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Shared genetics of PTSD and cardiovascular disease 

Abstract  
BACKGROUND: 
Patients with post-traumatic stress disorder (PTSD) experience higher risk of adverse 
cardiovascular (CV) outcomes. This study explores shared loci, and genes between PTSD and 
CV conditions from three major domains: CV diagnoses from electronic health records (CV-EHR), 
cardiac and aortic imaging, and CV health behaviors defined in Life’s Essential 8 (LE8). 
 
METHODS: 
We used genome-wide association study (GWAS) of PTSD (N=1,222,882), 246 CV diagnoses 
based on EHR data from Million Veteran Program (MVP; N=458,061), UK Biobank (UKBB; 
N=420,531), 82 cardiac and aortic imaging traits (N=26,893), and GWAS of traits defined in the 
LE8 (N = 282,271 ~ 1,320,016). Shared loci between PTSD and CV conditions were identified 
using local genetic correlations (rg), and colocalization (shared causal variants). Overlapping 
genes between PTSD and CV conditions were identified from genetically regulated proteome 
expression in brain and blood tissues, and subsequently tested to identify functional pathways 
and gene-drug targets. Epidemiological replication of EHR-CV diagnoses was performed in 
AllofUS cohort (AoU; N=249,906). 
  
RESULTS:  
Among the 76 PTSD-susceptibility risk loci, 33 loci exhibited local rg with 45 CV-EHR traits 
(|rg|≥0.4), four loci with eight heart imaging traits(|rg|≥0.5), and 44 loci with LE8 factors (|rg|≥0.36) 
in MVP. Among significantly correlated loci, we found shared causal variants (colocalization 
probability > 80%) between PTSD and 17 CV-EHR (in MVP) at 11 loci in MVP, that also replicated 
in UKBB and/or other cohorts. Of the 17 traits, the observational analysis in the AoU showed 
PTSD was associated with 13 CV-EHR traits after accounting for socioeconomic factors and 
depression diagnosis. PTSD colocalized with eight heart imaging traits on 2 loci and with LE8 
factors on 31 loci. Leveraging blood and brain proteome expression, we found 33 and 122 genes, 
respectively, shared between PTSD and CVD. Blood proteome genes were related to neuronal 
and immune processes, while the brain proteome genes converged on metabolic and calcium-
modulating pathways (FDR p <0.05). Drug repurposing analysis highlighted DRD2, NOS1, GFAP, 
and POR as common targets of psychiatric and CV drugs. 

CONCLUSION:  
PTSD-CV comorbidities exhibit shared risk loci, and genes involved in tissue-specific regulatory 
mechanisms.  

 

Keywords: PTSD; Cardiovascular Disease; Life’s Essential 8; GWAS; electronic health 

records; Heart; Brain. 
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Shared genetics of PTSD and cardiovascular disease 

1 INTRODUCTION 

Given that cardiovascular (CV)-related outcomes, including diseases and risk factors are the 

leading cause of morbidity and mortality worldwide 1, it is imperative to extend our understanding 

of associations beyond traditionally known CV risk factors. Recently, the American Heart 

Association recognized the influence of psychological stress on adverse CV health 2. 

Posttraumatic stress disorder (PTSD) is considered a stress-related mental disorder with a 

lifetime prevalence ranging from 2% to 25% 3. PTSD and CV diseases are highly comorbid. 

Specifically, PTSD has been associated with CVD 4, hypertension 5, diabetes 6, ischemic heart 

disease 7, stroke 8, carotid intima-media thickness 9, and coronary artery disease 10. PTSD and 

CVD have been reported to share several pathophysiological features. For instance, patients with 

PTSD have higher adrenergic activity both at baseline and after being subjected to stress-

inducing situations 11, imposing a chronically increased burden on both the heart and the 

circulatory system.  High adrenergic states are also associated with CVD symptoms, including 

increased heart rate and acutely increased blood pressure 12. Additionally, PTSD can increase 

the risk of CVDs by increasing the risk of dyslipidemia and diabetes, although the biology of this 

association is not yet fully understood 13, 14.  

Both PTSD and CVD have substantial genetic components, with heritability estimates of 30-40% 

for PTSD 13, 15 and 15-57% for hypertension, 26% for heart failure (HF), and 40-60% for coronary 

artery disease 16-20.  Recently, PTSD polygenic risk has been associated with several 

cardiovascular symptoms and disorders 21 and showed potential genetic causality towards cardiac 

arrhythmias 21, ischemic stroke 22, coronary artery disease, and hypertension 23.  However, several 

critical gaps remain in understanding the shared genetics between PTSD and CVD which were 

highlighted by the experts from the American Heart Association (AHA) and the National Heart, 

Lung, and Blood Institute 24 . In this study, we address some of these gaps by leveraging GWAS 

(genome-wide association study) data  to study  genetic overlap between PTSD 25 and  CV 

outcomes from three different domains including EHR diagnoses, heart imaging 26 and Life’s 

Essential 8 (LE8) key measures for improving and maintaining – evidence-based cardiovascular 

health as factors and behaviors recently outlined by the American Heart Association 2 . 

Specifically, we aimed to (i) identify loci that are shared between PTSD and CV conditions, (ii) 

test the specificity of PTSD-CVD comorbidity accounting for socioeconomic factors (BMI, smoking, 

deprivation index) and diagnosis of depression, and (iii) infer biological mechanisms underlying 

PTSD and CV outcomes based on tissue-specific transcriptomic regulation and proteomic gene-

associations that overlap between PTSD and CVD traits (Figure 1). 
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Shared genetics of PTSD and cardiovascular disease 

 
Figure 1: Study Design: We investigated loci shared between posttraumatic stress disorder 

(PTSD) and cardiovascular (CV)-related traits, including American Heart Association’s Life 

Essential 8 factors, CV diagnoses derived from electronic health records (EHR), and cardiac 

imaging phenotypes. After identifying genetically correlated loci between PTSD and CV conditions, 

we investigated shared causal variants. For the EHR-based CV diagnoses, we performed 

replication of shared causal variants in UK Biobank and a follow-up analysis in All of US Research 

Program. The traits with evidence of PTSD-CV shared causal variants were tested with respect 

to tissue-specific transcriptomic and proteomic profiles. The overlapping genes were investigated 

for overrepresented pathways and drug targets. 
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2 METHODS 

2.1 Study Populations 
We conducted the study to explore the genetic overlap between PTSD and cardiovascular 

outcomes, as defined by electronic health records (EHR) and heart imaging (Figure 1). Because 

we used previously collected, deidentified, data, this study did not require institutional review 

board approval. Ethics approval and participants’ consent was obtained by the original studies 2, 

26-39. 

Summary statistics for GWAS of PTSD utilized in this study originated from a comprehensive 

meta-analysis led by Nievergelt et al. 25 that identified 76 autosomal loci (Supplementary Table 

S1). This meta-analysis encompasses findings from 88 studies gathered through the PGC-

PTSD Freeze 3 data collection from three primary sources: PTSD studies employing clinician-

administered or self-reported instruments (Freeze 2.5 plus subsequently collected studies, 77 

studies), Million Veteran Program (MVP) release 3 GWAS utilizing the Posttraumatic Stress 

Disorder Checklist (PCL for DSM-IV), and 10 biobank studies incorporating EHR-derived PTSD 

status. In total, the study incorporated 95 GWASs, with a sample size of 1,222,882 individuals of 

European descent (effective sample size (Neff) = 641,533). 

 

2.1.1 GWAS of Cardiovascular and metabolic diagnoses using EHR  

Million Veteran Program 

The CVD phenotype datasets utilized in this study were sourced from the MVP40 (see data 

availability), a nationwide initiative sponsored by the Department of Veterans Affairs Office of 

Research and Development41. In our investigation of the genetic overlap between PTSD and 

cardiovascular clinical outcomes, we incorporated summary statistics from GWAS of EHR-based 

phecodes. Phecodes are manually curated groups of International Classification of Diseases 

(ICD) codes-9/10, designed to capture clinically meaningful concepts for research purposes using 

the PheMap which classifies diagnoses into 17 categories (available at 

https://phewascatalog.org/) 42. We tested 141diagnoses from circulatory and 105 from 

endocrine/metabolic categories. A detailed description of GWAS of these traits in 458,203 

individuals of European genetic ancestry in MVP is available elsewhere40 . (Supplementary Table 

S2).  

  

2.1.2 UK Biobank 

To replicate MVP findings, we leveraged GWAS of EHR-based phecodes data available from 

the UK Biobank (UKBB)43. Specifically, we analyzed summary statistics of GWAS of phecodes 

in 420,531 participants of European descent performed by the Pan-UKBB initiative 44. Each 

MVP trait was matched with a corresponding UKBB phenotype based on their phecode 

concordance. Because MVP phecodes 278.11, 427.21, 428.3 were not available in the UK 

Biobank, we paired them as follows: Phecode 278.11 (Morbid Obesity, MVP) to Phecode 278.1 

(Obesity, UKBB), Phecode 427.21 (Atrial Fibrillation, MVP) to Phecode 427.2 (Atrial Fibrillation 
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and flutter, UKBB), and Phecode 428.3 (Heart failure with reduced EF [Systolic or combined 

heart failure], MVP) to Phecode 428.2 (Heart failure NOS, UKBB). The details of the replication 

datasets are presented in Supplementary Table S3 with a comprehensive overview of clinical 

diagnoses, corresponding phecodes, study resources, and sample sizes. 

2.1.3 Other GWAS cohorts 

In addition to the UKBB data, we replicated MVP findings also using 11 GWAS performed from 

major consortia that may include a combination of self-reported or clinical studies 27-33. The 

sample sizes of these datasets ranged from 119,715 to 1,020,441, and their diagnoses were 

paired with corresponding phecodes (Supplementary Table S3) 29, 33. For Type 2 Diabetes 

adjusted by BMI, we used summary statistics by the Diabetes Meta-Analysis of Trans-Ethnic 

association studies (DIAMANTE) Consortium 31, which are genetically correlated (rg) with 

Phecode 250.2 (Type 2 Diabetes: rg=0.992, SE=0.008; p<1×10-300) and Phecode 250 (Diabetes 

Mellitus rg=0.991, SE=0.008; p<1×10-300). 

  

2.1.4 GWAS of heart imaging phenotypes from UK Biobank 

To also explore PTSD relationship with the structure and function of the heart and aorta, we 

incorporated summary-level data from a cardiac imaging GWAS 26. This study used information 

from UKBB participants who underwent comprehensive cardiovascular magnetic resonance 

(CMR) imaging and employed a machine learning regenerating and analyzing pipeline that 

resulted in 82 quantitative imaging phenotypes from 26,893 participants of European descent 26. 

These phenotypes (e.g., short-axis, long-axis, and aortic cine images) provide a detailed 

characterization of cardiac and aortic structure and function (Supplementary Table S2) 26. 

  

2.1.5 GWAS of traits used to define Life’s Essential 8  

To investigate the role of other factors in the genetic overlap with CV health and PTSD, we 
considered the LE8 checklist defined by AHA, 2022 2, which underscores eight key health 
factors and health behaviors related to CV well-being: eat better, be more active, quit tobacco, 
get healthy sleep, manage weight, control cholesterol, manage blood sugar, manage blood 
pressure . For our study, we identified 11 GWAS related to LE8 factors (N = 282,271 ~ 
1,320,016), including GWAS for diet (i.e., energy intake proportion of fat, carbohydrate, protein, 
each adjusted by body mass index, BMI) 37, physical activity 36, smoking 35, insomnia 38, BMI-
adjusted waist-hip-ratio 33, total cholesterol 34, diabetes 31, and hypertension [MVP+UKBB]. To 
maximize the sample size available, we meta-analyzed hypertension GWAS (phecode 401) 
available from MVP and UKBB resulting in a sample size of 433,585 cases and 421,076 
controls. For insomnia, we generated two GWAS datasets, one meta-analyzing GWAS of 
insomnia from Watanabe and colleagues 38 with MVP GWAS of “unable to fall asleep” (SlpFall – 
188,830 cases) and the other meta-analyzing Watanabe insomnia GWAS 38 with MVP GWAS of 
“waking up in the night and not be able to fall back asleep” (SlpWakePM – 216,711 cases). To 
maximize the sample size available, when needed, GWAS datasets were meta-analyzed using 
a fixed-effects inverse variance-weighted model available in METAL 45. A detailed description of 
all cohorts is presented in Supplementary Table S2. 
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2.2 Proteomic cohorts 

2.2.1 Brain Proteomic Datasets 

The Religious Orders Study and Rush Memory and Aging Project (ROS/MAP) proteome 
expression weights were generated by Wingo et al. 46, using dorsolateral prefrontal cortex 
(dlPFC) tissues available from 376 individuals of European ancestry46. Briefly, their analyses 
included calculating the normalized abundance of 8,356 proteins. Among these, 1,475 proteins 
exhibited significant cis associations with genetic variation. The weights assigned to these 
proteins were used in our proteome-wide association study (PWAS). Comprehensive details 
regarding sample description, proteomic analysis, quality control, and statistical analyses can be 
found in the original paper by Wingo et al 46. Additionally, we utilized dlPFC genetic-proteomic 
data from the Banner Sun Health Research Institute (BANNER). This dataset comprises brain 
dlPFC samples from 152 individuals of European descent, with 8,168 proteins included in 
proteomic profiles following quality control 46. Through the integration of proteomic data and 
SNP genotypes, 1,139 proteins exhibited significant heritability to genetic variation. Therefore, 
ROS/MAP (N=376) and BANNER (N=152), encompass a total of 1,797 proteins. (See Data 
Availability and Links). 

2.2.2 Atherosclerosis Risk in Communities (ARIC) Study  

To study the plasma proteome, we utilized data from Zhang and colleagues 47. Proteomic 
data was derived from summary-level information obtained from The Atherosclerosis Risk in 
Communities (ARIC) Study, focusing on 7,213 individuals of European descent 47. The study 
measures plasma proteome levels using the SOMAmer-V4 platform. After quality control, 1,348 
plasma proteins exhibiting associations with common variants in cis regions were investigated in 
our PWAS study (See Data Availability and links).  

2.2.3 UKBB-Plasma Proteome Project (UKB-PPP)  

In addition to the ARIC Study, we tested data from the UK Biobank Pharma Proteomics Project 
(UKB-PPP). This project provides the plasma proteomic profiles of 54,219 participants along 
with genome-wide genotypes, exome sequencing, whole-body magnetic resonance imaging, 
electronic health records, blood and urine biomarkers, as well as physical and anthropometric 
measurements. UKB-PPP used Olink proteomics assay for proteome assessment, and reported 
expression weights for protein quantitative trait loci (pQTLs) for 2,923 unique proteins 48. 

 

2.3 Risk loci from PTSD GWAS  
To identify genomic loci of interest in PTSD GWAS summary statistics, as per original study we 
used Functional Mapping and Annotation of Genome-Wide Association Studies (FUMA)49. 
Considering LD weights from the European reference populations of the 1000 Genomes 
Project, resulting in 76 independent genomic risk loci (P < 5×10⁻8, r2<0.6, MAF≥0.01, LD 
distance <250kb) (Supplementary Table S1) as reported by Nievergelt et. al 2024. 

  

2.4 Shared regions and variants between PTSD and the CVD traits 

Local Analysis of [co]Variant Association (LAVA) 
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LAVA 50 was employed to identify loci exhibiting local genetic correlation between PTSD and a 
total of 328 CV traits across three categories . We applied univariate LAVA models at the 76 
PTSD risk loci. Loci that reached false discovery rate significance at 5% (FDR q<0.05) for the 
heritability univariate models were selected for local genetic correlation between PTSD and 
each one of the CV/LE8 traits. Bivariate LAVA results were filtered to include only those cases 
where both traits exhibited significant univariate heritability on the locus, as determined by an 
FDR q < 0.05. Sample overlap was estimated with LD score regression with the European LD 
scores calculated from the 1000 Genomes as reference (https://github.com/bulik/ldsc). Variants 
that were not SNPs (e.g., indels) and SNPs that were strand-ambiguous, multi-allelic, and had a 
minor allele frequency (MAF) <0.01 were excluded. 

  

Colocalization analysis 

Colocalization is a statistical approach used to assess whether pairs of traits share a putative 
causal variant within the same genomic region. COLOC employs a Bayesian approach, 
considering various variant-level hypotheses and calculating Bayes factors from SNP effect 
estimates and standard errors 51. The variant-level hypotheses correspond to: H0 (no association 
to either trait), H1 (association to only trait 1), H2 (association to only trait 2), H3 (associations to 
both traits with different causal variants), and H4 (associations to both traits with shared causal 
variants) 52. In our study, each genomic region was expanded by 500kb on either side of the 
position. . COLOC 51was applied to assess colocalization between PTSD and the significantly 
correlated trait. Results with H4 or H3 hypothesis probabilities ≥80% were considered as shared. 
For replication, we used data from UKBB and other cohorts considering H4 or H3 hypothesis 
probabilities ≥70% as strong evidence of shared variants.  
  

Tissue and molecular-profile-based prioritization of genes within 
colocalized regions  

We used the UCSD Genome Browser Tool (see data availability and links) to identify genes within 
the colocalized regions with significant H4/H3 probability for PTSD with at least one CVD trait. 
Then, we gathered colocalization probabilities (H3 and H4) for molecular profiles of those genes 
and all reported phenotypes from published GWAS studies using OpenTargets 53. By manually 
examining the traits, we defined the traits as psychiatric and/or CVDs. 
  

2.5 Observational Analysis in All of Us Research Program 
Started in 2018, the National Institutes of Health’s All of US (AoU) Research Program has enrolled 
over 700,000 diverse participants, emphasizing health equity in the context of precision medicine. 
Leveraging EHR data available for 254,700 AoU participants 54. Phecodes were derived from 
mapping International Classification of Disease ICD9/ICD10(CM) codes using Phecode Map (see 
data availability and links). Logistic regression using the PheWAS R package was employed to 
assess the association of PTSD (13,877 cases) with CV phecodes identified in MVP and UKBB 
analyses, considering three models (i) base-model (sex, age, self-reported race), (ii) 
socioeconomic (SES)-model (bases model covariates plus BMI, smoking, deprivation index), and 
(iii) depression-model (SES-model covariates plus depression diagnosis: phecode 296.2-
Ncases:72,143).The self-reported demographic characteristics of AoU are as follows: females 
(61.8%), average age in years = 54 ±17 (mean±SD), 57.17% White, 19.4% (self-identified race), 
Black or African American, 3.54%  Asian, 0.62% Middle Eastern/North African, 1.92% More than 
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one population, 0.11%  Native Hawaiian/Pacific Islander, and 17.1% None of the above), while 
44.1% were smokers (past and current).   
 

2.6 Proteome-Wide Association Study 

Proteome-wide associations of PTSD and its colocalized traits were estimated We integrated 
GWAS data with tissue-specific pQTLs. For the colocalized phecodes, PWAS was conducted 
using the meta-analysed GWAS combining  MVP and UKBB as described above, using the 
FUnctional Summary-based ImputatiON (FUSION)  (available at 
http://gusevlab.org/projects/fusion/)55. 

PWAS using weights from UKB-PPP plasma proteomewas performed using Summary-based 
Mendelian Randomization (SMR) 56, 57. The analysis was performed using SMR default settings 
(https://yanglab.westlake.edu.cn/software/smr/#Overview) 56. The results were adjusted for 
multiple testing with FDR correction (FDR q<0.05).  
 
 

2.7 In-silico functional Analysis 

2.7.1 Pathway enrichment 

To gain insight into the shared mechanisms between PTSD and CVD traits, we conducted 
pathway enrichment analysis based on the genes detected in brain and blood proteome-wide 
analyses. Pathway enrichments were sought using a web-based tool, g:Profiler 
(https://biit.cs.ut.ee/gprofiler/gost) among three libraries: Gene Ontology (GO), Kyoto 
Encyclopedia of Genes and Genomes (KEGG), and Reactome Pathway Database (REAC) 58. 
GO Database contains three functional domains: cellular component (CC), molecular function 
(MF), and biological process (BP). A significance threshold of FDR q<0.05 was used to identify 
significant pathways. 
  

2.7.2 Drug repurposing in research context 

Significant genes from the brain and plasma PWAS and the prioritized genes from the 
colocalization analysis were used for identifying drugs from the drug-gene interaction database 
(DGidb)59.  Secondly, we obtained information including drug ID, clinical uses and adverse effects 
from stored at OpenTargets (https://www.opentargets.org/) which are originally sourced from FDA 
database. The OpenTarget results were compared with current CVD and PTSD treatments, to 
identify drugs with overlapping functions and suggest new potential therapies. 
 

3 RESULTS 

3.1 Genetically correlated loci between PTSD and CVD Traits 
We investigated 76 genome-wide significant (GWS) risk loci associated with the PTSD GWAS (P 

< 5×10⁻⁸, Supplementary Table S1) for local genetic correlation with GWAS of 246 CV-related 

phecodes from MVP, 82 cardiac imaging traits from UKBB, and LE8-related phenotypes from 

various studies. We observed statistically significant SNP-based heritability at  73 loci for all the 

phenotypes investigated (Supplementary Table S4). For CV- phecodes, we identified 112 local 
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genetic correlations with PTSD across 33 loci (FDR q<0.05; Figure 2, Supplementary Table S5). 

Among these, 67 were related to circulatory system, and 45 to endocrine/metabolic phecodes. . 

Additionally, four PTSD-associated loci presented local genetic correlations between PTSD and 

14 heart imaging traits (FDR q<0.05; Figure 2, Supplementary Table S5). For LE8- factors, 92 

local genetic correlations with PTSD were identified across 44 loci (Figure 2, Supplementary 

Table S5). Notably, fat dietary intake was the only LE8- trait that was not genetically correlated 

with PTSD at any of the investigated loci. Overall, most local genetic correlations were positive. 

Among the few negative local genetic correlations, four were between PTSD and total cholesterol 

across different loci and six at 15q26.1 between PTSD and multiple phenotypes (Figure 2, 

Supplementary Table S5). 

Considering locus-specific results, the 17q21.31 region exhibited the highest number of 

genetically correlated traits (N=21; Figure 2, Supplementary Table S5), including 10 CV-related 

phecodes (e.g., cardiac dysrhythmias, nonrheumatic aortic valve disorders, diabetes mellitus, 

overweight, and hypothyroidism) and 11 heart imaging traits (e.g., various sections of myocardial-

wall thickness at end-diastole and ascending aorta minimum area).  
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Figure 2: Local Genetic Correlation between PTSD and CV conditions: Matrix plot of local 

genetic correlation between PTSD and conditions grouped by their CV category (left y-axis); the 

EHR-based CV definitions (i.e., phecodes) are from Million Veteran Program. The x-axis shows 

loci as cytobands grouped by chromosomes. The positive correlation is denoted in orange, cyan 

indicates negative correlation, and the size of the squares corresponds to the magnitude of the 

genetic correlation. 
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3.2 Shared causal variants between PTSD and CV conditions within 

genetically correlated loci  
We investigated whether the local genetic correlation between PTSD and CV-related phenotypes 

is due to a shared causal variant or causal variants in linkage disequilibrium (colocalization 

hypotheses H4 and H3, respectively) 52. Our colocalization investigation identified 20 CV-related 

phecodes that shared the same causal SNP with PTSD across 11 loci (H4-PP ≥ 80%, Figure 3A; 

Supplementary Table S6) and 19 CV diagnoses for which causal variants were in LD with PTSD 

variants (H3-PP ≥ 80%, Figure 3A; Supplementary Table S6). To replicate the colocalization 

findings observed using MVP phecodes, we repeated the analysis using UKBB phecodes and 

other cohorts which incorporate a combination of EHR and self-report definitions. Specifically, we 

matched 24 CV phecodes in UK Biobank (N=420,531) 44 and 11 GWASs from major consortia 

comprising of self-reported and/or clinical data (N=~1,320,016) 27-33. In UKBB, 13 out of the 24 

examined traits displayed replications (H4/H3-PP ≥70%), revealing consistent colocalization 

patterns with PTSD across 8 loci (Supplementary Table S6). In the other cohorts, validation was 

achieved for 5 phenotypes (i.e., myocardial infarction, coronary artery disease, atrial fibrillation, 

type 2 diabetes, and BMI) across 8 distinct loci (H4/H3-PP ≥70%; Supplementary Table S6). 

Across discovery (in MVP) and replication (in UKBB and other cohorts), obesity and being 

overweight demonstrated the highest posterior probability of sharing the same causal variant with 

PTSD in locus 4p15.2 (H4-PP=1, a shared causal SNP - rs34811474 - ANAPC4). 

 

Among the heart imaging traits, there was colocalization on two loci for 8 traits. Within locus 

17q21.31, PTSD-variants were in LD with causal variants related to seven different levels of 

measurements of regional myocardial-wall thickness at end-diastole, and the global myocardial-

wall thickness at end-diastole (H3-PP≥80.0%). In locus 15q21.31, PTSD and the global 

myocardial-wall thickness at end-diastole share the same causal trait (H4-PP=92.5%, causal SNP 

- rs17514846- FURIN).  

  

Considering LE8 checklist, we observed statistically significant PTSD colocalization (H4/H3 

≥80%) in 31 loci (Figure 3A; Supplementary Table S6; Supplementary Figure S1). While no 

colocalization was observed between PTSD and dietary carbohydrate intake, the other LE8-

related phenotypes shared the same PTSD casual SNP in 20 loci collectively (H4-PP ≥80%; 

closest gene (shared causal variant), ANAPC4 (rs34811474), ARHGAP15 (rs10191758), BPTF 

(rs34872586),  CDH2 (rs7243332), FOXP2 (rs1476535, rs8180817), IP6K1 (rs11130221), 

KMT2E (rs2470937), LSM4 (rs7408312), MAD1L1 (rs34809719), NCAM1 (rs7106434), NCOA5 

(rs6032660), PDE4B (rs2310819), PLCL2 (rs748832), PROX1 (rs340874), SATB1(rs4269101), 

TANK (rs197261), TMEM106B (rs13237518), non-coding regions (rs11581459, rs325500, 

rs4275621)) Supplementary Table S6; Supplementary Figure S1). Interestingly, physical activity 

shared the same causal variant with PTSD in locus 4p15.2 (H4-PP=99%) that we observed with 

respect to obesity and being overweight (shared causal SNP - rs34811474 - ANAPC4).  Both total 

cholesterol and BMI–adjusted-waist-to-hip ratio had the highest posterior probability of having 

causal variants in LD with PTSD-associated SNPs in 6p22.2 and 3p21.31, respectively (H3-

PP=100%, Supplementary Table S6; Supplementary Figure S1).  

  

Overall, 17q21.31 and 3p21.31 regions exhibited the highest number of CV-related phenotypes 

(Figure 3B). Specifically, 17q21.31 showed colocalization of PTSD with seven CV phecodes and 
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eight heart imaging phenotypes, while 3p21.31 colocalized PTSD with eight CV phecodes and 

six phenotypes related to LE8 checklist. 

 

A. 
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B. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 21, 2024. ; https://doi.org/10.1101/2024.08.20.24312181doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.20.24312181
http://creativecommons.org/licenses/by-nc-nd/4.0/


Shared genetics of PTSD and cardiovascular disease 

Figure 3: Shared causal variants between PTSD and CV conditions: A) Top.  The x-axis 

shows colocalization probability(different LD-linked causal variants-H3 hypothesis; same causal 

variant – H4 hypothesis), and y-axis is marked with CV conditions. between PTSD and CV 

conditions based on colocalization. A subset of 11 loci that replicated  for EHR-derived 

diagnosis are indicated with a blue line. The shared causal variants based on H4 hypothesis are 

labelled and their nearest genes are in parenthesis. We highlight genes at each locus that had 

colocalization evidence with molecular profiles (gene/splicing/proteome expression) and CV 

conditions (Supplementary Table S7); B) Bottom. A stacked bar plot showing number of traits 

(y-axis) observed at each locus, marked as cytoband and position range in base pairs (x-axis). 

The traits are grouped into three CV categories. 

 

To prioritize genes within the colocalized regions, we first identified 506 genes physically 

located in the 38 loci that showed evidence of colocalization between PTSD and CV conditions. 

We leveraged multi-tissue molecular profiles (gene, proteome, and splicing expression) and CV 

traits available from OpenTargets platform 51, 53. We identified 270 genes that had H4 or H3 

hypothesis probability ≥0.6 of colocalizing with 201 different CV conditions across 124 tissues. 

Among the highest H4 associations (H4-PP=100%), there were multiple phenotypes related to 

the body electrical impedance, BMI, blood lipids, blood pressure, hemoglobin A1c in multiple 

tissues, smoking, sleep duration, and hypothyroidism. (Supplementary Table S7).  

 

  

3.3 Observational association of PTSD with CV-related diagnoses in 

All Of US cohort 
To further investigate the comorbidity between PTSD, and 13 CV diagnoses observed in our 

genetically informed analysis, we conducted an observational analysis using EHR data for 

circulatory and metabolic diagnses from AoU cohort  (as per phecodes: 244-hypothyroidism, 

244.4-hypothyroidism NOS, 250-diabetes mellitus, 250.2-Type 2 diabetes, 278-Overweight, 

obesity, and hyperalimentation, 278.1-obesity, 401-hypertension, 401.1-essential hypertension, 

411.8-other chronic ischemic heart disease, 418-nonspecific chest pain, 427-Cardiac 

dysrhythmias, 427.2 atrial fibrillation and flutter, and 411.4-coronary atherosclerosis)).  

Specifically, we tested the association of PTSD (13,877 cases) with 13 CV diagnoses 

(Supplementary Table S8) considering three adjustment models: i) base-model (covariates:- age, 

sex, and self-reported race); ii) SES-model (base-model covariates and deprivation index, 

smoking, and BMI), iii) depression-model (SES-model and depression diagnosis-[phecode 

296.2]). PTSD was significantly associated with all 13 CV phecodes across all three models 

(p<5.1510-6; Supplementary Table S8). However, while there was no difference between the 

estimates obtained from base and SES-models, we observed a reduction in effect sizes observed 

in the depression model compared to the base model ranging from 84% for chronic ischemic heart 

disease (odds ratio, OR= 2.61 vs 1.41, p-difference=5.4410-19) to 48% for hypothyroidism (OR= 

1.78 vs 1.2, p-difference=5.710-25). Nevertheless, the effect sizes observed accounting for 

depression comorbidity confirm the relationship linking PTSD to CV-related traits.   
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3.4 Tissue Enrichment for PTSD, CV diagnoses, heart imaging and 

LE8 traits  

 

To gain biological insights into PTSD and CV conditions, we further employed in-silico genetic 

approaches to identify tissues that might overlap due to similar gene expression profiles.  We 

limited our analyses to CV traits that showed multiple levels of evidence for genetic overlap: 13 

CV diagnoses (meta-analyzed between UKBB and MVP), 8 heart imaging traits and eight LE8 

traits.   

Tissue enrichment test systematically models tissue-specific gene expression data and GWAS of 

trait, prioritizing disease specific causal tissues. We identified 6 tissues that are enriched based 

on gene expression in PTSD: the limbic system (p=4x10-6), the cerebral cortex (p=6x10-5), the 

brain (p=4x10-6), the entorhinal cortex (p=4x10-4), the hippocampus (p=10-3), and the brain cortex 

(p=9x10-4). These tissues were not FDR significant in other traits, but were nominally significant 

for nonspecific chest pain, overweight, ‘overweight, obesity and other hyperalimentation’, physical 

activity, smoking, diet intake proportion of protein, and insomnia (SlpFall- difficulty in falling asleep, 

and SlpWakePM-difficulty in falling asleep after waking up in the middle of the night) (p<0.05; 

Supplementary table S10; Supplementary Figure S2). No heart imaging trait remained significant 

in the multi-tissue enrichment analysis. 

3.5 Proteome-Wide Association Study (PWAS): integrating genetic 

variants from GWAS and proteome expression in brain and blood 

tissues 
PWAS studies combine effect-estimate of genetic variants on diseases, and abundance or 

expression of proteins, thereby prioritizing genes that may be associated with disease/traits via 

altered proteome expression. We tested gene-associations leveraging genetically regulated 

proteome expression in dlPFC and blood with respect to PTSD and phenotypes highlighted by 

local genetic correlation and colocalization analyses. This included 13 CV phecodes, seven heart 

imaging traits, and LE8 factors. To maximize statistical power, we meta-analyzed GWAS of each 

of the 13 CV diagnoses from MVP and UKBB to improve statistical power for gaining insights into 

overlapping mechanistic pathways [N total = 865,527]. Details regarding each meta-analyzed CV 

diagnosis are available in Supplementary Table S9. Leveraging weights derived from dlPFC-

specific pQTLs, we identified 122 genes associated with both PTSD and CVD phenotypes (FDR 

q<0.05; Figure 4, Supplementary Table S11).  The majority of these PTSD associations were 

shared with LE8 factors (N=109). Several genes demonstrated proteomic associations across CV 

phecodes, heart imaging phenotypes, and LE8 factors (e.g., ATG7, CCDC92, CNNM2, DNM1, 

FAM134A, SIRPA, SNX32, and TR0IM47). Other pleiotropic genes included CCDC92, SIRPA 

and LRRC37A2 that were associated with PTSD and 20 or more CV-related phenotypes 

(Supplementary Table S11). The strongest proteome-wide association with PTSD was observed 

with ICA1L (Z=6.89, p=5×10-12) that was also associated with several CV phecodes such as atrial 

fibrillation (Z=2.9, p=4×10-59), coronary atherosclerosis (Z=16.2, p=5×10-50), and T2D [EHR-

MVP+UKBB] (Z=3.87, p=1.07x10-4). While these associations were positively related to increased 

ICA1L proteomic expression, we also observed an inverse relationship with total cholesterol (Z=-

18.86, p=2×10-79), insomnia (Z=-6.03, p=2×10-9), physical activity (Z=-3.41, p=6×10-4), and 

smoking (Z=-4.85, p=10-6). The strongest inverse association with PTSD was KHK (Z=-6.86, 

p=7×10-12), which was also negatively associated with several other phenotypes, such as T2D 
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(Z=-5.22, p=2×10-7), hypertension  (Z=-4.59, p=4×10-6), unspecified chronic ischemic heart 

disease (Z=-4.04, p=5×10-5), hypothyroidism (Z=-3.94, p=8×10-5) protein intake (Z=-3.84, p=10-4), 

coronary atherosclerosis (Z=-3.82, p=10-4), and nonspecific chest pain (Z=-3.32, p=9×10-4). KHK 

was positively associated with BMI (Z=3.49, p=5×10-4) and LE8-T2D (Z=3.56, p=4×10-4). Total 

cholesterol demonstrated the highest number of overlapping genes with PTSD, with 56 genes 

overlapping in the brain proteome including genes with the highest effect estimate such as PLCG1 

(Z = -18.349, p=3.37×10-75). 

  

Leveraging blood-proteome expression from two different studies (ARIC, and UKBB-PPP), 

we identified 33 genes associated with both PTSD and at least one or more of the 13 CV 

diagnoses, 8 heart imaging traits, and LE8 factors investigated (Supplementary Table S11). The 

strongest positive association with PTSD was FES (Z=6.15, p=8×10-10), which was also positively 

associated with smoking (Z=5.95, p=3×10-9) and physical activity (Z=4.19, p=3×10-5). FES 

proteomic expression exhibited negative associations with essential hypertension (Z=-9.92, 

p=3×10-23), unspecified chronic ischemic myocardial disease (Z=-8.51, p=2×10-17), and global 

myocardial wall-thickness at end-diastole (Z=-4.08, p=5×10-5). The strongest negative association 

with PTSD was observed with CD40 (Z=-5.27, p=10-7), which was also negatively associated with 

atrial fibrillation and flutter (Z=-3.73, p=2×10-4) and positively associated with total cholesterol 

(Z=7.17, p=8×10-13). Considering both blood and dlPFC, SIRPA, MANF, and POR exhibited 

cross-tissue proteome-wide associations with PTSD and CVD traits (Supplementary Table S11). 

 

By comparing genes prioritized from colocalized regions and genes identified from PWAS, we 

identified 403 distinct genes with 17 overlapping between the two methods: BTN2A1, BTN3A2, 

C3orf18, CACNA2D2, CD40, DAG1, FES, FURIN, GMPPB, GPX1, HYAL1, LRRC37A2, MST1, 

NCAM1, SEMA3F, SERPING1, UBE2L6. 

 

 

3.6  Pathway Enrichment  
Considering genes identified by the tissue-specific PWAS, we identified 25 pathways 

overrepresented by the PTSD&CV proteome-wide significant genes in the dlPFC and 36 

pathways in the blood (Supplementary Table S12). Among the dlPFC PWAS genes, in addition 

to basic cellular functions (Supplementary Figure S3; Supplementary Table S12), we observed 

metabolic and calcium modulating pathways: “oxidoreductase activity, acting on the CH-OH group 

of donors, NAD or NADP as acceptor” (FDR P-value = 3.92×10⁻2), “Calmodulin-induced events” 

(FDR P-value =3.97×10⁻2), the “CaM pathway” (FDR P-value =3.97×10⁻2), and “Ca-dependent 

events” (FDR P-value =4.95×10⁻2). Among the pathways overrepresented by the plasma PWAS 

genes, in addition to biological and cellular processes (Supplementary Figure S4; Supplementary 

Table S12), we observed several immune and neuronal processes Such as “response to stimulus” 

(FDR P-value= 5.84×10⁻4), “regulation of immune response” (FDR P-value =4.98×10⁻3), 

“regulation of immune system process” (FDR P-value =7.33×10⁻3), “regulation of response to 

stimulus” (FDR P-value= 0.011), neuron projection development (FDR P-value= 0.014). 
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Figure 4: Shared genes and pathways between PTSD and CV conditions based on 

proteome-wide associations: Distribution of z-scores across significant PWAS genes between 

PTSD and CV conditions using A) brain proteome in blue and B) blood proteome in red. Genes 

are grouped based on two blood-based proteome panels/brain-based panel (y-axis) and 

respective CV conditions (x-axis). Significant genes are shown as red (blood) or blue (brain) 

triangles, wherein triangles facing up and down represent positive and negative z-scores, 

respectively.  

 

3.7 Drug repurposing in research context 
To contextualize the role of reported shared genes between PTSD and CV conditions, we 

performed a prototype approach. We identified drugs that target these shared genes. We then 

analyzed if any of these drugs have common gene targets, and categorized their adverse effects 

into cardiovascular or psychiatric side effects. This approach helps us see how these shared 

genes might influence both types of conditions and the potential risks and benefits of the drugs 

involved. 

We identified 74 approved drugs targeting 30 genes that either designated for psychiatric (as 

a range of psychiatric drugs can be used for treating PTSD and associated symptoms) or 

cardiovascular conditions (Supplementary Table S13, Figure 5). Looking at gene target that 

overlap between psychiatric and CV conditions, we found DRD2, GFAP, POR and NOS1 to be 

targets of several CV conditions including hypo/hypertension, diabetes, cholesterol and heart 

failure. Only Prazosin, an alpha-1 adrenergic receptor antagonist was the only drug that is known 

to treat hypertension, and has off-label benefit for PTSD-associated nightmares60, 61. 

We also investigated adverse effects of these drugs, and among the 45 psychiatric drugs 

most cardiovascular-system-related adverse effects included increased weight or weight 

fluctuations, tachycardia and QT prolongation, which indicates a disturbance in heart ventricle 

chamber signal transmission 62. Other CV adverse effects of the psychiatric drugs include blood 

glucose increase, diabetes, orthostatic hypotension, and dyslipidemia.  

Conversely, among the 30 CVD drugs, adverse psychiatric effects were less observed, and 

included depression, suicide attempt, cognitive disorder, and hallucination. (Supplementary Table 

S14).  
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Figure 5: Comparing common drugs and their gene-targets between PTSD and CV 

conditions: This Sankey plot shows the psychiatric drugs and their classes (first & second panel) 

that target genes – DRD2, GFAP,POR and NOS1 (third panel), which are also targeted by CV 

drugs (third panel) and their corresponding CV categories (fourth  & fifth panel) (see 

Supplementary Tables for more details).  

  

4  DISCUSSION  

To our knowledge, we provide the first comprehensive study assessing the genetic overlap 

between PTSD and CV phenotypes in more than 1 million individuals, integrating multi-omics 

information with EHRs, functional and structural cardiac imaging measurements, and CV health 

factors. We report causal variants for CV diagnoses and imaging traits that are shared with  PTSD, 

while CV health behaviors as per AHA’s LE8 show a broader genetic overlap across several loci. 

Among the EHR CV traits, colocalization analyses of discovery and replication cohorts indicated 

loci 3p21.31, 17q21.31, 7p22.3, and 7p21.3 as potential PTSD-CVD pleiotropy hotspots. 

Specifically, loci 3p21.31 and 17q21.31 exhibited different LD-linked causal variants, while loci 

7p22.3 (MADIL1, ELFN1) and 7p21.3 (TMEM106B, VWDE, THSD7A) had the greatest number 

of causal variants shared between PTSD and multiple CV conditions (e.g., hypertension, diabetes, 

coronary artery disease, obesity/overweight, atrial fibrillation, and non-specific chest pain). 

Although some of these loci have been identified in the context of psychiatric disorders 63-65, we 

additionally observed  genes at these loci also colocalize between multi-tissue molecular profiles 

of several cardiovascular traits, highlighting their significant role as a potential common 

denominator to PTSD and CV conditions. Often genetic data is proxy for diagnostic risk, and 

mirrors association, but is limited in adjusting for additional confounders without losing statistical 

power. We confirmed the specificity of PTSD-CV genetic relationships using epidemiological 

observation from EHR data of 249,906 AllofUS participants. We observed that PTSD diagnosis 
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is associated with 13 CV diagnoses (identified using genetic data from MVP EHR data and 

replicated in UKBB EHRs), even after accounting for smoking, BMI, deprivation index, and 

depression diagnosis. Interestingly, 4 of the 13 diagnoses overlap with CV health factors from the 

LE8 traits – type 2 diabetes, obesity, overweight, and hypertension, which is parallel to genetic 

study of ideal cardiovascular health based on LE 7 66.  

 To identify potentially actionable gene targets that overlap between PTSD and CV 

conditions, we leveraged the cumulative effect of genetic variants on protein expression. We 

identified twice as many genes using brain-based proteome expression weights than with blood. 

We also observed interesting relationships, such as total cholesterol demonstrating negative 

genetic correlation with PTSD at multiple loci, and almost half of the gene associations have 

opposite effect estimates between PTSD and total cholesterol. These observations may 

contribute to the abnormal total cholesterol reported in individuals with PTSD 67.  Additionally, we 

report many shared proteomic associations of PTSD and CVD to further identify underlying 

common disease mechanisms and therapeutic targets. Among them, LRRC37A2 was related to 

the most CVD traits (N=20), followed by MST1 (N=18). LRRC37A2 has been associated with 

coronary artery disease 68, cardiorespiratory fitness 69, and thyroid function 70 . MST1 activation 

has been linked to the pathogenesis of cardiovascular and metabolic diseases 71 while its 

downregulation in the hippocampus appears to be protective in the context of stress-related 

mental health conditions (e.g. PTSD) 72. NCAM1 showed the most statistically significant 

proteomic association with smoking. This is in line with previous evidence linking this locus to 

smoking 73. Other PTSD-CV shared genes with supporting evidence from previous CV studies 

included TMEM106B 74-76 , MAD1L1 77, 78, SATB1 79, PLCL2 80, FURIN 81, 82, FOXP2 83, ESR1 84, 

and CNNM2 85. Pathway enrichment analyses highlighted different blood vs. brain patterns. 

Specifically, genes identified by the blood-based PWAS were enriched for immunological and 

neuronal processes, while the brain-based PWAS genes were related to carbohydrate 

metabolism and calcium-modulating functions. These findings converge with previous 

hypotheses related to the role of immune-metabolic signaling 86, 87 and calcium dysregulation 88-92 

in PTSD and CV pathogeneses. 

 

The drug repurposing analyses identified DRD2, GFAP, NOS1 and POR as common gene targets 

of several PTSD and CV drugs. Prazosin was common to PTSD and CV conditions, although with 

mixed results for alleviation of PTSD and related symptoms. Altered levels of GFAP expression 

are associated with PTSD93, and thrombotic injury to the vascular muscle leads to secretion of 

GFAP94. Furthermore, the drugs used for PTSD treatment we identified in our drug-gene-

interaction analysis have reported adverse CV effects such as weight gain, weight changes, 

cardiac arrythmia, abnormal blood pressure, and diabetes95, 96. NCAM1 that colocalizes with BMI, 

is on the same locus as DRD2 at 11q23.2, with both genes having molecular colocalization with 

insulin-like growth factor, blood pressure, and BMI.  On the other hand, CVD drugs that exhibit 

psychiatric adverse effects such as depression, and cognitive dysfunction which have been 

associated with serotonergic 97, and antidepressant response 98-100 respectively. These findings 

suggest a common role of the drugs in the two different diseases, where multiple mechanisms 

may be involved, either protective or detrimental.    

 

While we provide a comprehensive assessment of the biology shared between PTSD and 

several CV conditions, our study has some limitations. Due to the well-known disparities in genetic 

research 101, our analyses were limited to European ancestries, which do not allow generalization 

in all continental populations. We used MVP as the discovery cohort for EHR based CV diagnoses 
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due to its relatively low sample overlap with PTSD GWAS, this may have filtered out some loci 

that could have been identified with other cohorts as discovery. Additionally, veteran participants 

may not be representative of genetic profile identified from other (civilian) populations due to 

underlying demographic differences. While our observational analysis in the AllofUs cohort 

confirmed the PTSD-CV comorbidities in civilian cohort, further studies will be needed to verify 

the same for PTSD-CV shared loci identified in our molecular analyses. The drug-gene targets 

and subsequent mapping to PTSD and CV conditions is explained as an example to learn about 

role of gene drugs in therapeutic and adverse effects of drugs. The drugs mentioned were 

identified from research studies and may not reflect actual prescription practices and need further 

validation before we can make hypotheses regarding their impact on patients’ implications. 

Pharmacovigilance data for gene-drug targets was extracted from a single source and may not 

be updated from research data or ongoing trials.   

 

In conclusion, this study examines the shared biology of PTSD and CV health, leveraging 

large-scale molecular data and multi-modal information. Specifically, considering EHR diagnoses, 

cardiac imaging phenotypes, and cardiac health-related habits, we highlighted the local genetic 

correlations, proteomic and transcriptomic associations, and the potential pharmacological 

targets for molecular mechanisms underlying PTSD-CVD comorbidity. These finding converge on 

overlap in several domains across PTSD and CVD and within the context of the broader PTSD-

CVD literature highlight important mechanisms relevant to potential pharmacological intervention 

warranting additional research. 

5 DATA AVAILABILITY AND LINKS 

• UCSC Genome Browser :  https://genome.ucsc.edu/cgi-bin/hgTables 
• DLPFC Proteome weights: https://doi.org/10.7303/syn23627957 
• Open Targets: https://genetics.opentargets.org/ 
• Pan-UKBB Summary Statistics:  https://pan.ukbb.broadinstitute.org/ 
• MVP Summary Statistics: https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs001672.v11.p1  
• LAVA: https://github.com/josefin-werme/LAVA 
• ARIC - plasma protein: http://nilanjanchatterjeelab.org/pwas/ 
• UKBB-PPP: https://metabolomips.org/ukbbpgwas/ 
• Phecode Map: https://phewascatalog.org/ 
• Meta-analyzed MVP-UKBB GWAS summary statistics of 14 traits: released at the time of 

publication. 
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8  LEGENDS 

Supplementary Figure 1: The x-axis shows colocalization probability(different LD-linked causal 

variants-H3 hypothesis; same causal variant – H4 hypothesis), and y-axis is marked with CV 

conditions. between PTSD and CV conditions based on colocalization. The shared causal 

variants based on H4 hypothesis are labelled and their nearest genes are in parenthesis. We 

highlight genes at each locus that had colocalization evidence with molecular profiles 

(gene/splicing/proteome expression) and CV conditions (Supplementary Table S7). 
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Supplementary Figure 2: The matrix plot shows significant over-represented tissue based on 

genetically regulated gene expression profiles shared between PTSD and the CV conditions. The 

tissues are shown on the top x-axis, and traits are on the y-axis, grouped by category. LE8 – 

AHA’s Life’s Essential 8. Meta-analyzed phecodes from EHR of MVPandUKBB. 
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Supplementary Figure 3: Bar plot showing pathway enrichment of genes overlapping between 

PTSD and CV conditions based on brain-based genetically regulated gene expression. 
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Supplementary Figure 4: Bar plot showing pathway enrichment of genes overlapping between 

PTSD and CV conditions based on blood-based genetically regulated gene expression. 

 

 
 

 

Supplementary Tables – See attached xlsx file. 
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