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Abstract

Brain structure and learning capacities both vary with experience, but the mechanistic link

between them is unclear. Here, we investigated whether experience-dependent variability in

learning performance can be explained by neuroplasticity in foraging honey bees. The

mushroom bodies (MBs) are a brain center necessary for ambiguous olfactory learning

tasks such as reversal learning. Using radio frequency identification technology, we

assessed the effects of natural variation in foraging activity, and the age when first foraging,

on both performance in reversal learning and on synaptic connectivity in the MBs. We found

that reversal learning performance improved at foraging onset and could decline with

greater foraging experience. If bees started foraging before the normal age, as a result of a

stress applied to the colony, the decline in learning performance with foraging experience

was more severe. Analyses of brain structure in the same bees showed that the total num-

ber of synaptic boutons at the MB input decreased when bees started foraging, and then

increased with greater foraging intensity. At foraging onset MB structure is therefore opti-

mized for bees to update learned information, but optimization of MB connectivity deterio-

rates with foraging effort. In a computational model of the MBs sparser coding of information

at the MB input improved reversal learning performance. We propose, therefore, a plausible

mechanistic relationship between experience, neuroplasticity, and cognitive performance in

a natural and ecological context.

Introduction

A central tenet of contemporary behavioural neuroscience is that there is a bidirectional rela-

tionship between experience and brain structure. Experience and learning change brain struc-

ture by neuroplasticity, and structural changes to the brain have consequences for information

processing and thereby further experience and learning [1–4]. Several classic studies have con-

tributed evidence to this tenet [5–9], but few studies have shown both how experience changes

brain microstructure and the consequences of these changes for cognitive function [2].

Experience-dependent changes in neuroanatomy have been documented in birds and

mammals (including humans) in relation to exploring new environments or developing new
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behavioural capacities [7,8,10–13]. Similar changes have also been seen in short-lived insects

[5,6,14–16]. There is now no doubt that experience-dependent network changes support new

memories [4,17], but it is less clear how such changes might support learning of new skills or

new cognitive abilities. Ethological examples of a relationship between neuroplasticity and

cognitive performance are rare [2]. Here we used the natural behaviour and ecology of the

honey bee to examine both aspects of the relationship between brain and experience. Honey

bees have provided an important natural example of experience-dependent neuroplasticity, as

foraging behaviour is associated with marked changes in brain structure [18–20].

Honey bees begin adult life working inside the hive, but typically when more than 14 days

old as adults they transition into a foraging role [21]. The onset of foraging exposes bees to

new environments and places demands on bee cognition for spatial navigation, and identifying

profitable sources of nectar or pollen, in an ever-changing environment [22,23]. The onset of

foraging is preceded by a series of orientation flights in which bees learn the hive location

[21,24]. These behavioural changes are accompanied by changes in the mushroom bodies

(MBs) [5,18–20,25], which are regions of the bee brain needed for certain learning tasks

[26,27]. Foragers have larger MBs than nurse bees that work inside the hive [5,18], and the

MBs continue to increase in size with additional foraging experience [18,19]. The experience-

dependent growth of the MBs is caused by dendritic arborisation [18,20,25] in their input sub-

regions; the lips and collars of the MB calyx which receive olfactory and visual inputs respec-

tively [28]. In both subregions axon terminals of input neurons connect to the dendrites of

intrinsic MB neurons, thus forming synaptic boutons (also called microglomeruli). Despite the

growth in volume and dendritic arbours, foragers have fewer synaptic boutons in the lip and

collar regions than younger bees working in the hive [25], suggesting a synaptic pruning at

either the onset of foraging or during the orientation flights that immediately precede foraging.

Such synaptic pruning in the collar has been suggested to be induced by light exposure in Cat-
aglyphis ants and honey bees [29,30]. The functional consequences of this experience related

structural plasticity of the MBs has been much speculated on [5,18,31], but remains unclear.

Here we examined how the experience-dependent changes in honey bee MB microstruc-

ture correlated with performance in a cognitive task which is dependent on MB function:

reversal learning [26]. In reversal learning, bees learn first to respond to a rewarded odour A

and not to a non-rewarded odour B (A+B-). In a second phase, they learn the reverse contin-

gencies (A-B+). The resolution of this task requires flexibility in learned behaviour [26,32].

This task is expected to be particularly meaningful for foraging bees, as they need to update the

value of floral cues (e.g. odorants) as indicators of food, because nectar production varies in

time [26,32]. Our results reveal a clear relationship between experience-dependent changes in

MB synaptic bouton number and both an increased reversal learning performance at the onset

of foraging, and a drop in reversal learning performance in more experienced foragers.

Materials & methods

Experiments were carried out during the summer of 2016 at Macquarie University (Sydney,

Australia). Approximately 1,500 newly emerged adult honey bees (Apis mellifera) were col-

lected from frames of emerging brood from three different colonies, including a colony headed

by a single inseminated queen for the brain immunohistochemical analyses. Frames were

placed in a dark incubator (33˚C) for 24 h for bees to emerge.

Radio frequency identification (RFID) system

Newly emerged bees were equipped with a RFID tag (INVENGO) [33–35] glued to their dorsal

thorax with super glue, and marked with a dot of paint on the tag to identify their birth date.
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Tagged bees were introduced to a hive equipped with an RFID antenna (INVENGO) at the

entrance which could detect individual bees’ entries and exits from the colony thanks to the

unique 12-byte hexadecimal identifier of each RFID tag. From these we reconstructed foraging

trip durations. Trips of< 30s were removed from the data as they were considered to include

walking at the entrance or defecation flights. On the day before introducing the newly emerged

bees, the hive was displaced to its final position in order to induce some of our focal bees to

forage before a normal age, which they do to replace the old foragers that returned to the previ-

ous hive location and got lost [36]. There, the hive was connected to the RFID system.

Reversal learning

When tagged bees were between 22 and 26 days old, some were arbitrarily collected from the

hive entrance in the afternoon. Collected bees were briefly immobilized on ice and harnessed

in metal tubes allowing movements of the antennae and mouthparts only [27]. They were then

fed 15μL of sucrose solution (50% w/w) and kept in darkness, at room temperature overnight.

The reversal learning task started on the following morning. Only bees that demonstrated the

proboscis extension response (PER) when touching the bee’s antennae with a toothpick soaked

in sucrose solution (50% w/w) were used (>95% of collected bees; n = 94).

In the first phase of reversal learning, bees were trained to respond to an odour A rewarded

with sucrose, but not to an unrewarded odour B (A+ vs. B-). In the reversal phase, one hour

later, bees had to learn the opposite rule (A- vs. B+). Each phase consisted of 5 presentations of

each odour (5 trials) in a pseudo-random order, with an inter-trial interval of 8min [26,37].

The conditioning odours were 1-nonanol and heptanal (Sigma-Aldrich). Their use as odour A

or B alternated between testing days. During each learning trial of 40s, the bee was placed in

front of an odourless airflow passing through an empty syringe for 15s. The odour was then

presented by passing the airflow through a syringe containing a filter paper soaked with 4μL of

pure odorant for 4s, the last second of which overlapped with a sucrose presentation for 4 sec-

onds. This odour delivery system was automatized. The presence or absence of conditioned

response (PER during the odour presentation) was noted as 1 or 0 respectively. Inversion

Scores (IS) were then calculated for each bee as the difference between its responses to B+ and

A-, for each of the last two trials of the reversal phase. These trials were used to define learners

(IS = 1) and non-learners (IS = -1 or 0).

Immunostaining procedure

Of the conditioned bees, 18 were sampled arbitrarily to analyse MB structure, irrespective of

their learning status or foraging activity. Synapsin immunostaining of whole-mount brains

was performed following Groh et al [38]. Briefly, brains were dissected and fixed in parafor-

maldehyde (4% in Phosphate Buffer Saline–PBS—0.01M), rinsed with PBS, permeabilised in

PBS-Triton X-100 (Tx) (2% and 0.2% successively), and blocked with 2% normal goat serum

(NGS) in 0.2% PBS-Tx. They were then incubated with the α-synapsin primary antibody

(SYNORF1; DSHB; 1:10 in 0.2% PBS-Tx—2% NGS) for 4 days, rinsed in PBS and incubated

with the secondary antibody (Alexa Fluor 488–conjugated goat anti-mouse; Fisher Scientific;

1:250 in 1% NGS-PBS) for 3 days. After rinsing in PBS, brains were dehydrated in an ascend-

ing ethanol series (30%, 50%, 70%, 90%, 95%, 3X 100%, 10min per step). Whole brains were

cleared and mounted in methyl salicylate for imaging.

Image acquisition and analyses

Images of the whole-mount brains were acquired using a laser scanning confocal microscope

(LEICA SP5). For volume measurements of the lip and dense collar regions of the MBs, stacks
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were imaged through the entire right medial calyx with a 5μm interval between optical sections

(10x/0.4 objective, digital zoom 3). To quantify synaptic boutons in the same calyx, optical sec-

tions were taken at a 0.5μm interval over a depth of 10μm (63x/1.4 objective, digital zoom 2).

Images were processed using the 3D reconstruction software AMIRA 3.0 (FEI Visualization

Sciences Group, Düsseldorf, Germany). The boundaries of the lip and dense collar volumes

were traced manually for each section and volume reconstructed by interpolation. The num-

bers of synapsin-positive profiles were counted within cubic sampling volumes (1000μm3)

located within the lip and dense collar (4 and 3 sampling volumes respectively). Synaptic bou-

ton density was averaged over the sampling volumes for each individual. The absolute number

of synaptic boutons per lip and dense collar was obtained by extrapolating the mean density to

the measured volume of the brain region.

Computational model of MB function

We hypothesised that changes in synaptic bouton number could affect connection density

between the inputs to the MBs and the intrinsic neurons of the MBs and that this would change

how sparsely olfactory information was coded in the MBs. We developed a computational

model of the MBs to assist in exploring the theoretical consequences of varying connectivity

parameters within the MBs for performance in reversal learning. The model was built upon an

abstraction of the MB circuit proposed by Bazhenov et al [39], which provided a now well-estab-

lished conceptual model for how the MBs can function in olfactory classification and learning.

The main structure of the model consists of an associative network with three neural net-

work layers. Adapting terminology and features from the insect brain, we labelled these: input

neurons (IN), a large middle layer of MB intrinsic neurons called Kenyon cells (KC), and a

small output population of MB extrinsic neurons (EN). We also considered the GABAergic

inhibitory protocerebral tract (PCT) neurons in the model, which provide inhibitory feedback

to the KC [40].

To provide inputs from the odorants A and B the IN were divided into two subsets of 16

neurons, one for each odorant. The input values when the odorant is presented were chosen

randomly in the range {0.9, 1.1} and fixed for the duration of the experiment. The connection

weights between the IN and KC were formed by a fixed matrix, where a connection between

the ith IN and the jth KC is denoted cij. The probability of an IN and a KC being connected

determines how sparse or dense the connectivity is; for a probability of one all neurons are

connected, and a probability of zero leads to no connections. We used two values for the prob-

ability: sparse (0.15) or dense (0.22), mathematically described by pIN->KC = {0.15, 0.22}. These

values are slightly higher than those used by Bazhenov et al [39] to compensate for the sparsen-

ing effect of inhibition by the PCT and therefore maintain the number of active KC for the

sparse case. All connections have a fixed strength of one.

Each model KC sums its inputs, subtracts a threshold value b, and outputs the final value if

it is greater than zero using the Heaviside function θ. The value of b is chosen to ensure only

KC with two or more active inputs produce an output, and therefore is set to a value of 1.4.

The connection weights from the KC to the EN are plastic and changed as the model was

rewarded and learned, and every KC is connected to every EN. The connection strength

between the jth KC and the kth EN (denoted wjk) can take a value between zero and one.

Learning-related plasticity takes place in all synaptic weights according to the equation:

Dw ¼ aðR � RbÞ � presynaptic with probability p ¼ 0:1

where α = 0.13 is the learning rate of the weights, R = 1 if reward is given, and zero in all other

cases, Rb = 0.62 is a reward baseline. These values were chosen so that the synapse learned at
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approximately half the rate that it forgets. With these values acquisition rate matched that

found in real bees. The term presynaptic is 1 if the presynaptic neuron is active and 0 elsewhere.

It should be noted that reward was given, and learning occurs, on proboscis extension only. To

match the initial condition of the bees in the experimental procedure a single punished trial

was used to reduce the response of the model to both odors.

The extrinsic neurons, EN, were modelled as two distinct sub-populations dedicated to trig-

gering proboscis extension (which we shall term Extend) and retraction (termed Retract). In

the model, the proboscis is extended if the total output of the Extend sub-population is greater

than the total output of the Retract sub-population, as long as the total activity of both sub-

populations together is greater than 0.1 (i.e. once a suitable threshold for the decision has been

reached). For the inhibitory PCT neurons, the output of the lth neuron in this population is

described by the variable sl. This inhibition increases the sparseness of active KC by suppress-

ing weakly active neurons below the threshold for activity, leading to fewer KC being active for

the same stimulus with PCT inhibition as without [41,42]. As these neurons are fed by all the

KC, a high value of 150 for bs (the threshold for output) was used. A global weighting wPCT =

1x10-5 was used to set the level of inhibition to replicate the performance of experimental con-

trol bees This value is low due to the high value of the PCT neurons and is chosen to avoid

oscillations in the tight loop between the KC and PCT neurons while still providing a strong

inhibitory effect.

Mathematically the model is formulated as follows where xi is the output of the ith IN, yj is

the output of the jth KC, zk is the output of the kth EN and sl is the output of the lth PCT neu-

ron. The constant values are as described above.

yj ¼ ð
XNIN

i¼0

cijxi � b � wPCT

XNPCT

l¼0

slÞyð
XNIN

i¼0

cijxi � b � wPCT

XNPCT

l¼0

slÞ

zk ¼
XNKC

j¼0

wjkyj

0

@

1

A y
XNKC

j¼0

wjkyj

0

@

1

A

sl ¼ ð
XNKC

j¼0

yj � bsÞyð
XNKC

j¼0

yj � bsÞ

The numbers of neurons in each population were as follows: NIN = 32 is the number of IN;

NKC = 5,000 is the number of KC. There are 6 PCT neurons, and 4 EN in each of the Extend

and Retract subsets.

Using the model we examined performance of virtual bees in the reversal learning task. The

experimental protocol for the model was identical to that used with real bees. To explore how

changing connection properties between the IN and KC might impact on reversal learning

performance we modelled three conditions for the virtual bees: sparse connectivity between

the IN and the KC, dense connectivity between the IN and the KC, and finally with the inhibi-

tory PCT neurons silenced. For each condition we used a ‘models as animals’ approach. Differ-

ent random seeds for generating the EN to KC connectivity were used to create a set of 200

virtual bees, and each bee was tested individually.

Statistical analyses

R 3.2.3 was used for data analyses and graphic representations (R Core Team (2015)) [43]. For

reversal learning, the responses to the odours were analyzed using a repeated-measurement
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ANOVA (the data met the criteria to apply an ANOVA to a dichotomous dependent variable

[44]), followed by a Tukey honest significant difference (HSD) post hoc analysis to compare

response levels to the two odors in the different learning trials within each group. The results

of the Tukey HSD analysis are reported in the text for the 5th trial of each phase, which show

the ability of bees to learn the rule by the end of the task, and for the 4th trial of the reversal

phase as some bees were able to solve the task as soon as in the 4th trial, thus demonstrated a

higher performance. Inversion scores and neuroanatomical differences between groups were

compared using a Mann-Whitney U test. Spearman ranks correlations were used to assess the

relationship between brain structure and foraging intensity.

Results

RFID data provided the cumulative time spent outside the hive for each bee. Bees were assumed

to have begun foraging when they had accumulated> 30 min time outside the hive [24,34].

Bees with< 30 minutes of time outside the hive were considered as performing orientation

flights (‘orientating bees’) [24,34]. Bees that began foraging when less than 14 days old as adult

were classified as precocious foragers [34]. We were thereby able to compare reversal learning

performance of bees with different foraging durations (based on cumulative time foraging), in

the whole sample, and also among precocious and normal-age foragers independently.

Reversal learning performance declines with foraging experience

We first investigated the effect of foraging duration on performance in reversal learning, i.e.

excluding orientating bees (Fig 1). For this, our sample was divided into four groups of

increasing foraging durations, defined by the 1st quartile (113.8min), the median (381.3min)

and the 3rd quartile (653.5min) of the distribution of foraging durations recorded in our com-

plete sample of 83 foragers. Foraging duration clearly affected performance in the reversal

phase of the learning task, but not the ability to solve the simple discriminative task of the first

phase (Fig 1). Responses to the rewarded odour (A+) and non-rewarded odour (B-) did not

differ between the 4 foraging-experience groups in the first learning phase (Repeated-measure

ANOVA; Group effect: F = 0.58, p = 0.63). They all reached significant discrimination in the

last trial (Tukey HSD post hoc analysis; p< 0.0001 in all groups). In the reversal phase, how-

ever, although all groups changed their response patterns (Trial x Odorant interaction: F =

107.10, p< 0.0001), only bees in the first quartile of foraging durations responded more to B+

than to A- by the last learning trial (p< 0.0001; p> 0.40 for the other groups). We infer from

this that foraging activity performed beyond a certain duration (corresponding to 113.8 min-

utes in our conditions) reduced performance in a reversal learning task. This value of 113.8

minutes of foraging was subsequently used as a threshold between ‘short’ and ‘long’ foraging

durations in the following analyses.

Precocious foragers are more affected by the decline in reversal learning

performance

Because our bee population included bees that started foraging with a normal age range or pre-

cociously, we compared their learning abilities. While performance of precocious and normal-

age foragers remained unaffected by foraging duration in the first learning phase (data not

shown; Kruskall-Wallis H-test; Trial 4: p = 0.600; Trial 5: p = 0.167), the decline of reversal per-

formance with foraging experience was more apparent in precocious foragers (Fig 2). Preco-

cious foragers with a long foraging duration had lower inversion scores (IS) compared to those

with a short foraging duration in the last two trials of the reversal phase (Mann-Whitney U-

test: Trial 4: U = 310.5, p< 0.001; Trial 5: U = 286, p< 0.01). This was not the case in normal-
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age foragers (Trial 4: U = 165; p = 0.078; Trial 5: U = 146, p = 0.416). This indicates that nor-

mal-age foragers are more resistant than precocious foragers to the foraging-related decline in

reversal learning capacities.

Beginning foraging is associated with an improvement in reversal learning

abilities

The effect of foraging onset on reversal learning was assessed by including the group of orientat-

ing bees (total amount of time outside< 30min) in the analysis. We compared their perfor-

mance with that of foraging bees with short and long foraging durations (Fig 3). The IS differed

among the three groups in the last two trials of the reversal phase (Kruskall-Wallis H-test; Trial

4: p< 0.001; Trial 5: p< 0.05). More precisely, beginning foraging was associated with an

increase in reversal learning performance, as bees with short foraging duration had a higher IS

in the 4th trial than orientating bees (Trial 4: U = 61.5, p< 0.05; Trial 5: U = 149, p = 0.135).

Structure of the MBs varies with foraging onset and experience

Mushroom body structure was compared between orientating bees and foragers, regardless of

their foraging duration (Fig 4A). The volumes of the lip and dense collar did not differ

Fig 1. Change in reversal learning performance with duration of foraging. Percentages of individuals displaying

PER in response to odours A (red line) and B (orange line) are shown, during the first phase (A+B-) and the reversal

phase (A-B+) of the reversal learning task. Results are presented for bees with increasing foraging durations defined by

the 1st quartile (Q1 = 113.8min), median (Q2 = 381.3min), and 3rd quartile (Q3 = 653.5min) of the total amount of time

foraging of the whole sample. The bootstrapped 95% confidence intervals are indicated by the black lines. [(A): n = 21,

(B): n = 21, (C): n = 20, (D): n = 21] ��� p< 0.0001, Tukey HSD post hoc analysis.

https://doi.org/10.1371/journal.pone.0196749.g001
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significantly between orientating bees and foragers (Mann-Whitney U-test: lip: U = 18,

p = 0.173; collar: U = 16, p = 0.117) (Fig 4B), and neither did synaptic bouton density (lip:

U = 5, p = 0.060; dense collar: U = 15.5, p = 0.638) (Fig 4C). However, the extrapolated total

number of synaptic boutons in the lip and dense collar was lower in foragers than in orientat-

ing bees (lip: U = 3, p< 0.05; collar: U = 3, p< 0.05) (Fig 4D), indicating that the transition

from orientation flights to foraging was likely accompanied by an overall decrease in synaptic

bouton number in both regions.

Because the sampled foragers included mostly foragers with short foraging durations, we

could not assess whether MB structure varied with foraging duration. Thus, we considered for-

aging intensity (calculated as foraging duration/foraging day), which varied more between

individuals (Fig 5). Foraging intensity was positively correlated with the volume of the lip

and dense collar (Spearman’s rank correlation; lip: R2 = 0.665, p< 0.05; collar: R2 = 0.786,

Fig 2. Reversal learning performance of precocious and normal-age foragers with short or long foraging

durations. The proportions of non-learners (NL: light grey) and learners (L: dark grey) in the last two trials of the

reversal phase (trials 4 and 5) are displayed. For each trial, bees were defined as non-learners or learners according to

the value of their individual inversion score (see Methods; NL: IS = -1 or 0; L: IS = 1). The IS were compared between

precocious and normal-age foragers, with either short or long foraging durations corresponding respectively to

durations within or greater than the 1st quartile of the whole sample (113.8min). [Precocious: short: n = 10, long:

n = 39; Normal-age: short: n = 11, long: n = 23] � p< 0.01; �� p< 0.005, Mann-Whitney U-test.

https://doi.org/10.1371/journal.pone.0196749.g002

Fig 3. Reversal learning performances of orientating bees and foragers with short or long foraging durations. The

proportions of non-learners (NL: light grey) and learners (L: dark grey) in the last two trials of the reversal phase (trial 4

and 5) are displayed. For each trial, bees were defined as learners or non-learners according to the value of their

individual inversion score (see Methods; NL: IS = -1 or 0; L: IS = 1). The IS are compared between orientating bees and

foragers, with either short or long foraging durations corresponding respectively to durations within or outside the 1st

quartile of the whole sample (113.8min). [Orientating: n = 11; Foragers-Short: n = 21; Foragers-Long: n = 62] � p< 0.05;
�� p< 0.01; ��� p< 0.0005, Mann-Whitney U-Test.

https://doi.org/10.1371/journal.pone.0196749.g003
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p< 0.005), and with the total number of synaptic boutons in both regions (lip: R2 = 0.610,

p< 0.05; collar: R2 = 0.522, p = 0.071). Intense foraging was associated with a larger MB neuro-

pil containing a higher number of synaptic boutons. Foraging intensity was also related to per-

formances in the 4th trial of the reversal phase, as non-learners had a higher foraging intensity

than learners (Trial 4: U = 888, p< 0.05; Trial 5: U = 966, p = 0.162) (S1 Fig).

Success in reversal learning is associated with a low number of synaptic

boutons in the MBs

Finally, we compared the MB structure of bees that successfully reversed their learning in the

last two trials of the reversal phase (learners) and bees that did not (non-learners), regardless

of foraging intensity (Fig 6). Variations in reversal learning performance were not associated

with volume differences in either neuropil (S2 Fig). Yet, synaptic boutons in both regions

were less dense in learners than in non-learners in the 4th, but not in the 5th trial (Fig 6A)

(Trial 4: lip: U = 56.5, p< 0.005; collar: U = 50, p< 0.05; Trial 5: lip: U = 49, p = 0.083; collar:
U = 48.5, p = 0.093). As a result, the total number of synaptic boutons in the lip and dense col-

lar was lower in learners than in non-learners in the 4th trial of the reversal phase (Fig 6B)

(Trial 4: lip: U = 53, p< 0.05, collar: U = 48, p = 0.056; Trial5: lip: U = 42, p = 0.328, collar:

U = 43, p = 0.279). These results suggest that a fast acquisition of reversal by the 4th trial of the

reversal phase was associated with fewer synaptic boutons in the MBs.

In order to better understand the relationship between MB neural architecture and reversal

learning, we used our model of the MBs to explore possible consequences of changing the

Fig 4. Mushroom body structure of orientating bees and foragers. (A) Frontal confocal image of the right median

MB labelled for synapsin (scale bar = 100μm). Borders of the lip (orange) and dense collar (blue) are highlighted.

Boxplots showing the characteristics of the dense collar (blue) and lip (orange) of a sample of orientating bees (O,

n = 5) and foragers (F, n = 13): (B) neuropil volume, (C) density of synaptic boutons, (D) number of synaptic boutons

per neuropil. � p< 0.05, Mann-Whitney U-Test.

https://doi.org/10.1371/journal.pone.0196749.g004
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connectivity between input neurons and MB neurons for reversal performance (Fig 7). In the

model, decreasing sparseness by increasing the number of input connections onto MB neu-

rons impaired reversal learning despite efficient learning in the first phase. Removing inhibi-

tory feedback from the GABAergic PCT neurons onto MB neurons also reduced reversal

learning performance, thus showing the model was able to generate results similar to those

reported in a prior experimental study [37]. The increase in sparseness decreases the number

of Kenyon cells that respond to both stimuli, thus allowing faster changes in response to the

stimuli as the changes to the weights due to learning only affect the two stimuli individually.

Fig 5. Correlations between foraging intensity and structural characteristics of the mushroom bodies. Individual values (n = 13) for the

parameters of the lip (A, B, C) and dense collar (D, E, F) are plotted against foraging intensity: neuropilar volume (A, D), density of synaptic

boutons (B, E), total number of synaptic boutons (C, F). The volume of the lip and collar, as well as the total number of boutons per lip, correlate

positively with foraging intensity (Spearman rank correlations).

https://doi.org/10.1371/journal.pone.0196749.g005
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Discussion

This study reports a clear, but complex relationship between experience-dependent plasticity in

honey bee MB structure and variation in cognitive capacity. We show that a reduced number of

synaptic boutons in the MB neuropil following orientation flights is associated with improved

performance in reversal learning (Figs 3 and 4). As bees accumulate more time foraging, how-

ever, synaptic bouton numbers increase (Fig 5) while reversal learning performance decreases

(Fig 1). Because of the precise measures of foraging experience provided by our RFID data we

can here report a biphasic response of MB plasticity to foraging with an initial pruning of synap-

tic boutons at foraging onset followed by an increase in synaptic bouton number with more for-

aging (Fig 1). Interestingly, changes in the volume of the MBs did not affected reversal learning

performance. Volumetric changes of the MBs with foraging experience have been shown to

reflect dendritic branching [18] and do not provide a precise measure of the synaptic connectiv-

ity therein: new synapses can be formed on pre-existing boutons or on new boutons. Our data

are therefore consistent with previous reports of experience-dependent plasticity in bees

[18,19,25], but illustrate more sophistication than has been previously recognised. Replicating

such an experiment by using different learning tasks would test the strength of the reported rela-

tionship between foraging experience and synaptic bouton number in the MBs and would

reveal whether synaptic bouton number influences other cognitive capacities in honey bees.

Negative relationship between synaptic bouton number in the MBs and

reversal learning performance

The synaptic pruning observed at foraging onset might be a consequence of the drastic change

in environment and activity concomitant with orientation flights and the onset of foraging.

Indeed, synaptic pruning has been reported previously in the dense collar of bees and ants

Fig 6. Synaptic bouton density and number and reversal learning performance. Boxplots showing the

characteristics of the dense collar (blue) and lip (orange) of non-learners (NL, IS = -1 or 0) and learners (L, IS = 1) for

each of the last two trials of the reversal phase: (A) density of synaptic boutons, (B) number of synaptic boutons per

neuropil. [Trial 4: n = 12 NL and 6 L; Trial 5: n = 10 NL and 8 L] � p< 0.05, �� p< 0.005, Mann-Whitney U-Test.

https://doi.org/10.1371/journal.pone.0196749.g006
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Fig 7. Modelled consequences of varying MB connectivity on reversal learning performance. Modelled percentage of individuals displaying PER in response to

odours A (red line) and B (orange line) during the reversal learning paradigm. Three different models were run simulating a sparse (A) or dense (B) distribution of

excitatory connections onto MB neurons (KC), and (C) sparse with suppressed inhibitory input from the GABAergic PCT. 200 agents (virtual bees) were modelled for

each model configuration. The 95% confidence intervals are represented by the black lines.

https://doi.org/10.1371/journal.pone.0196749.g007
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following exposure to light [29,30]. Also, exposure to a rich olfactory environment was demon-

strated to reduce synaptic bouton number in the lip of leaf-cutting ants [16]. The improved

reversal learning performance of new foragers in our study suggests that this synaptic pruning

is part of an optimisation of MB synaptic connectivity such that a lower synaptic bouton num-

ber in the calyx yields improved reversal learning performance.

Several authors have argued that for mammals synaptic pruning is an essential aspect of

memory formation to optimise the differentiation of memory engrams [4,17,45]. It is typically

assumed that there is a relationship between synapse number and the coding of information in

neural circuits [46,47]. Synaptic pruning has been proposed to participate into the establish-

ment of neuronal input selectivity which, in terms of sensory coding, would contribute to spar-

sening stimulus representations by reducing overlap between them [48]. In addition, sparse

coding of information has been shown to be maintained by GABAergic inhibition of circuit

connection strengths, which is needed for complex discriminations like reversal learning

[49,50]. Consistently, studies in fruit flies and honey bees have shown that sparse coding of KC

responses to odorants in the lip is necessary to discriminate between similar odours [42], and

that GABAergic input to the MBs (presumably from feedback PCT/A3 neurons), which con-

tributes to sparse coding of olfactory representation in the lip [41,51], is required to solve a

reversal learning task [37,52]. In our model of the MBs, removing the inhibitory GABAergic

input to the MBs also reduced reversal learning performance, suggesting the model is effec-

tively capturing the biology of the MBs as an odour learning system.

In the model we could adjust the density of connections between the IN and KC and

thereby alter the degree of sparseness of odour coding. Doing so had little effect on the acquisi-

tion of odour learning in the first phase of training but had a significant impact on the reversal

of odour learning. This was because for a reversal of learning to occur, the net weights connec-

tion strengths at the output of the MBs had to change such that there was a reversal in whether

the Extend or Retract subpopulations of the EN were activated more strongly. Such a reorgani-

sation of relative connection strengths at the MB output occurred more quickly in our model

when connection density was low (sparse coding of information) than when connection den-

sity was high. The model analyses presented a match to our experimental data and our model

suggests a possible explanation for why a lower number of synaptic boutons correlates with

improved reversal learning performance.

We recognise, however, that synaptic boutons are complex of synapses rather than single

synapses [38,53]. With the resolution of our microsocopy studies, we cannot rule out that forag-

ing experience does not affect the overall number of synapses, even if that of boutons is reduced.

Age-related synaptic pruning has been associated with increased number of post-synaptic part-

ners per bouton, and a change in the proportion of different synaptic types (non-ribbon vs. rib-

bon synapses), as observed under electron microscopy [38]. The value of such ultrastructural

parameters as proxies for synaptic strength remains unclear because the functional status of dif-

ferent synaptic types remains unclear (38). Whether these changes in synapse number within

existing boutons represent additional contacts with already-connected KC (thereby having no

effect on sparse coding) or with a greater number of KC (thereby potentially changing sparse-

ness of coding of odours) is unknown. Here we argue simply that if we can assume a relation-

ship between synaptic bouton number and the density of coding of an odour signal within the

KC population, then our model suggests a mechanistic explanation for why lower synaptic bou-

ton number was associated with better reversal learning performance.

We observed similar experience-dependent changes in synaptic boutons in both the collar

and the lip of the MBs. The collar is a visual input region, and future studies should investigate

the link between synaptic bouton number in the collar and visual reversal learning as presently

the relationship between synaptic bouton number and learning of visual information is
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unclear. In fruit flies, visual reversal learning has also been shown to be improved by GABAer-

gic inhibition [54], suggesting that sparse coding might be beneficial to solve this task. In

honey bees, the density of synaptic boutons in the collar was not related to performance in a

2-colour discrimination task [55], but bumblebees with a high density of synaptic boutons in

the collar have been shown to learn faster to discriminate between 10 different colours [56]. A

possibility might be that increasing number of synaptic boutons in honey bees with greater

experience might facilitate some learning tasks (not tested here) to the expense of others (such

as reversal learning). Clearly more work is needed on visual learning to reconcile these

findings.

Variation in reversal learning performance and synaptic bouton number in

forager bees

Our data show that reversal learning performance was highest in young foragers but declined

as bees accumulated foraging experience. The reversal learning task we used assays how effec-

tively bees could update an existing learned association with new information. This capacity

would be vital for a forager honey bee because the availability of nectar and pollen in the envi-

ronment changes rapidly both between and within flower types [57,58]. It is telling that our

data suggest MB microstructure is optimised for updating newly learned information when a

bee starts to forage, with the consequence being a new forager could rapidly adjust foraging

preferences to track a changing availability of floral resources in the environment. With

increasing foraging experience, this flexibility in learned behaviours decreased.

The decreased reversal learning performance in our study might be part of a general cogni-

tive decline as consequence of foraging effort, as has been suggested by previous studies. Com-

pared to in-hive workers or young foragers, experienced foragers have been shown to perform

poorly in an absolute olfactory learning task [59,60], a tactile learning task [61], and a spatial

memory extinction task [62]. By comparing same-age foragers, we suggest that foraging activ-

ity itself may be deleterious for cognitive capacities in honey bees. Alternatively, the decreased

flexibility in experienced-foragers may also be interpreted as adaptive at a colony-level. One

may argue that efficient foraging requires some bees to be more persistent than others in forag-

ing on a floral species or patch. A pool of bees with differing amount of flexibility in foraging

choices has been shown to be beneficial for the colony [32].

What might have caused the increased synaptic bouton number in experienced foragers? In

mammals it is argued that functional optimisation of circuit connectivity for effective learning

is dependent on a fine balance between excitation and inhibition in the neural circuit [3,63].

We argue similar principles likely apply to bees. We have already discussed how reversal learn-

ing performance is dependent on GABAergic inhibition of the MBs [37,52]. Excitation of the

MBs by excitatory cholinergic neurotransmission is higher in foragers than in nurses [31] and

the increase in MB volume and dendritic arborisation observed in foragers can be triggered by

a chronic stimulation of the muscarinic receptors to acetylcholine [19,20]. We propose a possi-

ble shift in the excitation/inhibition balance in the MBs with intense foraging resulting in a

suboptimal increase in synaptic boutons.

With this perspective it is interesting that the decrease in reversal learning performance

with foraging experience was more apparent in precocious foragers than in normal-age forag-

ers. Precocious foraging results from a stress applied to the colony, such as depleting a part of

the foraging force, nutritional stress, disease stress or pesticide exposure [23,33,36]. Precocious

foragers perform less well than normal-age foragers in a range of foraging related metrics

[33,34,64]. The susceptibility of precocious foragers to foraging-related decline in reversal per-

formance is reminiscent of examples from the mammal literature linking stress to imbalances
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in brain neurochemistry and reduced cognitive performance [50,65,66]. Importantly, this

might also explain why precocious foragers perform so poorly as foragers in the field [34]. Yet,

further studies should investigate specifically the impact of stressors on MB neuronal circuitry

and learning performance.

Conclusion

Here, we show how experience-dependent variation in brain microstructure relates to individ-

ual variation in cognitive performance. We argue the mechanistic explanation for the relation-

ship is an optimisation of synaptic bouton number for effective memory storage, which is

achieved by a fine balance of excitation and inhibition in neural circuits. We suggest these

principles for brain and behavioural plasticity operate similarly in all animals. Our study has

highlighted the value of examining neuroplasticity within the natural and ecological context of

the animal, and of considering inter-individual variation in brain structure and behaviour as

signal rather than noise [2].

Supporting information

S1 Fig. Foraging behaviour and reversal learning performance. Boxplots showing the forag-

ing intensity (foraging duration/foraging day) of non-learners (NL, n = 61) and learners (L,

n = 22) in the 4th trial of the reversal phase. � p< 0.05, Mann-Whitney U-Test.

(TIF)

S2 Fig. Mushroom bodies volume and reversal learning performance. Boxplots showing the

volume of the dense collar (blue) and lip (orange) of non-learners (NL, IS = -1 or 0) and learn-

ers (L, IS = 1) for each of the last two trials of the reversal phase (Trial 4: n = 12 NL and 6 L;

Trial 5: n = 10 NL and 8 L). Performance in reversal learning was not associated with differ-

ences in the volume of the lip and dense collar (Mann-Whitney U-Test; Trial 4: lip: U = 49,

p = 0.2496; collar: U = 53, p = 0.1246; Trial 5: lip: U = 40, p = 1; collar: U = 44, p = 0.7618).

(TIF)
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