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Abstract
PPARgamma is highly expressed in granulosa cells by 23 days post-partum (pp) and is down-
regulated in response to the LH surge. We tested the hypothesis that high levels of FSH during the
neonatal period trigger the expression of PPARgamma. To determine when PPARgamma
expression is initiated, ovaries were collected from neonatal rats. Messenger RNA for PPARgamma
was undetectable on day 1, low from days 5-14, and increased by day 19 pp (p < 0.05). PPARgamma
was detected in select granulosa cells in primary/early secondary follicles. Messenger RNA for the
FSH receptor was detected as early as day 1 and remained steady throughout day 19 pp. The FSH
receptor was detected by immunoblot analysis in ovaries collected 1, 2, and 5-9 days pp. In a
subsequent experiment, neonatal rats were treated with acyline (GnRH antagonist) which
significantly reduced FSH (p < 0.05) but not levels of mRNA for PPARgamma. The role of FSH in
the induction of PPARgamma expression was further assessed in ovarian tissue from FORKO mice.
Both mRNA and protein for PPARgamma were identified in ovarian tissue from FORKO mice. In
summary, the FSH/FSH receptor system is present in granulosa cells prior to the onset of
expression of PPARgamma. Reducing FSH during the neonatal period, or the ability to respond to
FSH, did not decrease expression of mRNA for PPARgamma. These data indicate that FSH is not
a primary factor initiating the expression of PPARgamma and that other agents play a role in
activating its expression in the ovary.

Background
Peroxisome proliferator-activated receptor γ (PPARγ) is a
member of the steroid receptor superfamily. This tran-
scription factor heterodimerizes with the 9, cis-retinoic
acid receptor (RXR) and binds to a short sequence of
DNA, a PPAR response element (PPRE), present in the
promoter region of target genes. PPARγ is activated by a
variety of factors such as fatty acids, non-steroidal anti-

inflammatory drugs (see [1] for a review), prostaglandins
[1-4], oxidized products of LDL (9-HODE and 13-HODE;
see [2] for a review), and thiazolidinediones (TZDs) [5,6].

TZDs are a family of drugs which are insulin-sensitizers
and agonists of PPARγ. They are used to treat people with
type II diabetes. Several studies have demonstrated that
TZDs are effective therapeutic agents for some women
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with polycystic ovary syndrome (PCOS), a leading cause
of infertility in premenopausal women [7]. Clinically,
PCOS is characterized by hyperandrogenism, anovula-
tion, and frequently the women are insulin resistant.
Administration of troglitazone to women with PCOS
reduced androgen levels, improved hyperinsulinemia,
and in some women restored ovulation [8-11]. Recent
studies have also shown that administration of rosiglita-
zone [12] or pioglitazone [13] to women with PCOS
restored ovulation (reviewed in [14]).

Initially, PPARγ was identified as an adipocyte differentia-
tion factor (reviewed in [15]). It has since been shown to
be involved in a variety of physiological processes, many
of which impact ovarian function. For example, activation
of PPARγ influences the production of estradiol, proges-
terone, and prostaglandins (reviewed in [14,16,17]). It
can also regulate the expression of plasminogen activators
and matrix metalloproteinases (reviewed in [16]), proteo-
lytic enzymes involved in ovarian tissue remodeling and
angiogenesis [18-20].

The expression of PPARγ has been identified in ovarian
tissue from a variety of species: humans [21], cattle
[22,23], sheep [24], pigs [25], hamsters [26], rats [27,28],
and mice [29]. In addition, Mohan et al. 2002 reported
that PPARγ is also expressed in bovine oocytes [30]. Previ-
ous work from our laboratory and others has shown that
PPARγ is expressed primarily in granulosa cells of devel-
oping follicles [24,28]. The expression of PPARγ is lower
in follicles expressing the LH receptor compared to those
that do not express the LH receptor [31], and expression
of PPARγ is dramatically down-regulated in response to
the LH surge [28]. It is not known however, what stimu-
lates the expression of this transcription factor in granu-
losa cells, nor at what stage of follicular development
expression of PPARγ is initiated.

Since PPARγ is activated by drugs in clinical use and die-
tary factors, and can impact various processes critical for
normal ovarian function, it is important to gain a better
understanding of how PPARγ is regulated in the ovary.
The following experiments were conducted to determine
when the expression of PPARγ is initiated in granulosa
cells and to test the hypothesis that its expression is stim-
ulated by FSH.

Methods
Animals
All procedures involving animals were approved prior to
use by the Iowa State University or the Institut de Recher-
ches Cliniques de Montreal Institutional Animal Care and
Use Committee. Animals were housed in a controlled
environment with a 14:10 light:dark cycle and had free
access to food and water. Pregnant Sprague-Dawley rats
were monitored daily for the delivery of pups with the day

of birth = day 0 post partum (pp). Chemicals and reagents
were obtained from Sigma Aldrich (St. Louis, MO, USA)
unless specified otherwise.

To determine when the expression of PPARγ was initiated
in ovarian cells, ovaries were collected from neonatal rat
pups on days 1, 5, 7, 9, 11, 14, and 19 pp. Tissues were fro-
zen at -80°C or fixed in 4% paraformaldehyde. Frozen tis-
sues were processed for the isolation of RNA or protein;
fixed tissues were embedded in paraffin for immunohisto-
chemical analysis.

The effect of FSH on levels of mRNA for PPARγ were stud-
ied in both neonatal and immature, juvenile rats. Neona-
tal animals were treated subcutaneously, daily from days
1-7 pp with vehicle (5% (v/v) mannitol in water; n = 7) or
the GnRH antagonist, acyline (100 μg/day; n = 6; kindly
provided by Dr. R. Blye, Center for Population Research,
NICHD). On day 8 pp, ovaries and serum were collected
and frozen for later analysis by RT-PCR or RIA, respec-
tively.

Ovaries were also collected from immature rats after prim-
ing with estradiol. Twenty-three day old rats were treated
with estradiol (1.5 mg/day in corn oil), subcutaneously,
for three days. Granulosa cells were collected and 500,000
cells/well cultured as described previously [28] with the
following modifications. Cells were cultured in duplicate
with or without FSH (50 ng/ml) for 4 or 24 hours (n = 3
experiments). At the end of culture, granulosa cells were
subjected to a direct lysate RNase protection analysis.

The role of FSH in initiating the expression of PPARγ was
further investigated by analyzing the levels of mRNA and
the expression of protein for PPARγ in ovarian tissue from
follitropin receptor knock out (FORKO) mice. Ovaries
were collected from mice carrying no alleles (-/-), one
allele (+/-) or both alleles (+/+) for the FSH receptor at 3
weeks and 3 months of age (n = 3 animals/genotype/age
group). Tissues were placed in RNA Later (Ambion, Aus-
tin, TX, USA) until processed for RNA and protein isola-
tion. Protein and mRNA for PPARγ was analyzed by
western immunoblot and reverse transcriptase (RT)-PCR,
respectively.

Immunohistochemistry
PPARγ was immunolocalized in ovarian tissue collected
from neonatal rats at defined times pp as described previ-
ously [32]. Paraffin embedded ovarian tissues were seri-
ally sectioned at 5 μm. Tissues were processed using an
anti-PPARγ antibody (E-8, Santa Cruz Biotechnology,
Santa Cruz, CA, USA). Normal goat serum (Vector Labs,
Berlingame, CA, USA) was used in place of the primary
antibody as a control. Serial sections from each of 3-4 ani-
mals/time point were analyzed. A minimum of 3 sections/
animal/time point were analyzed.
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Semi-quantitative reverse transcriptase (RT)-PCR
Total RNA was extracted from ovarian tissue collected
from FORKO mice and neonatal rats treated with vehicle
or acyline, with TRIZOL reagent according to the manu-
facture's instructions. Complementary DNA was synthe-
sized from 1-2 μg of total RNA with Oligo dT as
recommended for SuperScript II reverse transcriptase. Fol-
lowing quantification of cDNA by spectrophotometry, the
transcript for PPARγ and the housekeeping gene, S16,
were amplified by PCR. Primers used for PPARγ [33] and
S16 [34] were published previously. Each reaction ampli-
fying PPARγ and S16 consisted of 1 μM of each primer,
1.25 mM MgCl2, 200 μM dNTPs, 1× PCR buffer, 10×
bovine serum albumin, and 2 U Taq-polymerase. Concen-
trations of cDNA used for amplification were 100 ng/reac-
tion for PPARγ and 10 ng/reaction for S16. Reaction
conditions were as follows: 35 cycles at 95°C for 2 min-
utes, 95°C for 1 minute, and 52°C for 1 minute, 72°C for
1 minute, 72°C for 5 minutes. Amplified products were
separated by gel electrophoresis through 2% agarose gels
containing ethidium bromide. Densitometry was per-
formed using Alpha Innotech SpotDenso software and
levels of mRNA for PPARγ were standardized to levels of
mRNA for S16/sample. All reagents used for semi-quanti-
taive RT-PCR were purchased from Invitrogen (Carlsbad,
CA, USA), with the exception of the Taq-polymerase (Bio-
line, Randolph, MA, USA). Primers were synthesized by
Integrated DNA Technologies (Coralville, IA, USA).

To ensure the semi-quantitative nature of the assay, the
number of cycles per program and the amount of cDNA
used as a starting template were tested. The number of
cycles used in each PCR program was selected from within
the range that yielded output in a linear relationship to
input as determined by densitometry. Similarly, the
amount of cDNA used was determined by selecting from
within the linear range of output paralleling changing
concentrations of cDNA in the reaction.

Western immunoblot
Total protein was isolated from ovarian tissues collected
at defined times pp (n = 3-4 animals/day) as described
previously [32] and from FORKO mice using TRIZOL rea-
gent according to the manufacturer's instructions. Immu-
noblot analysis was conducted as described previously
[32]. Briefly, protein (5 μg) was separated on a 10% poly-
acrylamide gel and transferred to a nitrocellulose mem-
brane (Amersham/GE Healthcare, Piscataway, NJ, USA).
The membrane was processed with a goat anti-human
FSH receptor antibody (Santa Cruz). Membranes were
subsequently stripped of conjugates with a β-mercap-
toethanol buffer (100 mM β-mercaptoethanol in TBST, 30
min, 42°C with rocking) and re-probed with an antibody
against β-actin (Biomol, Plymouth Meeting, PA). Mem-
branes were exposed to Kodak X-OMAT autoradiography
film.

Ribonuclease protection assays (RPA)
Total RNA was isolated from ovarian tissues collected
from neonatal animals at defined time points pp using
Trizol reagent according to manufacturer's instructions.
Levels of mRNA for PPARγ, the FSH receptor, and the
ribosomal protein, L32, were measured by RPA as
described previously [28] using reagents from Ambion.
Rat cDNA for the FSH receptor (plasmid containing the
cDNA kindly provided by Dr. Kelly Mayo, Northwestern
University, Evanston, IL), was linearized with BseR1 and
transcribed using [α-32P]CTP and T3 RNA polymerase.
Samples of RNA were hybridized overnight with excess
radiolabeled antisense riboprobes for PPARγ, the FSH
receptor, and L32. Protected fragments were analyzed by
polyacrylamide gel electrophoresis. Relative levels of
mRNA for PPARγ, the FSH receptor, and L32 were quanti-
fied using a phosphor-imager (Molecular Dynamics, Inc.,
Sunnyvale, CA, USA). The band intensity of mRNA for
PPARγ and the FSH receptor was normalized to the corre-
sponding band for L32 per sample.

Lysate RPAs were conducted as described previously
[32,35] to measure levels of mRNA for PPARγ in granu-
losa cells after culture with or without FSH. Granulosa cell
lysates were processed and levels of mRNA measured as
described above using reagents from Ambion.

Radioimmunoassay
The concentration of FSH was determined in serum col-
lected from neonatal animals on day 8 pp after treatment
with water or acyline. Samples were sent to A. F. Parlow at
the National Hormone and Peptide Program (Torrance,
CA) and analyzed by RIA. Data are presented as means ±
SEM.

Statistical analysis
Differences in levels of mRNA for PPARγ and the FSH
receptor in rat ovarian tissues, and concentrations of FSH
were analyzed by ANOVA. Data from the study of mRNA
for PPARγ in ovaries from FORKO animals were log trans-
formed prior to analysis by ANOVA. Post-hoc compari-
sons were made with Tukey's HSD test. A p < 0.05 denoted
significant differences.

Results
We have shown previously that protein and mRNA for
PPARγ are expressed in ovarian tissue from immature,
untreated rats by 23 days of age [28,31,32]. To determine
when the expression of PPARγ is initiated in the rat, ovar-
ian tissue was collected from neonatal rats on days 1, 5, 7,
11, 14, and 19 pp (day 0 = day of birth). These time points
correspond to the development of primordial (day 1), pri-
mary (days 5, 7), secondary (days 7, 11), and antral (days
14, 19) follicles [36]. Additionally, we also assessed the
role of FSH in initiating the expression of PPARγ because
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the expression of this transcription factor is localized to
granulosa cells of developing follicles [28,32].

Messenger RNA for PPARγ was not measurable until day 5
pp and levels remained low until the later stages of the
neonatal period when they increased between days 14
and 19 pp (Figure 1; p < 0.05). PPARγ was first identified
in neonatal rat ovaries collected on day 7 pp (Figure 2).
The expression of PPARγ was localized to granulosa cells
of primary/secondary follicles (Figure 3), and its expres-
sion increased as follicular development progressed (Fig-
ure 2). Expression of the FSH receptor was determined in
relationship to the expression of PPARγ during the neona-
tal period. Messenger RNA for the FSH receptor was iden-
tified as early as day 1 pp and levels remained relatively
steady through day 19 pp (Figure 1). The FSH receptor was
detected as early as day 1 pp (Figure 4) and was identified
at all time points examined. Detection of actin in these
samples denoted equal loading of protein per lane (data
not shown).

Seeing that both mRNA and protein for the FSH receptor
were present in ovarian tissue prior to that of PPARγ, the
role of FSH in initiating expression of PPARγ was exam-
ined. Neonatal rats were treated with the GnRH antago-
nist, acyline. The concentration of FSH was significantly
reduced in animals treated with acyline compared with
controls (Figure 5A; p < 0.001). However, levels of mRNA
for PPARγ in ovarian tissue collected from treated and
control animals were not different (Figure 5B; p = 0.06).

Further assessment of the effect of FSH on the expression
of PPARγ was done using cultured granulosa cells col-

lected from estradiol-primed juvenile rats. After 4 hours of
culture, levels of mRNA for PPARγ were lower in cells
treated with FSH (50 ng/ml) compared to controls (Figure
6; p < 0.05). In contrast, levels of mRNA for PPARγ were
not different between cells cultured with or without FSH
for 24 hours (Figure 6; p > 0.05). There also was no differ-
ence between levels of mRNA for PPARγ between cells cul-
tured for 4 or 24 hours, with or without FSH (Figure 6; p
> 0.05).

Ovarian tissue from FORKO mice was analyzed to deter-
mine how the inability to respond to FSH would affect the
expression of PPARγ in the ovary. Variable expression of
PPARγ was noted in tissues from immature (3 weeks old)
and adult (3 months old) females (Figure 7). Levels of
mRNA for PPARγ were higher in homozygous knockout
immature animals compared to immature heterozygous
and wild-type females (p < 0.05), but were not different
from adult animals (Figure 7). Expression of mRNA for
PPARγ in adults was only different between the wild-type
and heterozygous females. PPARγ was detected in tissues
from all animals in both age groups (data not shown).

Discussion
Results from a study by Cui et al. [29] indicate that PPARγ
plays an important role in normal ovarian function. Using
cre/loxP technology, the expression of PPARγ was dis-
rupted in numerous tissues including the ovary, rendering
1/3 of the female mice sterile and the remaining females
subfertile [29]. Because the expression of PPARγ was not
disrupted in the uterus of these transgenic females the
authors concluded that "...ovarian function might not be
sufficient to induce implantation" [29]. A recent study by
Kim et al. 2008 also implicates PPARγ in the process of
ovulation in mice [37].

The studies described herein are the first, to the best of our
knowledge, to investigate when the expression of PPARγ is
initiated in the rat ovary. The data presented demonstrate
that the expression of PPARγ commences in select, but not
all, granulosa cells as early as the primary/secondary stage
of development. As follicles continue to develop the
number of granulosa cells expressing PPARγ increases.
The early stages of follicular development involve long,
temporal processes [38]. The progressive development of
PPARγ expression may reflect an advancement of gene
expression patterns associated with the maturation of
granulosa cells. These data indicate that PPARγ may be
acting as a regulator of follicular development.

The observed onset of detection of PPARγ in granulosa
cells suggested that its expression might be regulated by
FSH. During the neonatal period, concentrations of FSH
in serum are very high relative to those in immature, juve-
nile rats [39]. Detection of mRNA for the FSH receptor has

Relative levels of mRNA for PPARγ and the FSH receptor in ovaries collected from neonatal rats 1 (n = 2), 5, 7, 11, 14, and 19 days pp (n = 3)Figure 1
Relative levels of mRNA for PPARγ and the FSH 
receptor in ovaries collected from neonatal rats 1 (n 
= 2), 5, 7, 11, 14, and 19 days pp (n = 3). Tissues were 
collected and processed as described in the Methods. Data 
are presented as means ± SEM. Bars with no common super-
scripts are significantly different (p < 0.05).
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been reported as early as day 2 post-partum, the earliest
time point investigated, in rat ovaries [40]. Receptors for
FSH were detected on type 2 follicles, those with 1-2 layers
of granulosa cells ([41]; reviewed in [42]). Binding of FSH
to its receptor occurs as early as day 3 post-partum (the
earliest time point investigated; [43]). Our data illustrat-

ing the detection of mRNA and protein corresponding to
the FSH receptor as early as day 1 post-partum are in line

Immunolocalization of PPARγ in ovarian tissue sections collected from neonatal rats day 5 (A, D), 7 (B, E), and 11 (C, F) pp (n = 3-4 animals/time point)Figure 2
Immunolocalization of PPARγ in ovarian tissue sections collected from neonatal rats day 5 (A, D), 7 (B, E), and 
11 (C, F) pp (n = 3-4 animals/time point). Tissues were collected and processed as described in the Methods. PPARγ is 
identified by the brown reaction product. Tissues in D, E, and F were processed with normal goat serum in place of the anti-
PPARγ antibody. Arrows in B and C indicate granulosa cells expressing high levels of PPARγ. Original magnification = 200×.

Immunolocalization of PPARγ in select cells of primary (A) and primary/secondary (B) follicles in ovarian tissue sections collected from neonatal ratsFigure 3
Immunolocalization of PPARγ in select cells of pri-
mary (A) and primary/secondary (B) follicles in ovar-
ian tissue sections collected from neonatal rats. 
Tissues were collected and processed as described in the 
Methods. PPARγ is identified by the brown reaction product. 
Arrows indicate granulosa cells expressing high levels of 
PPARγ. Original magnification = 200×.

Western blotting of FSH receptor in ovarian tissue from neonatal ratsFigure 4
Western blotting of FSH receptor in ovarian tissue 
from neonatal rats. Ovaries were collected at defined 
times post-partum and processed as described in the Meth-
ods (n = 3-4 animals/day). Each lane represents and individual 
animal. "+" - positive control: ovarian tissue collected 48 
hours post-PMSG.
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with these earlier observations. Since mRNA and protein
for PPARγ were not measurable by the methods used in
these studies until days 5 and 7 respectively, taken
together, these results support the conclusion that the
FSH/FSH receptor system is present in neonatal rat ovaries
prior to the onset of PPARγ expression.

Despite the temporal relationship between the expression
of FSH/FSH receptor and PPARγ in the ovary, reducing cir-
culating concentrations of FSH by 92% following GnRH
antagonist treatment did not alter the expression of
mRNA for PPARγ. Although not measured in our study,
we assume that LH was also reduced but this did not
impact PPARγ expression. In addition, although there was
a significant decrease in levels of mRNA for PPARγ in cul-
tured granulosa cells 4 hours after treatment with FSH,
levels recovered and after 24 hours were not different
from control levels after 4 hours of culture. The reason for

the initial decrease in mRNA for PPARγ is uncertain, but
may reflect an acute response to the relatively high dose of
FSH administered. Although not as well understood as
signaling mechanisms for LH, the binding of FSH to its
receptor activates numerous second messenger systems
directly and/or indirectly (reviewed by [44]). The acute

Circulating concentrations of FSH (A) and relative levels of mRNA for PPARγ in ovarian tissue (B) collected from neona-tal rats on day 8 pp (n = 7 in control group; n = 6 in acyline group)Figure 5
Circulating concentrations of FSH (A) and relative 
levels of mRNA for PPARγ in ovarian tissue (B) col-
lected from neonatal rats on day 8 pp (n = 7 in con-
trol group; n = 6 in acyline group). Data are presented as 
means ± SEM. Bars with no common superscripts are signifi-
cantly different (p < 0.05).

Relative levels of mRNA for PPARγ in rat granulosa cells cul-tured in vitro as described in the Methods for 4 or 24 hours (h) (n = 3 independent experiments)Figure 6
Relative levels of mRNA for PPARγ in rat granulosa 
cells cultured in vitro as described in the Methods for 
4 or 24 hours (h) (n = 3 independent experiments). 
Data are presented as means ± SEM. Bars with no common 
superscripts are significantly different (p < 0.05). C = control; 
FSH = 50 ng/ml.

Relative levels of mRNA for PPARγ in ovarian tissue col-lected from FORKO miceFigure 7
Relative levels of mRNA for PPARγ in ovarian tissue 
collected from FORKO mice. Tissues were collected and 
processed as described in the Methods from animals with 
two (+/+), one (+/-) or no (-/-) alleles for the FSH receptor. 
Animals were aged either 3 weeks (3 w) or 3 months (3 m) 
when tissues were collected (n = 3 animals/genotype/age 
group). Data are presented as means ± SEM. Bars with no 
common superscripts are significantly different (p < 0.05).
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accumulation of one or more products (i. e. cAMP; IP3)
may have caused a reduction in mRNA for PPARγ-mim-
icking effects of high doses of LH on PPARγ [28]. Catabo-
lism of that second messenger as time in culture
progressed may have allowed for the concentration of
mRNA for PPARγ to return to levels not different from
untreated controls.

The varied expression of PPARγ in the ovaries of FORKO
animals also suggests that the expression of PPARγ is not
under the primary control of exposure to FSH. Because the
expression of PPARγ in heterozygous knockout animals in
relationship to homozygous knockout or wildtype ani-
mals varied with age, it might be concluded that ovarian
morphology and/or endocrine environment are more crit-
ical players affecting the expression of PPARγ. Ovarian
morphology in FORKO animals is abnormal as early as
day 2 post-partum [45]. The altered population of follicles
at various stages of development in these animals, and the
fact that when adult they do not cycle, may be the reason
for the varied concentrations of mRNA for PPARγ due to
its expression being associated with progression of follic-
ular development. Also, at 24 days of age estradiol is
undetectable in FORKO mice, whereas testosterone and
LH are significantly elevated [45]. The altered endocrine
environment in FORKO females may have affected the
expression of PPARγ. Of interest is the observation that
although not always significant, there was a trend for
higher levels of mRNA for PPARγ in ovaries from animals
with reduced concentrations of estradiol (heterozygous
and homozyous knockout animals), especially at 3
months of age. Studies are currently underway to investi-
gate the impact of estradiol on the expression of PPARγ
and how it, in relation to other hormones (i. e. testoster-
one and progesterone), is associated with PPARγ.

The data presented from the current study agree with our
previous work investigating PPARγ during the periovula-
tory period. Its expression is relatively high in granulosa
cells prior to the developmental point when granulosa
cells express the LH receptor [31]. As expression of the LH
receptor increases, the relative expression of PPARγ
decreases, and is dramatically reduced in response to the
LH surge [28,31]. Therefore, it appears that the primary
role of PPARγ is during the early stages of follicular devel-
opment. Although its expression is down-regulated by
one gonadotropin, LH, it does not appear that FSH is a
primary player initiating its expression.

PPARγ is functional in the ovary. It binds DNA in rat gran-
ulosa cells [46] and results from studies transiently trans-
fecting granulosa cells with reporter constructs
demonstrated activity both in the absence and presence of
exogenous agonists [24,47]. These latter findings suggest
that endogenous agonists of PPARγ are also present and

active in granulosa cells. The studies presented herein
show that PPARγ expression is initiated very early during
folliculogenesis and that expression is associated with the
progressive maturation of granulosa cells. Although our
hypothesis that FSH regulated the expression of PPARγ
was not supported, the findings from these studies indi-
cate that other factors such as estradiol may play an
important role. Because agonists of PPARγ have been
shown to restore ovulation in some women with PCOS
[14] and can improve oocyte quality in mice [48], it is
important to understand how this transcription factor is
regulated in the ovary.
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