 7D. The verification results showed 
that in the 28 T2DM-CHD samples, 26 were predicted correctly, and in the 15 HC samples, 14 were predicted 
correctly. Therefore, the OPLS-DA prediction model exhibited a sensitivity of 92.9% and a specificity of 93.3% 
for T2DM-CHD diagnosis. On the basis of selected biomarkers, ROC analysis revealed that T2DM-CHD could 
generate signature biomarkers and in return these biomarkers could be used to diagnose them.

Metabolic Pathway and Function Analysis. In addition, based on the identified biomarkers, the plasma 
metabolic pathway analysis was performed using MetPA software to reveal the most relevant pathways related 
to T2DM-CHD. The impact value of these pathways calculated from pathway topology analysis above 0.1 was 
screened out as potential target pathway. According to the impact value, finally there were 4 potential target 
pathways related to 8 metabolites identified in this research. There were 4 pathways disturbed when T2DM-CHD 
occurred (Fig. 8), including arginine and proline metabolism, Glycine, serine and threonine metabolism, alanine, 
aspartate and glutamate metabolism and Pyruvate metabolism, which included more than one target. The details 
of pathways were displayed in supplementary Table S1 and Figures S2–S5, Supporting Information.

Discussion
The development of CHD and T2DM in patients is a serious problem that compromises the quality of life and 
survival of patients. Taking into account of the tendency to population aging observed during the last years, the 
problem of T2DM-CHD has become even more serious. The precise mechanism linking between CHD and 
T2DM is not completely clear and there are still unknown factors. Biomarkers predicting T2DM-CHD are use-
ful to identify individuals at high risks of developing T2DM-CHD. Metabolomics is increasingly being applied 
towards the identification of biomarkers for disease diagnosis, prognosis and risk prediction.

Figure 3. PLS-DA score plot (A,C) of CHD and T2DM patients and HC and statistical validation of the 
PLS-DA (B,D). Score plots showed the degree of separation of the model between CHD (red boxes) and HC 
(black Diamonds) (R2X =  18.5%, R2Y =  95.2%, and Q2 =  0.707), and T2DM patients (green triangles) and 
HC (black Diamonds) (R2X =  17.7%, R2Y =  96.9%, and Q2 =  0.675). A permutation test performed with 200 
random permutations in a PLS-DA model showing R2 (green triangles) and Q2 (blue boxes) values from the 
permuted analysis (bottom left) significantly lower than the corresponding original values (top right).



www.nature.com/scientificreports/

6Scientific RepoRts | 6:30785 | DOI: 10.1038/srep30785

In the present study, 1H NMR-based metabonomic approach was conducted to demonstrate metabolic dif-
ferences between HC and T2DM-CHD. Subsequent analysis of the metabolite profiles of serum samples from 
CHD and T2DM patients could distinguish patients from healthy normal controls and provide a fingerprint of 
metabolic changes that characterized the disease, and highlighted the potential of metabolomic analysis in the 
evaluation of a disease condition. About 17 metabolic biomarkers were highly possible to be associated with 
T2DM-CHD, which showed better performance in terms of both specificity and sensitivity. These metabolites 
included isoleucine, valine, isopropanol, alanine, leucine, acetate, proline, glutamine, arginine, trans-aconitate, 
creatine, creatinine, glucose, glycine, threonine, tyrosine and 3-methylhistidine. The diagnostic model using ROC 
curves was further constructed based on the metabolites of CHD and T2DM to predict T2DM-CHD with satis-
fying sensitivity of 92.9%, specificity of 93.3% and accuracy of 93.2%.

In our study, four unique metabolic pathways of arginine and proline metabolism, glycine, serine and thre-
onine metabolism, alanine, aspartate and glutamate metabolism, and pyruvate metabolism are identified from 
T2DM and CHD patients (Fig. 8). The altered metabolites related to T2DM-CHD are most involved in energy 
metabolism and amino acids metabolism (Fig. 9).

Energy metabolism. Glucose is the major source material for ATP production in cells. ATP is mainly pro-
duced through metabolism of glucose under normoxia condition, which is composed of three relay pathways: 
citric acid cycle (TCA cycle, Krebs cycle), oxygen-independent pathway of glucose to pyruvate in cytoplasm and 
oxygen-dependent electron transfer chain, respectively30. It is expected that reduced oxygen level in CHD patients 
will significantly affect the TCA cycle since it is oxygen dependent. The anaerobic glycolysis begins to play a dom-
inant role for ATP production under the conditions of hypoxia, leading to the disorder of glucose.

Creatine, synthesized in the liver and kidney, is transported through the blood and taken up by tissues with 
high energy demands. It can reflect the changes of energy metabolism in the muscles. Creatinine is derived from 
creatine and phosphocreatine. Creatine has the ability to increase muscle stores of phosphocreatine, potentially 
increasing the muscle’s ability to resynthesize ATP from ADP to meet increasing energy demands. Therefore, the 
level of creatine and creatinine also reflect the disorder of energy metabolism in T2DM-CHD patients.

Amino acids metabolism. Leucine, isoleucine and valine are essential amino acids whose carbon struc-
tures are marked by branch points (BCAA). These three amino acids are critical to human life and are particularly 

Figure 4. OPLS-DA score plot and corresponding color-coded correlation coefficient loading plots of 
CHD and T2DM patients and HC. This figure displayed the degree of separation of the model between CHD 
(red boxes) and HC (black Diamonds) ( R2X =  18.5%, R2Y =  95.2%, and Q2 =  0.462) and OPLS-DA score plot 
(C) of T2DM patients and healthy controls (HC), displaying the degree of separation of the model between 
T2DM (green triangles) and HC (black Diamonds) (R2X =  17.7%, R2Y =  96.9%, and Q2 =  0.622); OPLS-DA 
Corresponding color-coded correlation coefficient loading plots (B,D) of key metabolites, demonstrating 
discrimination of key metabolite levels between CHD and T2DM patients and HC.
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involved in stress, energy and muscle metabolism. BCAA, especially leucine, can be an important source of calo-
ries, and is superior as fuel to the ubiquitous intravenous D-glucose, and it also can stimulate insulin released by 
pancreatic b-cells in vitro31. As important insulin secretagogues, BCAAs exert a regulatory effect on proteolysis 
and participate in building body organs32. Altered BCAA metabolism is one of the characteristics of T2DM.

As the most abundant amino acid in the serum, glutamine is the most important amino acid gluconeogenic 
precursor for adding new carbon to the glucose pool33. Turer et al.34 used metabolomic profiling to compare car-
diac extraction and plasma substrates, and demonstrated that patients with CHD had decreased concentration 
of glutamate/glutamine. Alanine is highly concentrated in muscle and is one of the most important amino acids 
released by muscle, functioning as a major energy source. It is an important participant as well as regulator in 
glucose metabolism, and its levels always parallel blood sugar levels. And reduced concentrations of glutamine 
and alanine were also observed in T2DM patients, which illustrated the enhancement of gluconeogenesis in the 
diabetic state. Some of the amino acids are associated with insulinopenia and thus would be seen to be a normal 
response to gluconeogenesis. Our results are consistent with previous studies which indicate that the conversion 
of glutamine and alanine is high in T2DM patients35. Karsten Suhre et al. reported that BCAA (leucine, isoleu-
cine, and valine) all increased in the diabetes group36, and elevated levels of BCAA have been found up to 13.5 
years ahead of clinical manifestation in the study of Walford et al., Floegel et al. and Wang et al.37–39, however, 
there is growing evidence that elevated BCAA levels may reflect a state of insulin resistance that is not necessarily 
specific to T2DM40.

Arginine is one of the most versatile amino acids in animal cells, serving as a precursor for the synthesis 
not only of proteins but also of nitric oxide, urea, polyamines, proline, glutamate, creatine and agmatine41. It 
may stimulate the oxidation of energy substrates (including fatty acids and glucose) in adipocytes, liver, skeletal 
muscle, heart and whole body. Fu et al. have reported that dietary L-arginine supplementation markedly reduced 
white-fat mass in Zucker diabetic fatty rats42.

Isopropanol belongs to the family of alcohols and polyols compounds. The previous report indicated that iso-
propanol is one of the products from propanoate metabolism, and the substrate for synthesizing acetone catalyzed 
by the enzyme isopropanol dehydrogenase43. Alcohol dehydrogenase oxidizes alcohols to either aldehydes or 
ketones, with concomitant reduction of NAD+ to NADH44. Thus, we suggested that the isopropanol is associated 
with acetone metabolism, which may be a significant differential metabolite in T2DM.

For all we know, this study presented a holistic view of the metabolic changes related to T2DM-CHD and 
may contribute to its diagnosis. However, limitations of our study included a relatively small sample size in each 
group, which might prevent the differences in some metabolites from being fully apparent, and imperfect diag-
nostic approaches of altered metabolites. In addition, our understandings of these altered metabolites and their 

Metabolites Chemical shift
Interal HC in groupa 
(mean ±  std) ×  10−2

CHD T2DM

Interal in groupa 
(mean ±  std) ×  10−2

rb (CHD 
vs. HC) VIP

Interal in groupa 
(mean ±  std) ×  10−2

rb (T2DM 
vs HC) VIP

VLDL/LDL 0.87(m), 1.27(m) 23.26 ±  4.11 28.81 ±  5.99* * 0.52(↑ ) 2.06 21.04 ±  3.71 0.18(↓ ) 0.69

isoleucine 0.93(t), 0.99(d) 7.42 ±  0.81 6.78 ±  1.20 0.23(↓ ) 0.79 5.85 ±  1.47* * 0.56(↓ ) 1.87

valine 0.98(d), 1.03(d) 15.8 ±  3.52 17.69 ±  4.28 0.10(↑ ) 0.28 10.42 ±  2.02* * 0.71(↓ ) 2.26

isopropanol 1.16(d) 12.03 ±  6.77 1.57 ±  0.53* * 0.73(↓ ) 3.08 1.33 ±  0.41* * 0.73(↓ ) 2.51

alanine 1.47(d) 45.06 ±  8.74 36.07 ±  9.34* 0.44(↓ ) 1.92 27.19 ±  14.02* * 0.60(↓ ) 2.06

leucine 0.95(m), 1.70(m) 1.18 ±  0.42 0.74 ±  0.34* * 0.56(↓ ) 2.13 0.66 ±  0.27* * 0.64(↓ ) 2.00

arginine 1.90(m), 3.24(t), 
3.76(t) 2.36 ±  0.41 1.68 ±  0.59* * 0.58(↓ ) 2.41 1.59 ±  0.65* * 0.54(↓ ) 1.97

acetate 1.92(s) 13.37 ±  3.7 10.0 ±  3.28* 0.49(↓ ) 1.86 11.74 ±  4.64 0.32(↓ ) 1.02

proline 2.03(m), 2.36(m), 
3.43(m) 6.43 ±  0.81 7.91 ±  1.02* * 0.48(↑ ) 1.44 4.58 ±  1.84* * 0.53(↓ ) 1.85

glutamine 2.14(m), 2.46(m), 
3.79(m) 3.62 ±  0.62 2.88 ±  0.60* * 0.57(↓ ) 2.21 2.58 ±  0.91* * 0.54(↓ ) 1.88

creatine 3.02(s), 3.92(s) 3.46 ±  1.88 4.25 ±  1.92* 0.40(↑ ) 1.14 2.84 ±  1.98 0.39(↓ ) 1.46

creatinine 3.03(s), 4.05(s) 19.92 ±  4.38 17.56 ±  3.08 0.20(↓ ) 0.94 13.42 ±  4.59* * 0.60(↓ ) 1.99

glucose 3.24(m), 4.64(d), 
5.23(d) 20.00 ±  5.99 23.13 ±  4.87 0.16(↑ ) 0.43 38.2 ±  22.42* * − 0.53(↑ ) 1.65

glycine 3.55(s) 52.79 ±  11.87 42.61 ±  11.46* 0.41(↓ ) 1.72 55.02 ±  13.66 − 0.58(↑ ) 1.96

threonine 1.31(d), 3.58(d), 
4.25(m) 4.35 ±  1.03 4.01 ±  1.50 0.03(↓ ) 0.06 2.63 ±  1.1* * 0.66(↓ ) 2.12

tyrosine 6.89(m), 7.18(m) 2.66 ±  0.47 2.75 ±  0.89 0.09(↑ ) 0.12 1.86 ±  0.92* * 0.49(↓ ) 1.64

3-methylhistidine 7.00(s), 7.66(s) 5.35 ±  1.55 3.94 ±  1.56* 0.44(↓ ) 1.78 4.70 ±  1.81 0.44(↓ ) 1.47

Table 2.  Quantitative comparison of metabolites found in plasma of CHD patients, T2DM patients and 
healthy controls. The arrows (↑ /↓ ) were used to show the metabolite levels increase/decreased compared with 
healthy controls. aThe relative integrals of metabolites were determined from 1D 1H NMR analysis of plasma of 
each group. bThe values of correlation number extracted from the correlation plots of OPLS-DA models. cThe 
p values were obtained from student’s t-test. The chemical shifts in boldface were that we used in calculating 
integrals and p values.
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underlying mechanisms remain at rudimentary levels. Future work will focus on confirming/validating current 
metabolite findings in larger independent patient cohorts and elucidating the biological mechanisms.

Conclusion
In the present study, 1H NMR-based metabolomics method combined with multivariate data analysis were used 
to distinguish independently T2DM-CHD patients from healthy controls with high reliability. About 17 poten-
tial biomarkers related to T2DM-CHD disease were found by analysis and 16 of the 17 metabolites used as the 
biomarkers in diagnosing T2DM-CHD disease exhibited a sensitivity of 92.9%, a specificity of 93.3% and an 
accuracy of 93.2%. This study has been proved to be useful in improving the diagnosis of T2DM-CHD which may 
provide new insights to identify additional novel biomarkers.

Materials and Methods
Ethical approval. All procedures were designed according to the Declaration of Helsinki’s ethical principles. 
The study protocol has already been ethically reviewed and approved by Ethics Review Committee of Beijing 
University of Chinese Medicine and the methods were carried out in accordance with the approved guidelines. 
Patients were aware of their involvement and signed a written informed consent agreeing to the use of the result-
ing information for medical publications.

Subjects and participants. The study was conducted with the approval of the ethical committee of Beijing 
University of Chinese Medicine and all study participants have given informed consent for the investigation.  
A total of 71 participants from the affiliated Dongzhimen Hospital of Beijing University of Chinese Medicine were 
matched for age and gender and equally distributed into four study groups: (i) T2DM patients; (ii) T2DM-CHD 
patients; (iii) CHD patients; (iiii) Healthy subjects as controls (HC). Detailed data about four study groups are 
listed in Table 1.

Diagnosis of diabetes was according to American Diabetes Association criteria (2005) and Diagnosis criteria 
of CHD referred to the WHO standard criteria (1979). From January 2013 to December 2014, we consecutively 
recruited patients who had been referred to the outpatient clinic from the affiliated Dongzhimen Hospital of 
Beijing University of Chinese Medicine for treatment of diabetes and coronary heart disease. There were 15 vol-
unteers of HC subjects from the medical examination center of Dongzhimen Hospital in the same period of time.

General information, past medical history, family history, personal history, and signs were collected within 24 
hours after the patients were admitted. Details of information in the view of traditional Chinese four diagnostic 
methods were also recorded. Collections of patient histories and information from traditional four diagnostic 
methods were determined by the relevant professionals. Specific requirements for relevant professionals included 

Figure 5. Heatmap visualization based on 17 biomarkers. Rows: samples; columns: biomarkers. Green: HC; 
red: T2DM-CHD patients. Color key indicates metabolite expression value: dark blue: lowest; dark red: highest.
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having the occupation qualification, attending the physician or above, and having relevant clinical experience 
more than two years.

Sample collection and preparation. Fasting blood samples were collected from the subjects in the 
morning by venipuncture and stored in EDTA-containing green-top tubes. Then the samples were centrifuged at  
3 000 ×  g for 10 min at 4 °C to isolate plasma. The plasma samples were stored at − 80 °C until further processing 
and analysis.

Metabolites HMDB Chemical Shift
Interal in HC groupa 
(mean ±  std) ×  10−2

Interal in T2DM- 
CHD groupa 

(mean ±  std) ×  10−2
rb (T2DM-CHD vs 
HC) (|r|>  =  0.532) VIP

pc (T2DM-CHD 
vs HC) (p <  0.05)

VLDL/LDL — 0.87(m), 1.27(m) 23.26 ±  4.11 26.0 ±  6.27 0.176(↑ ) 0.84 0.135

isoleucine HMDB00172 0.93(t), 0.99(d) 7.42 ±  0.81 6.57 ±  1.01 0.487(↓ ) 1.45 0.008

valine HMDB00883 0.98(d), 1.03(d) 15.8 ±  3.52 13.39 ±  3.35 0.506(↓ ) 1.47 0.007

isopropanol HMDB00863 1.16(d) 12.03 ±  6.77 1.63 ±  0.67 0.72(↓ ) 2.86 0.001

alanine HMDB00161 1.47(d) 45.06 ±  8.74 30.20 ±  10.45 0.671(↓ ) 2.15 0.001

leucine HMDB00687 0.95(m), 1.70(m) 1.18 ±  0.42 0.79 ±  0.33 0.556(↓ ) 1.69 0.002

arginine HMDB00517 1.90(m), 3.24(t), 
3.76(t) 2.36 ±  0.41 1.52 ±  0.58 0.604(↓ ) 2.24 0.001

acetate HMDB00042 1.92(s) 13.37 ±  3.7 9.64 ±  5.24 0.34(↓ ) 1.30 0.019

proline HMDB00162 2.03(m), 2.36(m), 
3.43(m) 6.43 ±  0.81 4.71 ±  1.61 0.583(↓ ) 1.87 0.001

glutamine HMDB00641 2.14(m), 2.46(m), 
3.79(m) 3.62 ±  0.62 2.49 ±  0.92 0.548(↓ ) 2.01 0.001

creatine HMDB00064 3.02(s), 3.92(s) 13.46 ±  3.88 9.76 ±  3.53 0.407(↓ ) 1.62 0.003

creatinine HMDB00562 3.03(s), 4.05(s) 19.92 ±  4.38 15.10 ±  4.06 0.51(↓ ) 1.79 0.001

glucose HMDB00122 3.24(m), 4.64(d), 
5.23(d) 20.0 ±  5.99 28.32 ±  7.83 0.536(↑ ) 1.78 0.001

glycine HMDB00123 3.55(s) 52.79 ±  11.87 32.55 ±  7.75 0.72(↓ ) 2.64 0.001

threonine HMDB00167 1.31(d), 3.58(d), 
4.25(m) 4.35 ±  1.03 3.00 ±  0.88 0.630(↓ ) 2.10 0.001

tyrosine HMDB00158 6.89(m), 7.18(m) 2.66 ±  0.47 2.03 ±  0.45 0.588(↓ ) 2.03 0.001

3-methylhistidine HMDB00479 7.00(s), 7.66(s) 5.35 ±  1.55 3.62 ±  1.37 0.55(↓ ) 1.85 0.001

Table 3.  Quantitative comparison of metabolites found in plasma of T2DM-CHD patients and healthy 
controls. The arrows (↑ /↓ ) were used to show the metabolite levels increase/decreased compared with healthy 
controls. aThe relative integrals of metabolites were determined from 1D 1H NMR analysis of plasma of each 
group. bThe values of correlation number extracted from the correlation plots of OPLS-DA models. cThe p 
values were obtained from student’s t-test. The chemical shifts in boldface were that we used in calculating 
integrals and p values.

Figure 6. PLS-DA score plot (A) and Statistical validation of T2DM-CHD and HC. Score plots (A) showing the 
degree of separation of the model between T2DM-CHD (orange dots) and HC (black Diamonds) ( R2X =  56.7%, 
R2Y =  84.9%, and Q2 =  0.72) and Statistical validation of the PLS-DA (B). A permutation test performed with 
200 random permutations in a PLS-DA model showing R2 (green triangles) and Q2 (blue boxes) values from the 
permuted analysis (bottom left) significantly lower than the corresponding original values (top right).
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Plasma samples were thawed and prepared by mixing 200 μ L of plasma with 400 μ l of 1.5 M of deuterated 
phosphate buffer (NaH2PO4 and K2HPO4, including 0.1% TSP, pH 7.47), adding D2O up to 600 μ L if the volume 
of serum is insufficient. The mixture was left to stand for 5 min at room temperature and then centrifuged at  
13 000 rpm at 4 °C for 15 min. The supernatant solution (550 μ L) was then transferred into a 5 mm NMR tube for 
NMR analysis.

Acquisition of 1H-NMR spectra. All the samples were analyzed at 298 K using a VARIAN VNMRS 
600 MHz NMR SPECTROMETER operating (Varian Inc, Palo Alto, Calif ) at 599.871 MHz using a 5 mm 
inverse-proton (HX) triple resonance probe with z-axis gradient coil.

1H NMR spectra of plasma were recorded using the water-suppressed standard 1D CPMG pulse sequence 
(RD-90°-(τ -180°-τ )n-ACQ), where a fixed total spin-spin relaxation delay 2nτ  of 320 ms was applied to attenuate 
the broad NMR signals from slowly tumbling molecules (such as proteins) and retain those from low-molecular 
weight compounds and some lipid components. The free induction decays (FIDs) were collected into 64 K data 
points with a spectral width of 12 000 Hz and 128 scans. The FIDs were zero-filled to double size and multiplied 
by an exponential line-broadening factor of 0.5 Hz before Fourier transformation (FT). Standard COSY, TOCSY, 
HMBC and J-resolved spectra were also acquired for metabolite identification purposes for the selected plasma 
samples.

Data reduction and multivariate pattern recognition analysis. All of the 1H NMR spectra were 
manually phased and corrected for baseline distortion by MestReNova7.1.0 software (Mestrelab Research, Spain). 
All the spectra were referenced to the methyl group of lactate at δ 1.336. In order to exploit all metabolic informa-
tion embedded in the spectra, all NMR spectra (0.5–9.0) were segmented into equal widths of both 0.01 ppm and 

Figure 7. Comparison of different variables based on ROC curves (A), the legend shows the feature numbers 
and the AUCs of the six models, the predictive accuracies (B) with different features based on ROC curves, the 
average importance (C) of the 17 metabolites based on ROC curves, Variable Importance in Projection (VIP) 
plot indicating the most discriminating metabolite in descending order of importance, and (D) Prediction of 
UAP patients and control using MCCV analysis. The class membership of the left-out sample was predicted 
using an a priori cut-off value of 0.5 (dashed line).
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0.001 ppm. Spectral regions of δ 4.68–5.10, δ 3.65–3.57, δ 3.06–3.23, δ 2.66–2.72 and δ 2.53–2.60 were excluded to 
eliminate variations caused by imperfect water suppression, EDTA, and EDTA metal complexes. The area under 
the spectrum was then calculated for each segmented region and expressed as an integral value. The integrated 
data were normalized to the total sum of the spectrum before multivariate statistical analysis to give the same total 
integration value for each spectrum.

Subsequently, the integral values were imported into SIMCA-P+ 12.0 (Umetrics, Sweden) for multivariate sta-
tistical analysis. The data were mean centered for PCA and PLS-DA45–47, and in order to improve the separation 
due to groups and minimize other biological analytical variation, sample classes were modeled using the OPLS-DA 
algorithm at a unit variance scaled approach. The PCA and PLS-DA score plots were showed with the first princi-
pal component and the second principle component, while OPLS-DA were visualized with the first principle com-
ponent and the first orthogonal component. The model coefficients locate the NMR variables associated to specific 
intervention as y variables. The model coefficients were then back-calculated from the coefficients incorporating 
the weight of the variables in order to enhance interpretability of the model; in the coefficient plot, the intensity 
corresponds to the mean-centered model (variance) and the color-scale derives from the unit variance-scaled 
model (correlation). Thus, biochemical components responsible for the differences between samples detected in 
the scores plot can be extracted from the corresponding loadings with the weight of the variable contributing to 
the discrimination. The coefficient plots were generated with MATLAB scripts (downloaded from http://www.
mathworks.com) with some in-house modifications and was color-coded with absolute value of coefficients (r).

Figure 8. Summary of pathway analysis with MetPA. (a) Arginine and proline metabolism (b) Glycine, serine 
and threonine metabolism, (c) Alanine, aspartate and glutamate metabolism, (d) Pyruvate metabolism.

Figure 9. Schematic diagram of the perturbed metabolic pathways detected by 1H NMR analysis showing 
the interrelationship of the identified metabolic pathways. Red arrows (“↑ ↓ ”) in different colors represented 
the notable increase or decrease of metabolites in the serum.

http://www.mathworks.com
http://www.mathworks.com
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Statistical analysis. Group means of metabolites’ integral are expressed as the mean ±  SD. An inde-
pendent sample T-test was used to detect significant differences in selected signals between the two groups by 
SPSS Statistics Base 17.0 (SPSS Inc, USA). P value less than 0.05 was considered to be statistically significant. 
Additionally, diagnostic model was constructed by the marker metabolites alone using linear discrimination anal-
ysis method. We used random forest clustering to interrogate the top biomarkers with significant alterations in 
the patients as compared to the control from the web site (http://www.metaboanalyst.ca/). The classification per-
formance (sensitivity and specificity) of the OPLS-DA model and the area under the curve (AUC) of ROC were 
also calculated from the respective Monte-Carlo cross validation (MCCV) prediction (http://www.roccet.ca/).
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