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Existing studies suggest that m6Amethylation is closely related to the prognosis of cancer.
We developed three prognostic models based on m6A-related transcriptomics in lung
adenocarcinoma patients and performed external validations. The TCGA-LUAD cohort
served as the derivation cohort and six GEO data sets as external validation cohorts. The
first model (mRNA model) was developed based on m6A-related mRNA. LASSO and
stepwise regression were used to screen genes and the prognostic model was developed
from multivariate Cox regression model. The second model (lncRNA model) was
constructed based on m6A related lncRNAs. The four steps of random survival forest,
LASSO, best subset selection and stepwise regression were used to screen genes and
develop a Cox regression prognostic model. The third model combined the risk scores of
the first two models with clinical variable. Variables were screened by stepwise regression.
The mRNA model included 11 predictors. The internal validation C index was 0.736. The
lncRNA model has 15 predictors. The internal validation C index was 0.707. The third
model combined the risk scores of the first two models with tumor stage. The internal
validation C index was 0.794. In validation sets, all C-indexes of models were about 0.6,
and three models had good calibration accuracy. Freely online calculator on the web at
https://lhj0520.shinyapps.io/LUAD_prediction_model/.
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INTRODUCTION

Lung cancer ranks as the major cause of cancer death, accounting
for almost a quarter of cancer deaths (1). Lung adenocarcinoma
(LUAD) is the most common subtype of lung cancer, accounting
for more than 40% of lung cancer incidence (2).N6-
methyladenosine (m6A), the most abundant form of
posttranscriptional RNA modification in eukaryotes, plays an
important role in a variety of biological processes by regulating
the translation, processing, splicing, stabilization, and
degradation of target RNA (3). The abundance and effects of
m6A methylation modification on RNA are maintained by its
methyltransferases (‘writers’), binding proteins (‘readers’), and
demethylases (‘erasers’) (4).

Existing studies suggest that m6A methylation is closely
related to the prognosis of cancer. An increasing number of
m6A-related genes have been developed as molecular markers of
cancer prognosis. In lung adenocarcinoma, several biomarkers
have also been developed. Some of the biomarkers are based on
single gene model, such as YTHDC2 (5), NPM1 (6) and LCAT3
(7). Some others are multigene-based, including Wang (5 genes)
(8), Sun (10 genes) (9), and Zhu (6 genes) (10). Such molecular
biomarkers have been shown to enhance the accuracy of overall
survival (OS) prediction in LUAD.

However, the predictive power of these markers is often
limited. First, most models were constructed based only on
mRNAs or lncRNAs. Second, most of the models lack some
key parameters, prognostic index or baseline survival function,
which make it difficult for others to validate or use them. Further
on, even if complete parameters related to model validation are
provided (unfortunately, none is found in prediction model
related to lung adenocarcinoma at present), few convenient
online interaction tools are available.

Based on the above fact, we attempted to develop models to
fill in the gaps in prognostic model of lung adenocarcinoma
using m6A-related transcriptomics to predict OS. First, we
developed a mRNA prognostic model and a lncRNA
prognostic model for lung adenocarcinoma on TCGA cohort
and evaluated the two models on several GEO data sets. And
then we used the two models and some clinical variables as
alternative predictors to construct a multi-omics clinical
prediction model. All prediction models developed have two to
six independent external validation sets. To further facilitate the
practical application of the constructed prediction model in
clinical practice, we developed a free online calculator: https://
lhj0520.shinyapps.io/LUAD_prediction_model/.
METHODS

Data Acquisition and Processing
For model derivation, we downloaded RNA-seq data (counts
values) of 585 LUAD patients (version: 07-20-2019) and
corresponding clinical information (version: 08-07-2019) in
GDC TCGA from the UCSC Xena public data hub (http://
xena.ucsc.edu/). A total of 486 samples with primary tumors
and overall survival greater than 30 days were retained. The
Frontiers in Oncology | www.frontiersin.org 2
expression data from the TCGA data portal were quantile
normalized and log2-transformed (11). In addition, the
somatic mutation data of LUAD patients were also
downloaded as a mutation annotation format (MAF) file from
GDC Data Portal (https://portal.gdc.cancer.gov/).

For model validation study, 6 datasets from GEO (https://
www.ncbi.nlm.nih.gov/geo/) database were considered,
including GSE29016 (GPL6947, n=38), GSE29013 (GPL570,
n=30) GSE3141 (GPL570, n=58), GSE30219 (GPL570, n=85),
GSE37745 (GPL570, n=106), and GSE50081 (GPL570, n=127).
We downloaded the series matrix files and their platform
annotation information. All the microarray data were quantile
normalized and the Robust Multichip Average (RMA) method
was used for background adjusted (12).

Annotation of LncRNA Expression
The lncRNAs were extracted according to file downloaded from
GENCODE project (https://www.gencodegenes.org/, release 37).

Selection of m6A Methylation Regulators
and m6A-Related mRNAs
We obtained m6A methylation regulators from the literature
(13). For m6A-related genes in LUAD, genes annotated as
‘protein coding’ were retained from the m6AVar database
(http://rmvar.renlab.org/) (14), which is a comprehensive
database of m6A-associated variants.

Selection of m6A-Related LncRNAs
Spearman rank correlation analysis was conducted between m6A
methylation regulatory factors and lncRNAs. Rank correlation
coefficient | Rs | >0.3 and P <0.05 were used as the
selection criteria.

Development and Validation of Model
Based on mRNAs
Using the mRNA dataset of TCGA LUAD patients as a
derivation cohort, we developed a prognostic model to predict
OS. As the first step of variable selection, the least absolute
shrinkage and selection operator (LASSO) method (15) of R
package ‘glmnet’ was used to reduce the dimension of genes. The
optimal value of l was selected by tenfold cross-validation, and
corresponding variables with nonzero coefficients were retained.
Next, the “stepAIC” function with “both” in the R package
“MASS” was applied to perform stepwise Cox regression (16)
for the retained genes, and the optimal gene combination was
obtained according to the lowest Akaike information criterion
(AIC) value.

Based on the obtained Cox model, the risk score, i.e.,
prognostic index (PI), could be calculated directly using the
“predict” function in R package “rms” with the parameter “type=
lp” (17). The calculation formula is as follows:

Risk Score  PIð Þ = on
i=1bi ∗ Expi

� �
− �x, (1)

where n refers to the total number of genes in the model; bi refers
to the coefficient of each gene; and Expi refers to the expression
level of each gene; �x refers to the mean of PI.
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There are two fundamental aspects, discrimination and
calibration, to evaluate the performance of the model.
Discrimination refers to the ability of a model to differentiate
between high-risk patients and low-risk patients (18). It is
represented by Harrell’s c-index of concordance (C-index)
(19). Internal validation adopted bootstrapping (1000
resamples). The C-index was calculated by the “validate”
function in the R package “rms” (17). Time-dependent ROC
curves at 1-, 3- and 5-year were created by the “survivalROC” R
package (20). Through the “cindex” function of the “pec” R
package (21), the dynamic time-dependent C-index curve of
each dataset was plotted. Calibration refers to the agreement
between the predicted and observed survival probabilities (18).
The calibration plot was applied to assess the calibration of our
model at 1, 3 and 5 years respectively by the “rms” R
package (17).

In addition, we estimated the baseline survival function, S0(t)
which is an essential indicator for prediction model (22) and
presented it by Kaplan–Meier curves. For the Cox proportional
hazards model, the survival probability at different time points
are calculated by the following formula (23):

S tjXð Þ = S0 tð Þexp PIð Þ, (2)

where S(t|X) denotes the predicted survival at time t for a patient
with predictors X; S0(t) denotes the baseline survival function;
and PI denotes the linear predictors. The baseline survival is
estimated as , S0(t) = exp[-H0(t)] where H0(t) is the baseline
cumulative hazard (22). It can be computed by the “basehaz”
function in the “survival” R package (24).

The baseline survival function is crucial, which loads the
information needed to evaluate the calibration of survival
probabilities in the derivation dataset and more than that
calibration in validation datasets (22). Therefore, if we want to
validate the Cox model, it is necessary to know the baseline
survival function and regression coefficient of the model.

The “surv_cutpoint” function in the R package “survminer”
was used to determine the appropriate cutoff value of PI based on
the maximum rank statistics (25), and patients in each data set
were divided into two risk groups. The predicted survival curve
of each person could be calculated by the baseline survival
probability. Then, the calibration accuracy of the model can
also be evaluated by comparing the average predicted survival
probability curve with the observed survival probability curve in
the two risk groups (18).

The mRNA model has four GEO external validation sets.
Three single data sets included: GSE37745 (n=106), GSE29016
(n=38), and GSE50081 (n=127). Another dataset was pooled by
five datasets (GSE3141, GSE29013, GSE30219, GSE37745 and
GSE50081). The combined dataset was adjusted for batch effect
through the “ComBat” function of the “sva” R package (26). We
referred to this combined dataset as the “GSE5total” dataset.

Development and Validation of Model
Based on LncRNAs
For lncRNA model, we used four steps to obtain appropriate
lncRNAs. First, the random survival forest (RSF) (27), a machine
Frontiers in Oncology | www.frontiersin.org 3
learning method for regression, was used to conduct preliminary
feature screening for m6A-related lncRNAs through “rfsrc”
function of “randomForestSRC” R package (28). This
algorithm was used to rank prognostic lncRNAs (ntree =1000),
and we selected the top 100 lncRNAs for the next step of
selection. Second, we applied LASSO to shrink variables. Then,
the prognostic factors retained by the LASSO algorithm were
analyzed by best subset selection. To realize this method in the
Cox proportional hazards model, we used the R package “BeSS”
(29). Finally, stepwise Cox regression was used to select the
optimal model from the factors obtained in the previous step.

The performance evaluation and PI calculation methods of
lncRNA model were the same as mRNA model.

Two datasets, GSE30219 (n=85) and GSE50081 (n=127),
were used to validate the lncRNA model. For expanding the
sample size of the validation set, we combined the above two data
sets into one data set and named it “GSE2total” to validate.

Development and Validation of
Comprehensive Prediction Model
To further expand the clinical prediction capacity of m6A-related
model, we decided to develop a more comprehensive clinical
prediction model (we called it the “comprehensive prediction
model”) by combining two risk scores obtained from the above
models with clinical variables.

We used multiple imputation by chained equations of the R
package “mice” to impute the missing values of clinical variables
(5 times) (30). The number of iterations in each imputation was
five by default. The variables used in the multiple imputation
model included the two risk scores(mRNA risk score and
lncRNA risk score), three clinical factors that were common in
the derivation and validation datasets (age, sex and tumor stage)
and the outcome (the Nelson–Aalen estimator of the baseline
cumulative hazard and the outcome indicator) (31, 32). For 5
imputed data sets, we put each imputed set below each other into
a stacked data with a weight of 1/5 per patient (5 means number
of imputation) (33).

The predictive factors in the multivariate Cox regression
model were screened by stepwise regression. The performance
evaluation and PI calculation methods of this model were still the
same as mRNA model. Two datasets from GEO database,
GSE37745 (n=106) and GSE50081 (n=127), were used to validate.

Somatic Mutation Analysis
The “maftools “R package was used to analyze TCGA somatic
mutation data (34).

Immunotherapy Exploration of the Model
Immune checkpoints, negative regulators of immune activation,
can downregulate the immune state of the body and limit
antitumor responses (35, 36). Tumor Immune Dysfunction
and Rejection (TIDE) is a computational framework developed
to assess the potential of tumor immune escape from gene-
expressed cancer samples and to measure the responsiveness of
immune checkpoint inhibitors (37, 38). TIDE scores were
calculated for each of 486 LUAD patients by the TIDE website
(http://tide.dfci.harvard.edu/).
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Drug Prediction
By using the “calcPhenotype” function of the R package
“oncoPredict” (39) and the database resources of Genomics of
Drug Sensitivity in Cancer (GDSC) V2 as development data, six
commonly used chemotherapy drugs (paclitaxel, fluorouracil,
cisplatin, vinorelbine, gemcitabine, and docetaxel) were used for
analysis, and the half-maximum inhibitory concentration (IC50)
of each drug was estimated in every sample.

Statistical Analysis
All statistical analyses were performed using R (version 4.1.0). A
bivariate normal distribution test was performed on the data
requiring correlation analysis. The Shapiro-Wilk test and
Bartlett’s test of homogeneity of variances were performed on
the data requiring comparison between groups. Student’s t test
was used if the continuous variable was normally distributed, and
the Wilcoxon rank sum test was used if the continuous variable
was not normally distributed. P < 0.05 was considered
statistically significant. Median follow-up time was calculated
Frontiers in Oncology | www.frontiersin.org 4
by reverse Kaplan-Meier method (40). The survival curves were
analyzed using log-rank test.
RESULTS

Patient Cohorts
The design and workflow of the models constructed in this study
are shown in Figure 1. The patient characteristics are
summarized in Table 1. For the derivation cohort, a total of
486 patients had 175 deaths and an event rate of 36%, with a
median overall survival of 2.4 years (95%CI: 2.2-2.8).

In the comprehensive prediction model, the number of events
per variable in derivation model was 35 (175/5), indicating a
reasonable number of events compared to the number of
candidate predictors. This quantity meets the EPV principle
required by the sample size of the prediction model, that is,
there should be at least ten events per variable (23). We observed
only a slight percentage of missing values for age and tumor stage
FIGURE 1 | The workflow of this study. RSF, random survival forest; DCA, decision curve analysis.
June 2022 | Volume 12 | Article 895148
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in the TCGA cohort, 2.1% and 1.4%, respectively (Figure S1A).
Figure S1B shows that the missing values of the data variables
correspond to random missing values (41). All 486 patients who
met the requirements for the development data were included in
the model after imputation.

Figure 2 shows the survival curves (Figures 2A–C) and
baseline survival probability curves (Figures 2D–F) of each
data set in the three models.

Development and Validation of the mRNA
Model
The 21 m6A regulatory factors extracted from the literature are
listed in Table S1. Common genes obtained from the three data
sets m6AVar, TCGA and GSE30219 and 21 regulatory factors
were included; finally, we obtained 4386 mRNAs related to
m6A (Figure 3A).

These genes were screened by LASSO (Figure 3B) and stepwise
regression successively, and a prediction model containing 11
mRNAs associated with OS was obtained (CASC3, USP4, CTCFL,
SETDB2, MARCH4, KIRREL3, GRIK2, EIF2AK3, SNTG2,
LINGO2 and ZNF708). Figure 3C shows the coefficients of the
model visually. Based on the genes and coefficients in the
development data set, PI was constructed as follows:

PI = −0:46605� CASC3 − 0:64556� USP4 + 0:11549�
CTCFL  − 0:34872� SETDB2 + 0:09105�MARCH4+ 0:16502�

KIRREL3 + 0:12956� GRIK2 − 0:60740� EIF2AK3 −

0:15933� SNTG2 + 0:06450� LINGO2 − 0:24452�
ZNF708  + 23:20828

The distribution of PI in the derivation and validation data sets were
shown in Figure S2A. The base survival probability of the mRNA
model from 1 to 10 years was given in Table S2. By substituting the
calculated PI and the basic survival probability at different time
points into formula (2), the prognostic survival probability of
individual at corresponding time points can be obtained
Frontiers in Oncology | www.frontiersin.org 5
In internal validation, the apparent C-index of the model was
0.751(95%CI:0.711-0.791), and the optimism-corrected C-index
with 1000 bootstrap resamples was 0.736. The 1-year, 3-year and
5-year AUCs of the model were 0.768, 0.788, and 0.756,
respectively (Figure 4A). The calibration plot shows that the
model has good agreement between predicted and observed
survival probabilities at 1, 3 and 5 years (Figure 4B). In
addition, patients were divided into two risk groups based on
the optimal cutoff value of PI (Figure 4C). In Figure 4D, the
observed Kaplan–Meier survival curves (the solid line) were close
to the average predicted survival curves (the dotted line) in the
two risk groups, which also proved that our prediction model
had good calibration accuracy. Figure S3 shows the Kaplan–
Meier survival curves (Figure S3A) and risk factor association
diagrams (Figure S3B) for the two risk groups.

In the external validation cohorts, C indexes of the model
were acceptable, which were 0.598(95%CI:0.511-0.685)
(GSE50081), 0.608(95%CI:0.510-0.707)(GSE29016), 0.634(95%
CI:0.571-0.697)(GSE37745) and 0.608(95%CI:0.567-0.649)
(GSE5total). In addition, Figure S4A shows C-indexes of the
model over 1-10 years in all datasets. According to the time-
dependent ROC curves (Figure 5), the area under the curves of
the model in the four validation sets of 1, 3 and 5 years were all
above 0.6, which also indicated that its discriminative ability is
satisfactory. The calibration diagrams from the four validation
sets show the good calibration accuracy of the model in external
validation (Figure 6). Patients in the validation sets were divided
into two risk groups based on the maximum rank statistics
(Figures S5A–D), and the average predicted survival curves
(the dotted line) and observed survival curves (the solid line)
of the two groups were compared to further verify the calibration
accuracy of the model (Figures S5E–H). The long-term
prediction ability of the model in the GSE50081 (Figure S5E)
and GSE29016 (Figure S5F) datasets was not as good as that in
the other two datasets (Figures S5G–H). However, within 5
years, the calibration accuracy of the model is acceptable.
Subsequently, the Kaplan–Meier survival curves of the two risk
TABLE 1 | Patient characteristics.

Characteristic Derivation
Cohort

Validation Cohorts

TCGA (n=486) GSE29016
(n=38)

GSE30219
(n=85)

GSE37745
(n=106)

GSE50081
(n=127)

GSE5 total
(n=406)

GSE2 total
(n=212)

Age, year (IQR) 66.0 (59.0,72.0) 69.0 (59.0,73.0) 60.0 (55.0,69.0) 64.0 (55.0,70.0) 69.9 (62.8,75.7) – –

Missing values, n
(%)

10 (2.0) – – – – – –

Gender (%)
Female 261 (54) 20 (53) 19 (22.4) 60 (56.6) 62 (48.8) – –

Male 225 (46) 18 (47) 66 (77.6) 46 (43.4) 65 (51.2) – –

Tumor stage (%)
Stage I 261 (53.7) 29 (76) – 70 (66.0) 92 (72.4) – –

Stage II 114 (23.4) 6 (16) – 19 (17.9) 35 (27.6) – –

Stage III 79 (16.2) 2 (5.3) – 13 (12.3) – – –

Stage IV 25 (5.1) – – 4 (3.8) – – –

Missing values, n (%) 7 (0.01) 1 (2.6) – – – – –

Follow-up time, years
(95%CI)

2.4 (2.2, 2.8) 11.8 (11.4, 13.4) 9.7 (8.3,11.2) 10.5 (9.2,13.0) 5.5 (5.2,6.0) 6.2 (5.8, 6.8) 6.2 (5.8,6.8)

Death events (%) 175 (36) 28 (73.7) 45 (52.9) 77 (72.6) 51 (40.1) 213 (52.5) 96 (45.3)
June 2022 | Volume
 12 | Article 895148

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Prognostic Model for LUAD Patients
groups and the risk factor association diagrams of the model in
each validation set are shown in Figures S6, S7 respectively.

Development and Validation of the lncRNA
Model
First, 1930 common lncRNAs of TCGA and GSE30219 data sets
were obtained (Figure 7A). Then, genes were screened by the
importance score of random survival forest (Figure 7B), and the
top 100 genes were reserved for the next step. Twenty-six genes
were obtained by LASSO screening of 100 reserved genes
(Figure 7C). Next, we selected the best subset selection
method for further screening of genes and obtained 21 genes
(Figure 7D). Finally, 15 lncRNAs of the prediction model
associated with OS were obtained by stepwise regression
(SNHG12, RPARP-AS1, CRNDE, LMO7DN, AC008467.1,
LINC00639, AC107464.1, AL445931.1, FLG-AS1, C5orf66,
AC026250.1, AC245595.1, LINC01933, LINC01137, RUSC1-
AS1). Furthermore, the co-expression networks of 21 m6A and
Frontiers in Oncology | www.frontiersin.org 6
1930 lncRNAs were visualized by a Sankey diagram, as shown in
Figure 8A. In addition, the heatmap of the correlation between
21 m6A genes and 15 lncRNAs in the model is shown
in Figure 8B.

Based on the genes and coefficients in the development data
set, PI was constructed as follows:

PI = −0:17135� LM07DN − 0:33117� SNHG12+

0:14349� C5orf66  + 0:41125� RUSC1 − AS1ð Þ + 0:16394�
AC245595:1  + 0:27029� LINC01137 + 0:10490�
AL445931:1  + 0:11064� FLG − AS1ð Þ − 0:10828�
AC107464:1  + 0:15101� AC026250:1 − 0:17919�
CRNDE  − 0:15018� AC008467:1 + 0:22517�
LINCO1933  − 0:11297� LINC00639 − 0:25657�

PRARP  − AS1ð Þ − 0:07307
A B C

D E F

FIGURE 2 | The survival curves and baseline survival probability curves of each data set in the three models. The survival curves of each data set in (A) the mRNA
model, (B) the lncRNA model, and (C) the comprehensive clinical model. The baseline survival probability curves of each data set in (D) the mRNA model, (E) the
lncRNA model, and (F) the comprehensive clinical model.
June 2022 | Volume 12 | Article 895148
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Figure 8C shows the coefficients of the model visually. The
distribution of PI in the development data set and validation set
is shown in Figure S2B. The base survival probability of the
lncRNA model from 1 to 10 years is given in Table S2

In internal validation, the apparent C-index was 0.730(95%
CI:0.688-0.772), and the optimism-corrected C-index with 1000
bootstrap replications was 0.707. The AUCs of the model at 1, 3
and 5 years were 0.754, 0.796, and 0.751, respectively
(Figure 9A). The calibration plot shows that the model has
good agreement between predicted and observed survival
probabilities at 1, 3 and 5 years (Figure 9B). Furthermore,
patients were divided into two risk groups based on the
optimal truncation value of PI (Figure 9C). It was further
found that the observed Kaplan–Meier survival curves in the
two risk groups were close to the average predicted survival
curves (Figure 9D), which also proved that our prediction model
had good calibration accuracy. Figure S8 shows the
Kaplan–Meier survival curves (Figure S8A) and risk factor
association diagrams (Figure S8B) for the two risk groups.

In the external validation cohorts, three C indexes of the
model were 0.596(95%CI:0.506-0.685)(GSE50081), 0.602(95%
Frontiers in Oncology | www.frontiersin.org 7
CI:0.525-0.682)(GSE30219) and 0.596(95%CI:0.534-0.658)
(GSE2total). In addition, Figure S4B shows C-indexes of the
model over 1-10 years in four datasets. Although C-indexes of
the model in the validation set is lower than derivation set, they
remained at 0.6 during the decade. According to the time-
dependent ROC curves (Figures 10A–C), the area under the
curves of the model in the three validation sets of 1, 3 and 5 years
were all above 0.6. Figures 10D–F shows the calibration accuracy
of the model in three external verification sets. Patients in the
validation sets were divided into two risk groups based on the
maximum rank statistics (Figures S9A–C), and the average
predicted survival curves and observed survival curves in the
two groups were compared to further validate the calibration
accuracy of the model (Figures S9D–F). Unfortunately, the
external validation calibration accuracy of the lncRNA model
was not as ideal as that of mRNA model, but the prediction
results within three years were close to the observations and did
not deviate too far from reality within five years. Subsequently,
the Kaplan–Meier survival curves of the two risk groups and the
risk factor association diagrams of the model in each validation
set are shown in Figures S10, S11 respectively.
A C

B

FIGURE 3 | Identification of genes in mRNA model. (A) Venn plot of 4386 mRNAs related to m6A. (B) LASSO shrinking path diagram. (C) The coefficients of 11
genes in the model.
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Development and Validation of the
Comprehensive Prediction Model
The prognostic indexes of the two gene models were used as
candidate predictors, and the comprehensive predictionmodel was
constructed by stepwise regression combined with three clinical
variables (age, sex and tumor stage) to predict OS. The final model
included three predictors: mRNA risk score, lncRNA risk score,
and tumor stage. Based on the coefficients and predictors obtained
from all imputed datasets, the final PI is structured as:

PI = −0:3295 + 0:6015�mRNA Risk Score + 0:4540�
IncRNA Risk Score  + tumor stage

in which:
Tumor stage: stage I=0, stage II= 0.6567, stage III= 0.7510,

stage IV= 0.9675
The distribution of PI in the development data set and

validation set is shown in Figure S2C. The base survival
probability of the comprehensive prediction model from 1 to
10 years is also given in Table S2.
Frontiers in Oncology | www.frontiersin.org 8
In internal validation, the apparent C-index was 0.795(95%
CI:0.780-0.810) the optimism-corrected C-index with 1000
bootstrap replications was 0.794. The 1-year, 3-year and 5-year
AUCs of this model were 0.824, 0.847, and 0.809, respectively
(Figure 11A). The calibration plot shows that the model has
good agreement between predicted and observed survival
probabilities at 1, 3 and 5 years (Figure 11B). Again, patients
were divided into two risk groups based on the optimal
truncation value of PI (Figure 11C). The observed Kaplan–
Meier survival curves for the two risk groups almost overlap with
the average predicted survival curves shown in Figure 11D,
further confirming that the prediction model has good
calibration accuracy in the derivation set.

There are two data sets used as external validation sets for this
model. In the external validation cohorts, the two C indexes of
the model were 0.649(95%CI:0.564-0.733)(GSE50081) and 0.606
(95%CI:0.536-0.677) (GSE37745). Figure S4C shows the C-
index of the model over 1-10 years in the three datasets.
Figures 12A–B shows the ROC curve of the model in the two
validation sets, and Figures 12C–D shows the calibration plots.
A B

C D

FIGURE 4 | The performance of the mRNA model in the derivation dataset. (A) 1-,3-,5-year ROC curves and (B) calibration plot of the mRNA model. (C) The
optimal cutoff value of PI. (D) Predicted versus observed survival probability in per risk group. Solid line: observed Kaplan-Meier curve; dotted line: average predicted
survival curve; shaded area: 95% confidence interval of observed survival probability.
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Again, we divided samples into two risk groups (Figures S12A,
B) and then compared the observed survival curves in the two
risk groups with the average predicted survival curves (Figures
S12C, D). In GSE50081, the model still has the risk of
underestimating the survival probability (Figure S12C).
However, in GSE37745, the predicted average survival
probability curves were quite close to the actual curve, showing
very good consistency (Figure S12D).

From this model, we created a nomogram to predict the
prognostic survival probability of patients with lung
adenocarcinoma at 1, 3 and 5 years (Figure S13).
Subsequently, we used decision curve analysis (DCA) to
compare and demonstrate the net benefits of the clinical utility
of the three models at 1, 3 and 5 years (Figure S14). With
increasing time, the net benefits of the three models continued to
increase, and the net benefits of the mRNA model and lncRNA
model at the three time points showed little difference. As a
matter of course, the net benefit of the comprehensive model is
always the greatest.

Online Calculators for Models
To facilitate the clinical application of the model, the three model
calculations mentioned in this paper can be completed by this
website: https://lhj0520.shinyapps.io/LUAD_prediction_model/.
Frontiers in Oncology | www.frontiersin.org 9
Enter or select the value of the variable and the time you want to
predict in the gray box on the left side of the page and then click
the “forecast” button at the bottom to obtain the corresponding
point estimate or survival curve on the right side (Figure S15).

Drug Prediction and TIDE Immunotherapy
Prediction Analyses
Chemotherapy plays a critical role in curing or controlling lung
adenocarcinoma. The IC50 estimates of 6 common
chemotherapeutic drugs were calculated from the GDSC
database. The difference of IC50 between the high and low risk
groups in the mRNA model was compared. The results
(Figure 13A) showed that the IC50 values of all 6 drugs were
significantly different between the high-risk group and the low-
risk group, and patients in the low-risk group were more
sensitive than the high-risk group.

Immunotherapy using immune checkpoint inhibitors has
brought hope to LUAD patients. The response of 486 patients
in the TCGA dataset to immune checkpoint inhibitors was
calculated based on the gene expression matrix through the
TIDE website. As shown in Figure 13B, for the mRNA model,
the risk score of patients in the nonresponse group (n=259) was
higher than that in the response group (n=227), and the difference
was statistically significant (Wilcoxon test, p=0.002). Further
A B

C D

FIGURE 5 | 1-,3-,5-year ROC curves of mRNA model in external validation data sets. (A) GSE50081 dataset. (B) GSE29016 dataset. (C) GSE37745 dataset.
(D) GSE5total dataset.
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analysis (Figure 13C) showed that patients in the low-risk group
(127/245) were more sensitive to immunotherapy than those in
the high-risk group (100/241). In contrast, in the lncRNA model,
the difference was not statistically significant (Wilcoxon test,
p=0.095), so it could not be considered that there was a
difference in risk scores between the two groups (Figure 13D).

Study of Somatic Variation in the
mRNA Model
We obtained single nucleotide mutations data for 476 LUAD
patients (ten samples were not available) from the GDC Data
Portal. Figure 14A is a summary of the mutation data. More
detailed mutation information is shown in Figure 14B. Different
colors represent different types of mutations. In addition, we
compared the mutations in genes in the mRNA model between
the two risk groups (Figure 14C). GRIK2 was found to be the
mutated gene with the most common frequency in both groups,
which mutated more in the high-risk group (Figure 14D). More
intriguingly, we calculated co-occurrence and mutually exclusive
mutations between 11 genes and found only two group co-
occurrence mutations, including GRIK2(Figure S16A).
Subsequently, we plotted the mutation frequency of genes into
gene word clouds, as shown in Figure S16B. Further, we
calculated the tumor mutation burden (TMB) in 476 samples
(Figure S16C). We compared the TMB of the responder and
non-responder groups in TIDE. The TMB of the responder
Frontiers in Oncology | www.frontiersin.org 10
group was higher than that of the non-responder group
(Wilcoxon test, p=0.028, Figure S16D), indicating that patients
with higher TMB may have a better effect on immunotherapy.
DISCUSSION

Commonly used predictive models for lung adenocarcinoma
based on m6A methylated relevant genes have been developed,
but these models are not yet complete in terms of application.
This study constructed clinical prediction models at three
different levels based on m6A-related mRNAs, lncRNAs and
clinical information data, and collected multiple external
validation sets for validation. We reported this study according
to the Transparent Reporting of a Multivariable Prediction
Model for Individual Prognosis or Diagnosis Statement
(TRIPOD). The complete checklist is shown in Table S3.

The first model was developed based on m6A-related mRNA
and contained 11 genes in total (Table S4). Compared with other
models, our model contains more genes. However, in several
independent external validation sets, the model shows relatively
stable and good discrimination and calibration. At present,
studies have shown that USP4, EIF2AK3 and CTCFL genes are
related to the prognosis of lung adenocarcinoma (42–44).

The 11 genes are all obtained from m6Avar database (now
updated to “RMVar”). Variants of these genes were hypothesized
A B

C D

FIGURE 6 | The calibration plots of mRNA model in external validation data sets. (A) GSE50081 dataset. (B) GSE29016 dataset. (C) GSE37745 dataset.
(D) GSE5total dataset.
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A B

C D

FIGURE 7 | Identification of genes in lncRNA model. (A) Venn plot of 1930 lncRNAs related to m6A. (B) Random survival forest analysis. (C) LASSO shrinking path
diagram. (D) The coefficient profile plot of the coefficient and loss paths for best subset selection.
A

B C

FIGURE 8 | Identification of genes in lncRNA model. (A) Sankey diagram of 21 m6A regulators and 1930 m6A-related lncRNAs. (B) The heatmap for the correlation
between 21 m6A genes and 15 prognostic m6A-related lncRNAs. (C) The coefficients of 15 lncRNAs in the model.
Frontiers in Oncology | www.frontiersin.org June 2022 | Volume 12 | Article 89514811

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Prognostic Model for LUAD Patients
A B

C D

FIGURE 9 | The performance of the lncRNA model in the derivation dataset. (A) 1-,3-,5-year ROC curves and (B) calibration plot of the lncRNA model. (C) The
optimal cutoff value of PI. (D) Predicted versus observed survival probability in each risk group. Solid line: observed Kaplan-Meier curve; dotted line: average
predicted survival curve; shaded area: 95% confidence interval of observed survival probability.
A B C

D E F

FIGURE 10 | The ROC curves and calibration plots of lncRNA model in external validation data sets. ROC curves at 1-,3-,5-year: (A) GSE50081 dataset,
(B) GSE30219 dataset, and (C) GSE2total dataset. The calibration plots at 1-,3-,5-year: (D) GSE50081 dataset, (E) GSE30219 dataset, and (F) GSE2total dataset.
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A B

C D

FIGURE 11 | The performance of the comprehensive model in the derivation dataset. (A) 1-,3-,5-year ROC curves and (B) calibration plot of the comprehensive
model. (C) The optimal cutoff value of PI. (D) Predicted versus observed survival probability per risk group.
A B

C D

FIGURE 12 | The ROC curves and calibration plots of comprehensive model in external validation data sets.1-,3-,5-year ROC curves: (A) GSE50081 dataset and
(B) GSE37745 dataset. The calibration plots: (C) GSE50081 dataset and (D) GSE37745 dataset.
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to affect RNA modifications (e.g., m6A) and thus disease (14).
The m6A-associated variants of 11 genes came from three
different confidence levels of sources and two aspects of
modification function (Figure S17). Four of the mutations lead
to lost m6A sites (USP4, CTCFL, GRIK2, SNTG2) and ten of the
mutations lead to gain m6A sites (ZNF708, LINGO2, EIF2AK3,
KIRREL3, MARCH4, SETDB2, USP4, CASC3). For m6A sites
with high confidence level were derived from miCLIP or PA-
m6A-seq experiments (3, 45, 46) and the three m6A-associated
variants (SETDB2, MARCH4, EIF2AK3) were retained because of
locating nearby the m6A sites or disrupting DRACH motif
around the m6A sites (47–49). For m6A sites having a medium
confidence level which were predicted from the previously
published MeRIP-seq data (50–52), the four m6A-associated
variants (KIRREL3, EIF2AK3, ZNF708, LINGO2) were derived
from the intersection between the variants and the m6A sites
generated from MeRIP-Seq experiments. For m6A sites with a
low confidence level predicted by transcriptome-wide prediction,
the seven m6A-associated variants (CTCFL, GRIK2, SNTG2,
CASC3, KIRREL3 and USP4 have two variants) were predicted
by the Random Forest prediction model (14). In addition,
disease-related data from GWAS and ClinVar databases were
collected to determine that the variants of 11 genes were
pathogenic mutations leading to dysregulation of m6A
modification in lung adenocarcinoma (14). Furthermore, we
calculated the correlation coefficients between 11 genes and
Frontiers in Oncology | www.frontiersin.org 14
21 m6A regulatory factors (Figure S18). It turns out that there
are varying degrees of correlation between each predictor
and regulator.

For mRNA risk score, we also explored their relationship with
common chemotherapy drugs and immunotherapy. The study
found that patients in the low-risk group were less resistant to
commonly used chemotherapy drugs than those in the high-risk
group. Furthermore, 11 mRNAs and risk score were calculated
for their association with each chemotherapy drug (Figure S19).
Risk scores were positively correlated with IC50 of all drugs
(i.e., patients with higher scores had higher resistance to
chemotherapy drugs), indicating that patients with higher
scores were insensitive to chemotherapy. Five of the 11
mRNAs (CTCFL, MARCH4, KIRREL3, GRIK2, LINGO2) were
also positively correlated with IC50 of all drugs. By analyzing the
relationship between TIDE score and mRNA risk score, we
found that patients with low TIDE scores were more likely to
respond to immune checkpoint inhibitors. This may help predict
the efficacy of immunotherapy for LUAD. In addition, it is
currently believed that a higher value of tumor mutation load
represents the higher immunogenicity of the tumor, which is
more conducive to immunotherapy drugs, and our analysis also
confirmed this view again.

The second model was constructed based on m6A related
lncRNAs. There are 15 predictors in total (Table S5). The
variables screening process of lncRNA model is relatively
A B

C D

FIGURE 13 | Drug prediction and TIDE immunotherapy prediction analyses. (A) Box plot of IC50 values of six chemotherapy drugs between the two risk groups in
the mRNA model. (B) The mRNA risk score between TIDE predicted responders and non-responders. (C) Distribution of TIDE responders and non-responders in
the mRNA risk groups. (D) The lncRNA risk score between TIDE predicted responders and non-responders. Responder: the patient who responds to the immune
checkpoint inhibitors. Nonresponder: the patient who does not respond to the immune checkpoint inhibitors. ****: <0.0001.
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complex, and repeated exploration is to find a prediction model
with relatively good discrimination. There are not enough studies
on lncRNA in lung adenocarcinoma, but four at present:
SNHG12, RPARP-AS1, CRNDE, LMO7DN. SNHG12 has been
experimentally predicted as a potential biomarker for the
diagnosis, treatment and prognosis of LUAD (53). RPARP-AS1
and CRNDE were included as two predictors in another literature
(54). LMO7DN has also been suggested as a predictor of lung
adenocarcinoma associated with ferroptosis (55).

The third model combined the risk scores of the first two
models with clinical variable. There are 3 predictors in total:
mRNA risk score, lncRNA risk score, tumor stage. We
considered combination of prognostic indices of the two
transcriptomic predictive models with clinical variables as a
new approach to prognosis prediction and achieved good results.

This study has several advantages. First, all models are based on
public cohort data from reliable sources that predict a long survival
interval of up to 10 years. Each model was externally validated by
Frontiers in Oncology | www.frontiersin.org 15
multiple independent data sets and stable validation results were
obtained. In addition, considering the usability of the model, a
model-related web calculator has been developed for anyone to use.

There are several limitations to our study. First, when
constructing the comprehensive model, we narrowed the
candidate predictors in the development model to three (age,
sex, and tumor stage), taking into account the fragmentary
clinical variables in validation sets. But it also simplifies the
final model somewhat. Secondly, the three models derived in this
study are somewhat complicated. In order to reduce the difficulty
of practical prediction caused by complex and diverse models, we
developed a web calculator containing all models. Thirdly, the
performance of our model in external verification will take into
account the difference between verification set and derivation set.
If the difference is too large, our model may not achieve
good performance.

In conclusion, we developed and externally validated three
models to predict survival probability of lung adenocarcinoma
A B

C D

FIGURE 14 | Landscape of somatic mutations in lung adenocarcinoma patients in TCGA. (A) the summary of the mutation data. (B) The waterfall plot of the
mutation distribution of the top 20 most frequently mutated genes. (C) The waterfall plot of the mutation distribution of 11 predictors between two risk groups in the
mRNA model. (D) The lollipop pot of the differential distribution of variants of GRIK2 between two risk groups in mRNA model.
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based on m6A-related transcriptomics. This may provide clues to
new strategies or therapeutic targets for lung adenocarcinoma.
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