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Background—Limited access to drug-susceptibility tests (DSTs) and delays in receiving DST 

results are challenges for timely and appropriate treatment of multi-drug resistant tuberculosis 

(TB) in many low-resource settings. We investigated whether data collected as part of routine, 

national TB surveillance could be used to develop predictive models to identify additional 

resistance to fluoroquinolones (FLQs), a critical second-line class of anti-TB agents, at the time of 

diagnosis with rifampin-resistant TB.

Methods and findings—We assessed three machine learning-based models (logistic regression, 

neural network, and random forest) using information from 540 patients with rifampicin-resistant 

TB, diagnosed using Xpert MTB/RIF and notified in the Republic of Moldova between January 

2018 and December 2019. The models were trained to predict the resistance to FLQs based on 

demographic and TB clinical information of patients and the estimated district-level prevalence of 

resistance to FLQs. We compared these models based on the optimism-corrected area under the 

receiver operating characteristic curve (OC-AUC-ROC). The OC-AUC-ROC of all models were 

statistically greater than 0.5. The neural network model, which utilizes twelve features, performed 

best and had an estimated OC-AUC-ROC of 0.87 (0.83,0.91), which suggests reasonable 

discriminatory power. A limitation of our study is that our models are based only on data from 

the Republic of Moldova and since not externally validated, the generalizability of these models to 

other populations remains unknown.

Conclusions—Models trained on data from phenotypic surveillance of drug-resistant TB can 

predict resistance to FLQs based on patient characteristics at the time of diagnosis with rifampin-

resistant TB using Xpert MTB/RIF, and information about the local prevalence of resistance to 

FLQs. These models may be useful for informing the selection of antibiotics while awaiting 

results of DSTs.

Introduction

Tuberculosis (TB), an infectious disease caused by M. tuberculosis bacterium, is one of 

the top ten leading causes of death worldwide [1]. Despite recent declines in global TB 

incidence, drug-resistant TB continues to pose major challenges to TB control in several 

countries [1-3]. An estimated 3.3% of incident cases with no previous treatment and 18% 

of incident cases with previous treatment had multi-drug resistant or rifampicin-resistant 

TB (MDR/RR-TB) in 2019 [1]. The treatment of drug-resistant TB is challenging (with the 

success rate of 57% for MDR/RR-TB in 2019) and requires long courses (between 9–20 

months) of regimens consisting of multiple antibiotics [1,4]. Many of these second-line 

antibiotics are associated with severe side effects [2,3].

The advent and adoption of a molecular test for the rapid detection of TB and the resistance 

to rifampicin (Xpert MTB/RIF) has enabled TB programs to detect individuals with RR-TB 

at the time of TB diagnosis [1]. The rapid detection of resistance to other anti-TB agents 

critical for the selection of effective treatment for individuals with RR-TB, remains a serious 

challenge. Phenotypic drug-susceptibility tests (DSTs) are not commonly available in many 

low-resource settings [1,5]. Even when available, culture-based methods take up to 12 weeks 

to provide results and may only be pursued routinely among a subset of culture-positive 

patients [6,7]. Unlike phenotypic DSTs, genotypic DSTs, such as line probe assays, can 

provide results within hours but these tests are also not available in many settings [4,5,8].
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Given the limitations of current DSTs, in most settings, the treatment of individuals detected 

by Xpert MTB/RIF as having RR-TB remains empiric (i.e., without the knowledge about 

their full drug-susceptibility profile) and according to standardized regimens [9]. These 

standardized regimens are often determined at the global level, with recommendations 

that the local epidemiology of drug-resistant TB, which is often unknown, be used to 

determine final composition [9,10]. The prevalence of resistance to second-line anti-TB 

agents varies markedly across different counties and regions [10-17]. For example, in a 

population-based study conducted in Azerbaijan, Bangladesh, Belarus, Pakistan, and South 

Africa, the prevalence of resistance to pyrazinamide and fluoroquinolones (two of the 

antibiotics included in the standardized shorter regimen recommended by the World Health 

Organization (WHO) for people newly diagnosed with RR-TB) [9] varied substantially 

between settings: 2.1–3.0% for pyrazinamide, 1.0–16.6% for ofloxacin, 0.5–12.4% for 

levofloxacin, and 0.9–14.6% for moxifloxacin [16]. In communities where the prevalence of 

resistance to the antibiotics included in the standardized second-line regimens is high, the 

use of standardized regimens results in many individuals with RR-TB receiving antibiotics 

that do not match their drug-susceptibility profile [7,12]. These patients are at higher risk 

of mortality and may experience a longer duration of infectiousness, which could lead 

to further transmission of drug-resistant TB [18-23]. Receiving inappropriate treatment 

would also increase the risk of functional monotherapy and of selection for additional drug 

resistance [12,24-27].

One potential approach for improving the selection of antibiotics for patients with RR-TB 

is to customize the treatment regimen based on observable characteristics of patients that 

are associated with drug susceptibility profiles [7,10,12]. Prior studies have identified patient 

characteristics that are associated with an increased or decreased risk of resistance including 

age [28-33], sex [29,31,32,34-36], education [29,34], rural/urban residence [30,34,37,38], 

geographic location [39,40], occupation/employment status [29,34,38], living condition 

(e.g., living in a household with only one room) [28,30], smoking [29,34,37], history of 

detention [30,32], infection with HIV [28,30,32-34], previous anti-TB treatment, history 

of anti-TB treatment failure, and previous hospitalization [41,42]. Yet, evidence is limited 

on whether these risk factors can be used in practice, at the point-of-care, to identify 

patients with TB that is likely resistant to specific second-line anti-TB agents and to inform 

individualized treatment recommendations [43].

In this study, we examine whether data from national phenotypic surveillance systems of 

drug-resistant TB can be used to develop predictive models for identifying resistance to 

fluoroquinolones (a critical second-line class of anti-TB agents) among patients diagnosed 

with RR-TB using Xpert MTB/RIF. We develop and evaluate these predictive models using 

prospectively-collected data on the demographic and health status of 2,518 patients with 

culture-positive TB notified between January 2018 and December 2019 in the Republic of 

Moldova.

To evaluate whether these predictive models could improve the selection of antibiotics, we 

consider a scenario where a fluoroquinolone (FLQ) would be replaced with delamanid 

(DLM) in the empiric RR-TB treatment regimen if additional resistance to FLQs is 

suspected (this follows the hierarchy of the WHO grouping of anti-TB agents) [9]. We 
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measure the utility of these predictive models based on their ability to 1) increase the 

proportion of patients with RR-TB who receive an appropriate treatment regimen (i.e., a 

regimen that matches the susceptibility of their M. tuberculosis strain to FLQs) and 2) 

reduce the use of DLM to minimize selective pressure for DLM resistance.

Methods

Data source and study population

Our data were collected in the course of routine activities of the national tuberculosis 

program in the Republic of Moldova. TB incidence in the Republic of Moldova was 

estimated at 80 cases per 100,000 population in 2019, one of the highest rates in the 

European Region [1, 44]. Moldova also has one of the highest incidence rates of MDR/

RR-TB in the world. In 2019, 33% of new cases and 60% of retreatment cases in Moldova 

had MDR/RR-TB [1]. Substantial efforts have been made in the country to combat the 

rise of MDR/RR-TB including the wide-spread adoption of Xpert MTB/RIF for rapid TB 

detection and universal use of phenotypic drug susceptibility testing for all patients with 

culture-positive TB [45].

Our dataset includes the records of 2,518 individuals with incident culture-positive TB 

detected between January 2018 and December 2019 (Table 1 and S1 Dataset). The record 

of each individual includes demographic information (e.g., age, sex, education, occupation, 

incarceration), diagnostic test results (e.g., results of Xpert MTB/RIF, microscopy), and 

additional clinical descriptors (e.g., location and severity of infection). To develop and 

evaluate the predictive models proposed here, we only included individuals with RR-TB 

diagnosed using Xpert MTB/RIF who had conclusive DST results to determine resistance or 

susceptibility to FLQs (Fig 1).

Ethics statement

Individuals being evaluated for suspected pulmonary TB during the time period of our 

study were approached for enrollment by physicians and nurses trained in informed consent. 

Written consent was provided to allow access to routinely collected basic demographic, 

residential, and epidemiological data. This study was approved by the Ethics Committee of 

Research of the Phthisiopneumology Institute in Moldova and the Yale University Human 

Investigation Committee (No. 2000023071).

Predictors and outcomes

Our goal was to examine whether resistance to FLQs can be predicted for an individual 

diagnosed with RR-TB using Xpert MTB/RIF based on observable characteristics of that 

individual (commonly referred to as features). To develop our predictive models, we 

considered the following features, which are observable at the point-of-care when the 

selection of antibiotics for the empiric treatment is determined:

1. Demographic information, including age, sex, occupation, education, satisfactory 

living condition, number of household contacts, number of household contacts 

under 18, whether currently in prison, whether homeless, whether receives 

monetary assistance, whether resides in urban area, whether reside outside 
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Moldova more than 3 months in the past year, and whether resides in a district 

with low/median/high prevalence (< 10%, 10–20%, and >20%) of resistance to 

FLQs.

2. TB-related information, including TB anatomic location (pulmonary, 

extrapulmonary), and TB type (e.g., new case, relapse case, previous treatment 

failure).

3. Results of microbiological tests, including microscopy.

Table 1 displays the distribution of values that these features take among patients with 

RR-TB, and patients with RR- and FLQ-resistant TB. To prepare our dataset, we coded 

entities with no or unrealistic values as “missing.” We note that age, sex, and TB type did 

not have any missing values (Table 1). When training and evaluating our predictive models, 

we extrapolated the missing entries for two features ‘number of household contacts’ and 

‘number of household contacts 18 or younger’ by replacing them with the mean values of 

each column. For all categorical features, as the occurrence of “missing” values may not 

be completely random, we kept all records with a “missing” value for these features when 

training and evaluating our predictive models.

The outcome we were interested in predicting was the resistance to FLQs, which we 

represented by a binary indicator. We defined resistance to FLQs as having a positive 

LJ or MGIT culture test result for at least one of FLQs (ofloxacin, levofloxacin, and/or 

moxifloxacin). Additional details about how resistance to different drugs was determined are 

provided in §S1.1 in S1 Text.

Model development and evaluation

We followed the guidelines for the Transparent Reporting of a multivariable prediction 

model for Individual Prognosis Or Diagnosis (TRIPOD) to develop and evaluate the 

predictive models described here [46]. We considered three supervised machine learning 

models: logistic regression, neural network, and random forest [47] (see §S2 in S1 Text). 

For each model, we estimate the probability of resistance to FLQs given the characteristics 

of a patient and classify the patient as “infected with FLQ-resistant TB” if this estimated 

probability is greater than a preset (e.g., 0.5) classification threshold. To identify features 

with important predictive power and to remove features that would diminish the model’s 

accuracy, we used three feature selection methods: recursive feature elimination [48], L1 

regularization [49], and permutation importance [50], all of which automate the selection of 

important features to optimize the model accuracy (§S2 in S1 Text).

To assess the internal validity of our models, we followed the bootstrap validation procedure 

recommended by The TRIPOD Statement (see §S4) to estimate the optimism-corrected 

area under the receiver operating characteristic curve (OC-AUC-ROC), and the optimism-

corrected sensitivity, specificity, F1 score, and Matthews correlation coefficient (MCC) [46]. 

Compared to randomly splitting the dataset into model development and model validation 

sets, the bootstrap validation approach recommended by the TRIPOD Statement is shown to 

be a stronger approach as it utilizes the entire dataset for model development and validation 

[51, 52]. Given that the relatively small size of our dataset (N = 540) did not allow for 
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conducting temporal validation, we use the bootstrap validation approach recommended by 

the TRIPOD Statement to obtain estimates of the performance measures listed above.

In this context, sensitivity measures the probability that the model correctly detects FLQ-

resistant TB, and specificity measures the probability that the model correctly detects 

susceptibility to FLQs. We compared the performances of models identified through 

different feature selection methods based on the estimated OC-AUC-ROC and selected 

the model with the highest estimated OC-AUC-ROC as the final model. To understand the 

importance of features, we recorded the number of times that each feature was identified as 

significant by the corresponding feature selection algorithm among each bootstrap iteration.

We note that the sensitivity and the specificity of predictive models considered here depend 

on the selected classification threshold (i.e., the probability above which we classify a 

patient as “infected with FLQ-resistant TB”). Selecting a lower classification threshold 

results in a more sensitive model at the expense of reduced specificity. Therefore, we 

evaluated our predictive models based on the estimates of OC-AUC-ROC and the estimates 

of sensitivity and specificity under varying classification thresholds.

Impact on the selection of antituberculous medications

The most recent WHO-recommended standard RR-TB treatment regimens (both the shorter 

and longer options) include FLQs [9], Therefore, if the prevalence of FLQ-resistant TB is 

μ% among patients with RR-TB, following the WHO standardized regimen would result in 

μ% of patients with RR-TB not receiving an appropriate treatment regimen (i.e., a regimen 

that is consistent with the susceptibility of their M. tuberculosis strain to FLQs). Following 

the hierarchy of the WHO grouping of anti-TB agents [9], we assume that when resistance 

to FLQs is suspected, the FLQ is replaced with delamanid (DLM). The use of predictive 

models to decide whether FLQs should be included or replaced with DLM, could improve 

the probability that a patient with RR-TB receives an appropriate treatment regimen (i.e., 

a treatment regimen that includes FLQs when susceptible to FLQs and that includes DLM 

in place of FLQs when resistant to FLQs). However, predictive models with low specificity 

would increase the unnecessary use of DLM, which consequently raises the risk for the 

selection of additional resistance to this drug.

To evaluate whether the use of the predictive models developed here could improve the 

selection of antibiotics for patients with RR-TB, we assessed the utility of each model using 

the net benefit measure [46], which is defined as λq(p)–c(p). Here, p is the classification 

threshold, q(p) is the expected proportion of individuals with RR-TB who receive an 

appropriate treatment regimen if the classification threshold is set to p, and c(p) is the 

expected proportion of individuals with RR-TB who unnecessarily receive DLM (instead of 

FLQs) if the classification threshold is set to p (see §S6 for additional details). In the above 

equation, λ is a trade-off threshold that represents the policymaker’s willingness to accept 

an increase in the proportion of individuals who unnecessarily receive DLM (i.e., c(p)) in 

order to increase the proportion of individuals who receive appropriate treatment regimens 

(i.e., q(p)). For example, λ = 5 implies that for every 1 percent point increase in the 

proportion of individuals who receive an appropriate treatment regimen, the policymaker is 
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willing to accept 5 percent point increase in the proportion of individuals who unnecessarily 

receive DLM.

To examine how accounting for the local prevalence of FLQ-resistance would impact the 

performance of predictive models described above, we developed two classes of models, 

which differed based on whether they include or exclude the feature ‘Residing in a region 

with low/medium/high prevalence of resistance to FLQs’ (Table 1).

Role of the funding source

The funders of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the report. The corresponding author had full access to all the 

data in the study and all authors had final responsibility for the decision to submit for 

publication.

Results

Based on the inclusion criteria displayed in Fig 1, 540 individuals with RR-TB diagnosed 

with Xpert MTB/RIF and confirmed positive or negative DST for FLQs were included to 

develop and evaluate the predictive models described above. Among these individuals, those 

with confirmed FLQ-resistant TB were more likely to live in regions with high prevalence of 

FLQ resistance and to have a history of treatment failure (Table 1).

All predictive models developed here resulted in OC-AUC-ROC estimates that were 

statistically greater than 0.5 (Table 2). Neural network models led to higher OC-AUC-ROC 

estimates compared with logistic regression and random forest models. Among models that 

did not account for the local prevalence of resistance to FLQs, the neural network model 

with permutation importance led to the highest OC-AUC-ROC estimate at 0.81 (0.77,0.85). 

Including the feature ‘Residing in a region with low/medium/high prevalence of resistance to 

FLQs’ (Table 1) to capture the local prevalence of resistance to FLQs increased the model’s 

OC-AUC-ROC to 0.87 (0.83,0.91) (Table 2). Based on the estimates of OC-AUC-ROC, we 

chose the neural network model with features identified by permutation importance as our 

final model. The analyses presented below are based on this model.

Our final model included the following features: age, number of household contacts, 

number of household contacts 18 or younger, living in a district with low, medium, or 

high prevalence of FLQ-resistance, TB type (new or relapse), education level (secondary 

or primary), if unemployed, results of microscopy test, whether residing in an urban area, 

and whether the living condition is satisfactory. These features were selected as important in 

more than 50% of bootstrap iterations used to estimate OC-AUC-ROC of this model (Fig 2).

The current strategy of using the standardized regimen for all patients with RR-TB 

implicitly assumes the absence of resistance to FLQs, which can be regarded as a predictive 

model with 0% sensitivity (i.e., correctly identifying 0% of patients with FLQ-resistant 

TB) and 100% specificity (i.e., correctly identifying 100% of patients with a TB strain 

susceptible to FLQs). This corresponds to using the classification threshold 1 in our 

predictive models. Lowering this classification threshold increases the sensitivity of the 
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model but decreases its specificity (Fig 3A). This, in consequence, increases the proportion 

of patients with RR-TB who receive appropriate treatment regimen that matches the 

susceptibility of their TB strains to FLQs but also increases the proportion of patients who 

may be unnecessarily treated with DLM (Fig 3B).

As the increase in the proportion of patients receiving appropriate treatment regimens is 

accompanied by an increase in the unnecessary use of DLM (Fig 3B), the optimal choice 

for the classification threshold depends on the policymaker’s willingness to tradeoff between 

these two conflicting objectives. Fig 4 displays the classification thresholds that maximizes 

the net benefit of the neural network model for different values of trade-off threshold λ. 

At the trade-off threshold λ = 0, which represents the unwillingness to accept an increase 

in the unnecessary use of DLM even if that improves the proportion of patients receiving 

appropriate treatment regimens, the optimal classification threshold is 1. This results in a 

predictive model with 0% sensitivity and 100% specificity, which is equivalent to the current 

strategy of using the standardized treatment regimen for all patients with RR-TB. As the 

trade-off threshold λ increases, the optimal classification threshold reduces, resulting in 

predictive models with lower sensitivity and higher specificity. Our final neural network 

model had statistically higher net benefit than the current strategy of using the standardized 

treatment regimen for all patients with RR-TB for trade-off thresholds λ≥1.0 (fig 4). Given 

the similar performance of neural network and random forest models in our study (Table 

2), we also reported the performance of the random forest model with recursive feature 

elimination in §S7 in S1 Text.

Discussion

Using data from the national TB surveillance system in the Republic of Moldova, we were 

able to develop predictive models to identify resistance to FLQs among patients diagnosed 

with RR-TB. Our final model, which was a neural network model with features identified by 

permutation importance method, had an OC-AUC-ROC of 0.87 (0.83,0.91). We identified 

age, number of household contacts, number of household contacts 18 or younger, living in 

districts with low, medium, or high prevalence of FLQ-resistance, TB type (new or relapse), 

education level (secondary or primary), if unemployed, results of microscopy test, whether 

residing in an urban area, and whether the living condition is satisfactory as strong features 

to indicate resistance to FLQs (Fig 2). These findings are consistent with the results of prior 

studies demonstrating that these characteristics were associated with the risk of resistance 

[28-34,37,38,41,42,43].

The sensitivity and the specificity of models developed here depend on the classification 

threshold used to predict the resistance to FLQs (Fig 3A and 3B). The optimal choice 

of this threshold requires a trade-off between the positive and negative consequences of 

using such predictive models with imperfect sensitivity and specificity. To demonstrate, we 

considered a scenario where FLQs can be replaced with DLM in the patient’s treatment 

regimen if resistance to FLQs is suspected. Increasing this classification threshold would 

lower the proportion of patients who are unnecessarily treated with DLM (i.e., were falsely 

identified as FLQ-resistant) but would also decrease the proportion of patients who receive 

a treatment regimen that matches the susceptibility of their TB strains to FLQs (Fig 3C and 
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3D). Hence, the added utility of our predictive models depends on the policymaker’s trade-

off threshold λ that represents their willingness to increase the proportion of individuals 

who unnecessarily receive DLM in order to increase the proportion of individuals who 

receive appropriate treatment regimens. Our analysis suggests that, compared to the strategy 

of using the standardized regimen for all patients with RR-TB, the added utility of our 

predictive models is statistically significant for a policymaker who is willing to accept ≥ 

1.0 percent point increase in the proportion of individuals who unnecessarily receive DLM 

for every 1 percent point increase in the proportion of individuals who receive appropriate 

treatment regimens.

We acknowledge several limitations in this study. First, our models are based only on 

data from the Republic of Moldova and were not externally validated on datasets from 

other settings. Therefore, the generalizability of these models to other settings remains 

unknown. Second, our predictive models were developed using a relatively small number of 

observations (n = 540) and hence, the performance of these models may be sensitive to the 

training data. By using optimism-corrected estimates for performance metrics to evaluate the 

models developed here, we believe the uncertainties due to the small sample size is properly 

accounted for in our conclusions [46]. Third, we used a simple approach to incorporate 

the local information about the prevalence of resistance to FLQs. The information about 

the resistance to FLQs was available for only 671 individuals with RR-TB and therefore, 

we were not able to estimate the prevalence of resistance to FLQs for all 50 districts of 

Moldova. Instead, we used a single categorical feature to capture whether an individual 

resides in a region with low, median, or high prevalence (<10%, 10–20%, and >20%) of 

resistance to FLQs.

We measured the utility of a predictive model based its impact on the proportion of patients 

with RR-TB who would receive an appropriate treatment regimen or would be unnecessarily 

treated with DLM. The utility of predictive models should be ideally investigated using 

a cost-effectiveness analysis that quantifies the cost and health consequences of replacing 

FLQs with DLM, which could reduce the clinical longevity of DLM but improve the 

treatment outcomes of patients with RR-TB. Accounting for this tradeoff allows the 

decisionmaker to identify the optimal classification threshold based on their tolerance in 

accepting a shorter clinical longevity for DLM if that leads to improving the treatment 

outcomes of patients with RR-TB.

To measure the impact of the proposed predictive models on the selection of antituberculous 

medications, we considered a simple scenario where FLQs could be replaced with DLM 

in the empiric treatment of RR-TB if resistance to FLQs is suspected. Under certain 

operational research conditions, new regimens (e.g., the Nix-TB regimen [53,54]) could 

be recommended for people with FLQ-resistant TB. The predictive models described here 

could also be useful under these scenarios to identify, at the point-of-care, individuals with 

RR-TB who would be eligible for these novel regimens.

In the future, rapid point-of-care DSTs are expected to become available [2,55]. For 

example, sputum-based Xpert MTB/XDR has been developed for rapid detection of 

resistance to isoniazid, fluoroquinolone, and ethionamide [56]. While rapid point-of-care 
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DSTs could mitigate the limitations of current DSTs, they are not expected to be widely 

available in many high-burden settings. Moreover, these molecular-based DSTs can only 

identify the known genetic determinants of resistance. Therefore, the sensitivity of these 

tests is impacted by the prevalence of M. tuberculosis with gene mutations that are not 

associated with resistance. As such, phenotypic surveillance systems will continue to be 

maintained to ensure the sensitivity of these molecular-based tests. Therefore, even if rapid 

point-of-care DSTs become widely available, the predictive models described here could 

improve the accuracy of diagnosis by considering data from phenotypic surveillance systems 

of drug-resistant TB and including the results of rapid DSTs or whole genome sequencing as 

features.

In the absence of rapid point-of-care DSTs, the treatment of individuals with RR-TB 

in many high-burden settings, remains empiric and according to standardized regimens. 

Although standardized regimens facilitate access to second-line treatment in high-burden 

settings, they may lead to poor treatment outcomes, unnecessary toxicity, increased risk 

for emergence of additional resistance, and further transmission of drug-resistant TB 

[1-4,12,18-27,57] To improve the selection of antibiotics for patients with RR-TB, we 

showed that data from national phenotypic surveillance systems of drug-resistant TB 

could be used to identify resistance to second-line anti-TB agents based on the patient’s 

demographic and clinical information and the estimate of the local prevalence of drug-

resistant TB. Future studies could investigate the potential of these predictive models to 

optimize the selection of antibiotics, at the point-of-care, for patients with drug-resistant TB.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Funding:

This study was supported by the United States Agency for International Development (www.usaid.gov) through the 
TREAT TB Cooperative Agreement No. GHN-A-00-08-00004 to TC and JW. RY was supported by K01AI119603 
and TC by R01AI112438 and R01AI146555, all from the National Institute of Allergy and Infectious Diseases 
(www.niaid.nih.gov). KSG was supported by the US National Institutes of Health through the Eunice Kennedy 
Shriver National Institute of Child Health and Human Development (www.nichd.nih.gov) [F30HD105440] as well 
as the Medical Scientist Training Program [T32GM007205] through the National Institute of General Medical 
Sciences (www.nigms.nih.gov). The funders had no role in study design, data collection and analysis, decision to 
publish, or preparation of the manuscript.

Data Availability Statement:

The dataset used in this study is provided in the supplementary file S1 Dataset.xlsx. All 

other information needed to replicate the findings of this study is provided in the main text 

and S1 Text.pdf.

References

1. World Health Organization. Global tuberculosis report 2020. Geneva:: 2020 https://www.who.int/
teams/global-tuberculosis-programme/data.

2. Furin J, Cox H, Pai M. Tuberculosis. Lancet. 2019; 393(10181):1642–56. Epub 2019/03/25. 
10.1016/S0140-6736(19)30308-3 [PubMed: 30904262] 

You et al. Page 10

PLOS Digit Health. Author manuscript; available in PMC 2022 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.usaid.gov
http://www.niaid.nih.gov
http://www.nichd.nih.gov
http://www.nigms.nih.gov
https://www.who.int/teams/global-tuberculosis-programme/data
https://www.who.int/teams/global-tuberculosis-programme/data


3. Lange C, Dheda K, Chesov D, Mandalakas AM, Udwadia Z, Horsburgh CR Jr. Management 
of drug-resistant tuberculosis. Lancet. 2019; 394(10202):953–66. 10.1016/S0140-6736(19)31882-3 
[PubMed: 31526739] 

4. Pontali E, Visca D, Centis R, D’Ambrosio L, Spanevello A, Migliori GB. Multi and extensively 
drug-resistant pulmonary tuberculosis: advances in diagnosis and management. Curr Opin Pulm 
Med. 2018; 24(3):244–52. 10.1097/MCP.0000000000000477 [PubMed: 29470252] 

5. Nguyen TNA, Anton-Le Berre V, Banuls AL, Nguyen TVA. Molecular Diagnosis of Drug-Resistant 
Tuberculosis; A Literature Review. Front Microbiol. 2019; 10:794. 10.3389/fmicb.2019.00794 
[PubMed: 31057511] 

6. Pontali E, Raviglione MC, Migliori GB, and the writing group members of the Global TBNCTC. 
Regimens to treat multidrug-resistant tuberculosis: past, present and future perspectives. Eur Respir 
Rev. 2019; 28(152). Epub 2019/05/31. 10.1183/16000617.0035-2019

7. Jacobson KR, Barnard M, Kleinman MB, Streicher EM, Ragan EJ, White LF, et al. Implications 
of Failure to Routinely Diagnose Resistance to Second-Line Drugs in Patients With Rifampicin-
Resistant Tuberculosis on Xpert MTB/RIF: A Multisite Observational Study. Clin Infect Dis. 2017; 
64(11):1502–8. Epub 2017/02/16. 10.1093/cid/cix128 [PubMed: 28199520] 

8. Theron G, Peter J, Richardson M, Warren R, Dheda K, Steingart KR. GenoType((R)) MTBDRsl 
assay for resistance to second-line anti-tuberculosis drugs. Cochrane Database Syst Rev. 2016; 9: 
CD010705. Epub 2016/09/09. 10.1002/14651858.CD010705.pub3 [PubMed: 27605387] 

9. World Health Organization. WHO consolidated guidelines on drug-resistant tuberculosis treatment. 
2019.

10. Lange C, Chesov D, Heyckendorf J, Leung CC, Udwadia Z, Dheda K. Drug-resistant tuberculosis: 
An update on disease burden, diagnosis and treatment. Respirology. 2018; 23(7):656–73. Epub 
2018/04/12. 10.1111/resp.13304 [PubMed: 29641838] 

11. Muller B, Chihota VN, Pillay M, Klopper M, Streicher EM, Coetzee G, et al. Programmatically 
selected multidrug-resistant strains drive the emergence of extensively drug-resistant tuberculosis 
in South Africa. PLoS One. 2013; 8(8):e70919. 10.1371/journal.pone.0070919 [PubMed: 
24058399] 

12. Sotgiu G, Tiberi S, D’Ambrosio L, Centis R, Zumla A, Migliori GB. WHO recommendations 
on shorter treatment of multidrug-resistant tuberculosis. Lancet. 2016; 387(10037):2486–7. Epub 
2016/06/30. 10.1016/S0140-6736(16)30729-2 [PubMed: 27353670] 

13. Munoz-Torrico M, Salazar MA, Millan MJM, Martinez Orozco JA, Narvaez Diaz LA, Segura Del 
Pilar M, et al. Eligibility for the shorter regimen for multidrug-resistant tuberculosis in Mexico. 
Eur Respir J. 2018; 51(3). Epub 2018/03/24. 10.1183/13993003.02267-2017

14. Kendall EA, Cohen T, Mitnick CD, Dowdy DW. Second line drug susceptibility testing to inform 
the treatment of rifampin-resistant tuberculosis: a quantitative perspective. Int J Infect Dis. 2017; 
56:185–9. Epub 2016/12/23. 10.1016/j.ijid.2016.12.010 [PubMed: 28007660] 

15. Dalton T, Cegielski P, Akksilp S, Asencios L, Campos Caoili J, Cho SN, et al. Prevalence of and 
risk factors for resistance to second-line drugs in people with multidrug-resistant tuberculosis in 
eight countries: a prospective cohort study. Lancet. 2012; 380(9851):1406–17. Epub 2012/09/04. 
10.1016/S0140-6736(12)60734-X [PubMed: 22938757] 

16. Zignol M, Dean AS, Alikhanova N, Andres S, Cabibbe AM, Cirillo DM, et al. Population-
based resistance of Mycobacterium tuberculosis isolates to pyrazinamide and fluoroquinolones: 
results from a multicountry surveillance project. Lancet Infect Dis. 2016; 16(10):1185–92. Epub 
2016/07/12. 10.1016/S1473-3099(16)30190-6 [PubMed: 27397590] 

17. Lange C, Duarte R, Frechet-Jachym M, Guenther G, Guglielmetti L, Olaru ID, et al. Limited 
Benefit of the New Shorter Multidrug-Resistant Tuberculosis Regimen in Europe. Am J 
Respir Crit Care Med. 2016; 194(8):1029–31. Epub 2016/09/30. 10.1164/rccm.201606-1097LE 
[PubMed: 27685538] 

18. Makhado NA, Matabane E, Faccin M, Pincon C, Jouet A, Boutachkourt F, et al. Outbreak of 
multidrug-resistant tuberculosis in South Africa undetected by WHO-endorsed commercial tests: 
an observational study. Lancet Infect Dis. 2018; 18(12):1350–9. 10.1016/S1473-3099(18)30496-1 
[PubMed: 30342828] 

You et al. Page 11

PLOS Digit Health. Author manuscript; available in PMC 2022 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



19. MathemaB Andrews JR, Cohen T Borgdorff MW, Behr M Glynn JR, et al. Drivers of Tuberculosis 
Transmission. J Infect Dis. 2017; 216(suppl_6):S644–S53. Epub 2017/11/08. 10.1093/infdis/
jix354 [PubMed: 29112745] 

20. Shah NS, Auld SC, Brust JC, Mathema B, Ismail N, Moodley P, et al. Transmission of 
Extensively Drug-Resistant Tuberculosis in South Africa. N Engl J Med. 2017; 376(3):243–53. 
Epub 2017/01/19. 10.1056/NEJMoa1604544 [PubMed: 28099825] 

21. Sun F, Li Y, Chen Y, Guan W, Jiang X, Wang X, et al. Introducing molecular testing 
of pyrazinamide susceptibility improves multidrug-resistant tuberculosis treatment outcomes: a 
prospective cohort study. Eur Respir J. 2019; 53(3). 10.1183/13993003.01770-2018

22. Falzon D, Gandhi N, Migliori GB, Sotgiu G, Cox HS, Holtz TH, et al. Resistance to 
fluoroquinolones and second-line injectable drugs: impact on multidrug-resistant TB outcomes. 
Eur Respir J. 2013; 42(1):156–68. Epub 2012/10/27. 10.1183/09031936.00134712 [PubMed: 
23100499] 

23. Dharmadhikari AS, Mphahlele M, Venter K, Stoltz A, Mathebula R, Masotla T, et al. Rapid impact 
of effective treatment on transmission of multidrug-resistant tuberculosis. Int J Tuberc Lung Dis. 
2014; 18(9):1019–25. Epub 2014/09/06. 10.5588/ijtld.13.0834 [PubMed: 25189547] 

24. Fofana MO, Shrestha S, Knight GM, Cohen T, White RG, Cobelens F, et al. A Multistrain 
Mathematical Model To Investigate the Role of Pyrazinamide in the Emergence of Extensively 
Drug-Resistant Tuberculosis. Antimicrob Agents Chemother. 2017; 61(3). Epub 2016/12/14. 
10.1128/AAC.00498-16

25. Cegielski JP, Kurbatova E, van der Walt M, Brand J, Ershova J, TupasiT, et al. Multidrug-Resistant 
Tuberculosis Treatment Outcomes in Relation to Treatment and Initial Versus Acquired Second-
Line Drug Resistance. Clin Infect Dis. 2016; 62(4):418–30. Epub 2015/10/29. 10.1093/cid/civ910 
[PubMed: 26508515] 

26. Kempker RR, Kipiani M, Mirtskhulava V, Tukvadze N, Magee MJ, Blumberg HM. Acquired Drug 
Resistance in Mycobacterium tuberculosis and Poor Outcomes among Patients with Multidrug-
Resistant Tuberculosis. Emerg Infect Dis. 2015; 21(6):992–1001. Epub 2015/05/21. 10.3201/
eid2106.141873 [PubMed: 25993036] 

27. Cegielski JP, Dalton T, Yagui M, Wattanaamornkiet W, Volchenkov GV, Via LE, et al. Extensive 
drug resistance acquired during treatment of multidrug-resistant tuberculosis. Clin Infect Dis. 
2014; 59(8):1049–63. Epub 2014/07/25. 10.1093/cid/ciu572 [PubMed: 25057101] 

28. Workicho A, Kassahun W, Alemseged F. Risk factors for multidrug-resistant tuberculosis among 
tuberculosis patients: a case-control study. Infect Drug Resist. 2017; 10:91–6. Epub 2017/03/24. 
10.2147/IDR.S126274 [PubMed: 28331350] 

29. Rifat M, Milton AH, Hall J, Oldmeadow C, Islam MA, Husain A, et al. Development of multidrug 
resistant tuberculosis in Bangladesh: a case-control study on risk factors. PLoS One. 2014; 
9(8):e105214. Epub 2014/08/20. 10.1371/journal.pone.0105214 [PubMed: 25136966] 

30. Jenkins HE, Plesca V, Ciobanu A, Crudu V, Galusca I, Soltan V, et al. Assessing spatial 
heterogeneity of multidrug-resistant tuberculosis in a high-burden country. Eur Respir J. 2013; 
42(5):1291–301. Epub 2012/10/27. 10.1183/09031936.00111812 [PubMed: 23100496] 

31. Zhao Y, Xu S, Wang L, Chin DP, Wang S, Jiang G, et al. National survey of drug-resistant 
tuberculosis in China. N Engl J Med. 2012; 366(23):2161–70. Epub 2012/06/08. 10.1056/
NEJMoa1108789 [PubMed: 22670902] 

32. Faustini A, Hall AJ, Perucci CA. Risk factors for multidrug resistant tuberculosis in Europe: 
a systematic review. Thorax. 2006; 61(2):158–63. Epub 2005/10/29. 10.1136/thx.2005.045963 
[PubMed: 16254056] 

33. Espinal MA, Laserson K, Camacho M, Fusheng Z, Kim SJ, Tlali RE, et al. Determinants of 
drug-resistant tuberculosis: analysis of 11 countries. Int J Tuberc Lung Dis. 2001; 5(10):887–93. 
Epub 2001/10/19. [PubMed: 11605880] 

34. Zhang C, Wang Y, Shi G, Han W, Zhao H, Zhang H, et al. Determinants of multidrug-resistant 
tuberculosis in Henan province in China: a case control study. BMC Public Health. 2016; 16:42. 
Epub 2016/01/18. 10.1186/s12889-016-2711-z [PubMed: 26775263] 

35. Shin SS, Keshavjee S, Gelmanova IY, Atwood S, Franke MF, Mishustin SP, et al. Development 
of extensively drug-resistant tuberculosis during multidrug-resistant tuberculosis treatment. Am 

You et al. Page 12

PLOS Digit Health. Author manuscript; available in PMC 2022 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



J Respir Crit Care Med. 2010; 182(3):426–32. Epub 2010/04/24. 10.1164/rccm.200911-1768OC 
[PubMed: 20413630] 

36. Lomtadze N, Aspindzelashvili R, Janjgava M, Mirtskhulava V, Wright A, Blumberg HM, et al. 
Prevalence and risk factors for multidrug-resistant tuberculosis in the Republic of Georgia: a 
population-based study. Int J Tuberc Lung Dis. 2009; 13(1):68–73. Epub 2008/12/25. [PubMed: 
19105881] 

37. Ali MH, Alrasheedy AA, Hassali MA, Kibuule D, Godman B. Predictors of Multidrug-Resistant 
Tuberculosis (MDR-TB) in Sudan. Antibiotics (Basel). 2019; 8(3). Epub 2019/07/22. 10.3390/
antibiotics8030090

38. Desissa F Workineh T, Beyene T Risk factors for the occurrence of multidrug-resistant tuberculosis 
among patients undergoing multidrug-resistant tuberculosis treatment in East Shoa, Ethiopia. 
BMC Public Health. 2018; 18(1):422. Epub 2018/04/03. 10.1186/s12889-018-5371-3 [PubMed: 
29606112] 

39. Zelner JL, Murray MB, Becerra MC, Galea J, Lecca L, Calderon R, et al. Identifying Hotspots 
of Multi-drug-Resistant Tuberculosis Transmission Using Spatial and Molecular Genetic Data. J 
Infect Dis. 2016; 213(2):287–94. Epub 2015/07/16. 10.1093/infdis/jiv387 [PubMed: 26175455] 

40. Lin HH, Shin SS, Contreras C, Asencios L, Paciorek CJ, Cohen T. Use of spatial information to 
predict multidrug resistance in tuberculosis patients, Peru. Emerg Infect Dis. 2012; 18(5):811–3. 
Epub 2012/04/21. 10.3201/eid1805.111467 [PubMed: 22516236] 

41. Assefa D, Seyoum B, Oljira L. Determinants of multidrug-resistant tuberculosis in Addis 
Ababa, Ethiopia. Infect Drug Resist. 2017; 10:209–13. Epub 2017/07/27. 10.2147/IDR.S134369 
[PubMed: 28744149] 

42. Gandhi NR, Moll A, Sturm AW, Pawinski R, Govender T, Lalloo U, et al. Extensively drug-
resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV 
in a rural area of South Africa. Lancet. 2006; 368(9547):1575–80. Epub 2006/11/07. 10.1016/
S0140-6736(06)69573-1 [PubMed: 17084757] 

43. Wang S, Tu J. Nomogram to predict multidrug-resistant tuberculosis. Ann Clin Microbiol 
Antimicrob. 2020; 19(1):27. Epub 2020/06/09. 10.1186/s12941-020-00369-9

44. World Health Organization. Global tuberculosis report 2019. Geneva:: 2019 https://
www.who.int/tb/publications/global_report/en/

45. Jenkins HE, Crudu V, Soltan V, Ciobanu A, Domente L, Cohen T. High risk and rapid appearance 
of multidrug resistance during tuberculosis treatment in Moldova. Eur Respir J. 2014; 43(4):1132–
41. Epub 2014/02/22. 10.1183/09031936.00203613 [PubMed: 24558181] 

46. Moons KG, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P, Steyerberg EW, et al. Transparent 
Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): 
explanation and elaboration. Ann Intern Med. 2015; 162(1):W1–73. Epub 2015/01/07. 10.7326/
M14-0698 [PubMed: 25560730] 

47. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and 
prediction: Springer Science & Business Media; 2009.

48. Jović A, Brkić K, Bogunović N, editors. A review of feature selection methods with applications. 
2015 38th international convention on information and communication technology, electronics and 
microelectronics (MIPRO); 2015: Ieee.

49. Vidaurre D, Bielza C, Larrañaga P. A survey of L1 regression. International Statistical Review. 
2013; 81(3):361–87.

50. Gregorutti B, Michel B, Saint-Pierre P. Correlation and variable importance in random forests. 
Statistics and Computing. 2017; 27(3):659–78.

51. Steyerberg EW, Harrell FE Jr., Borsboom GJ, Eijkemans MJ, Vergouwe Y, Habbema JD. Internal 
validation of predictive models: efficiency of some procedures for logistic regression analysis. 
J Clin Epidemiol. 2001; 54(8):774–81. Epub 2001/07/27. 10.1016/s0895-4356(01)00341-9. 
[PubMed: 11470385] 

52. Steyerberg EW, Bleeker SE, Moll HA, Grobbee DE, Moons KG. Internal and external validation 
of predictive models: a simulation study of bias and precision in small samples. J Clin Epidemiol. 
2003; 56(5):441–7. Epub 2003/06/19. 10.1016/s0895-4356(03)00047-7 [PubMed: 12812818] 

You et al. Page 13

PLOS Digit Health. Author manuscript; available in PMC 2022 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.who.int/tb/publications/global_report/en/
https://www.who.int/tb/publications/global_report/en/


53. World Health Organization. Rapid Communication: Key changes to the treatment of drug-resistant 
tuberculosis (WHO/CDS/TB/2019.26). 2019

54. Conradie F, Diacon AH, Ngubane N, Howell P, Everitt D, Crook AM, et al. Treatment of 
Highly Drug-Resistant Pulmonary Tuberculosis. N Engl J Med. 2020; 382(10):893–902. Epub 
2020/03/05. 10.1056/NEJMoa1901814 [PubMed: 32130813] 

55. Xie YL, Chakravorty S, Armstrong DT, Hall SL, Via LE, Song T, et al. Evaluation of a Rapid 
Molecular Drug-Susceptibility Test for Tuberculosis. N Engl J Med. 2017; 377(11):1043–54. Epub 
2017/09/14. 10.1056/NEJMoa1614915 [PubMed: 28902596] 

56. Penn-Nicholson A, Georghiou SB, Ciobanu N, Kazi M, Bhalla M, David A, et al. Clinical 
evaluation of the Xpert MTB/XDR assay for rapid detection of isoniazid, fluoroquinolone, 
ethionamide and second-line drug resistance: A cross-sectional multicentre diagnostic accuracy 
study. medRxiv. 2021:2021.05.06.. 10.1101/2021.05.06.21256505 [PubMed: 21256505] 

57. Cox H, Hughes J, Black J, Nicol MP. Precision medicine for drug-resistant tuberculosis in high-
burden countries: is individualised treatment desirable and feasible? Lancet Infect Dis. 2018; 
18(9):e282–e7. Epub 2018/03/20. 10.1016/S1473-3099(18)30104-X [PubMed: 29548923] 

You et al. Page 14

PLOS Digit Health. Author manuscript; available in PMC 2022 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 1. Flowchart of inclusion criteria.
RIF: rifampicin, FLQ: a fluoroquinolone (ofloxacin, levofloxacin, or moxifloxacin). 

Resistance/susceptibility to RIF was determined based on the results of Xpert MTB/RIF 

test. Resistance/susceptibility to FLQs was determined based on the results of LJ and/or 

MGIT culture tests for ofloxacin, levofloxacin, and moxifloxacin. Resistance to FLQs was 

assumed if the resistance to least one of these three drugs was detected (see §S1.1 in S1 Text 

for additional details).
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Fig 2. 
The frequency of features identified as important through iterations of the bootstrap 

validation algorithm (§S4 in S1 Text) to evaluate the OC-AUC-ROC of our final model 

(neural network classifier and permutation importance algorithm).
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Fig 3. Evaluating the performance of the neural network model that accounts for the local 
prevalence of resistance to FLQs using features identified by permutation importance for 
varying classification threshold.
The impact of the classification threshold on the optimism-corrected sensitivity and 

specificity is displayed in Panels A; the impact of the classification threshold on the 

optimism-corrected proportion of individuals receiving an appropriate treatment regimen 

(i.e., a regiment that is consistent with susceptibility of a patient’s M. tuberculosis strain to 

FLQ) and on the optimism-corrected proportion of individuals who are unnecessarily treated 

with delamanid (DLM) is displayed in Panels B. The regions represent 95% bootstrap 

confidence intervals. See Figure F in S1 Text for estimates of F1 and Matthews correlation 

coefficient (MCC) scores for varying classification threshold.
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Fig 4. The optimal choice of the classification threshold for varying values of the policymaker’s 
trade-off threshold and the optimism-corrected utility of the neural network model to determine 
whether FLQs should be included or replaced with DLM for a patient with RR-TB.
The model’s utility is measured as the change in net benefit with respect to the strategy 

that uses the standardized treatment regimens for all patients with RR-TB. The trade-off 

threshold λ represents the percentage point increase in the proportion of individuals 

unnecessarily treated with DLM that the policymaker is willing to tolerate to increase the 

proportion of individuals who receive appropriate treatment by 1 percentage point. The 

regions represent 95% bootstrap confidence intervals.
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Table 1.

Demographic information, TB-related information, and test results in the data collected from the national 

tuberculosis surveillance system in the Republic of Moldova between January 2018 to December 2019.

Variable Individuals with RR-TB and
confirmed DST for FLQs, N = 540)

Individuals with RR-TB and
confirmed FLQ-resistance (N = 101)

Mean / Freq SD / % Mean / Freq SD / %

Demographics

Age 42.81 12.44 43.25 11.83

Sex

 Male 424 78.52% 72 71.29%

 Female 116 21.48% 29 28.71%

Occupation

 Employed 72 13.33% 11 10.89%

 Disabled 47 8.7% 11 10.89%

 Retired 41 7.59% 11 10.89%

 Student 9 1.67% 3 2.97%

 Unemployed 370 68.52% 64 63.37%

 Missing 1 0.19% 1 0.99%

Number of household contacts

 0 114 21.11% 27 26.73%

 1 126 23.33% 24 23.76%

 2 100 18.52% 17 16.83%

 3 71 13.15% 8 7.92%

 4 43 7.96% 10 9.90%

 5+ 52 9.63% 9 8.91%

 Missing 34 6.3% 6 5.94%

Number of household contacts 18 or younger

 0 298 55.19% 60 59.41%

 1 59 10.93% 8 7.92%

 2 56 10.37% 9 8.91%

 3 19 3.52% 6 5.94%

 4+ 12 2.22% 3 2.97%

 Missing 96 17.78% 15 14.85%

Education

 Primary 176 32.59% 31 30.69%

 Secondary 235 43.52% 47 46.53%

 Specialized secondary 96 17.78% 16 15.84%

 Higher education 18 3.33% 4 3.96%

 No education 10 1.85% 2 1.98%

 Missing 5 0.93% 1 0.99%
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Variable Individuals with RR-TB and
confirmed DST for FLQs, N = 540)

Individuals with RR-TB and
confirmed FLQ-resistance (N = 101)

Mean / Freq SD / % Mean / Freq SD / %

Satisfactory living condition

 Yes 263 48.70% 48 47.52%

 No 208 38.52% 35 34.65%

 Missing 69 12.78% 18 17.82%

Outside Moldova for more than 3 months

 Yes 71 13.15% 15 14.85%

 No 444 82.22% 82 81.19%

 Missing 25 4.63% 4 3.96%

Residing in urban area

 Yes 244 45.19% 45 44.55%

 No 295 54.63% 56 55.45%

 Missing 1 0.19% - -

Homeless

 Yes 62 11.48% 13 12.87%

 No 466 86.30% 87 86.14%

 Missing 12 2.22% 1 0.99%

Receiving money assistance

 Yes 151 27.96% 32 31.68%

 No 341 63.15% 62 61.39%

 Missing 48 8.89% 7 6.93%

Previously incarcerated

 Yes 80 14.81% 12 11.88%

 No 413 76.48% 80 79.21%

 Missing 47 8.7% 9 8.91%

Residing in a district with low, median, or high prevalence of 

resistance to FLQs
1

 Low (<10%) 105 19.44% 4 3.96%

 Medium (10%-20%) 88 16.30% 14 13.86%

 High (>20%) 292 54.07% 80 79.21%

 Missing 55 10.19% 3 2.97%

TB-related information

TB location

 Pulmonary 527 97.59% 99 98.02%

 Extra-pulmonary 5 0.93% 1 0.99%

 Missing 8 1.48% 1 0.99%

TB type

 New case 340 62.96% 61 60.40%

 Relapse case 138 25.56% 17 16.83%
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Variable Individuals with RR-TB and
confirmed DST for FLQs, N = 540)

Individuals with RR-TB and
confirmed FLQ-resistance (N = 101)

Mean / Freq SD / % Mean / Freq SD / %

 Return after default 48 8.89% 14 13.86%

 Treatment failure 10 1.85% 7 6.93%

 Initiated treatment abroad 4 0.74% 2 1.98%

Test Results

Microscopy

 Positive 250 46.30% 42 41.58%

 Negative 234 43.33% 49 48.51%

 Missing 56 10.37% 10 9.91%

Xpert

 Positive 540 100% 101 100%

 Negative - - - -

 Missing - - - -

Xpert-RIF
2

 Positive 540 100% 101 100%

 Negative - - - -

 Missing - - - -

Rifampicin resistance detected by culture
3

 Positive 464 85.93% 83 82.18%

 Negative 27 5.00% - -

 Missing 49 9.07% 18 17.82%

FLQ resistance
4

 Positive 101 18.7% 101 100%

 Negative 439 81.3% - -

 Missing - - - -

1
Prevalence of resistance to FLQs is calculated using the data between January 2018 and December 2019. The ‘missing’ category represents 

individuals with no information about their district of residence or who live in districts with fewer than 5 notified RR-TB during this period.

2
All patients received Xpert MTB/RIF as diagnostic test, which also reveals RIF susceptibility profile during diagnosis. However, some Xpert 

negative patients may also prove culture positive and later be detected through DST as rifampicin-resistant.

3
Resistance to rifampicin was assumed if either or both LJ and MGIT culture tests were positive (see §S1.1 in S1 Text for additional details). We 

note that given that these culture tests have imperfect sensitivity and specificity, it is possible that a small number of individuals who are diagnosed 
with rifampicin-resistant TB through Xpert-MTB/RIF have a negative culture test.

4
Resistance to FLQs was assumed if resistance to at least one of the FLQs (i.e., ofloxacin, levofloxacin, and/or moxifloxacin) was detected (see 

§S1.1 in S1 Text for additional details).
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Table 2.

The estimated optimism-corrected area under the receiver operating characteristic curve (OC-AUC-ROC), for 

predictive models developed by different machine learning algorithms and feature selection methods.

Machine learning 
model

Logistic Regression Neural 
Network

Random Forest

Feature selection 
method

Recursive 
Feature

Elimination

L1
Regularization

Permutation
Importance

Permutation
Importance

Recursive 
Feature

Elimination

Permutation
Importance

Model without 
information on 
local prevalence of 
resistance to FLQs

0.58 (0.52,0.63) 0.57 (0.52,0.63) 0.59 (0.53,0.65) 0.81 (0.77,0.85) 0.79 (0.74,0.83) 0.61 (0.52,0.68)

Model with 
information on 
local prevalence of 
resistance to FLQs

0.69 (0.63,0.73) 0.68 (0.63,0.74) 0.67 (0.61,0.72) 0.87 (0.83,0.91) 0.80 (0.76,0.83) 0.76 (0.72,0.80)
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