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To maximize future rewards in this ever-changing world, animals
must be able to discover the temporal structure of stimuli and
then anticipate or act correctly at the right time. How do animals
perceive, maintain, and use time intervals ranging from hundreds
of milliseconds to multiseconds in working memory? How is tem-
poral information processed concurrently with spatial information
and decision making? Why are there strong neuronal temporal
signals in tasks in which temporal information is not required? A
systematic understanding of the underlying neural mechanisms is
still lacking. Here, we addressed these problems using supervised
training of recurrent neural network models. We revealed that
neural networks perceive elapsed time through state evolution
along stereotypical trajectory, maintain time intervals in working
memory in the monotonic increase or decrease of the firing rates
of interval-tuned neurons, and compare or produce time intervals
by scaling state evolution speed. Temporal and nontemporal infor-
mation is coded in subspaces orthogonal with each other, and the
state trajectories with time at different nontemporal information
are quasiparallel and isomorphic. Such coding geometry facilitates
the decoding generalizability of temporal and nontemporal infor-
mation across each other. The network structure exhibits multiple
feedforward sequences that mutually excite or inhibit depend-
ing on whether their preferences of nontemporal information are
similar or not. We identified four factors that facilitate strong
temporal signals in nontiming tasks, including the anticipation
of coming events. Our work discloses fundamental computational
principles of temporal processing, and it is supported by and gives
predictions to a number of experimental phenomena.
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Much information that the brain processes and stores is tem-
poral in nature. Therefore, understanding the processing

of time in the brain is of fundamental importance in neuro-
science (1–4). To predict and maximize future rewards in this
ever-changing world, animals must be able to discover the tem-
poral structure of stimuli and then flexibly anticipate or act
correctly at the right time. To this end, animals must be able
to perceive, maintain, and then use time intervals in working
memory, appropriately combining the processing of time with
spatial information and decision making (DM). Based on behav-
ioral data and the diversity of neuronal response profiles, it has
been proposed (5, 6) that time intervals in the range of hun-
dreds of milliseconds to multiseconds can be decoded through
neuronal population states evolving along transient trajectories.
The neural mechanisms may be accumulating firing (7, 8), synfire
chains (9, 10), the beating of a range of oscillation frequencies
(11), etc. However, these mechanisms are challenged by recent
finding that animals can flexibly adjust the evolution speed of
population activity along an invariant trajectory to produce dif-
ferent intervals (12). Through behavioral experiments, it was
found that humans can store time intervals as distinct items
in working memory in a resource allocation strategy (13), but

an electrophysiological study on the neuronal coding of time
intervals maintained in working memory is still lacking. More-
over, increasing evidence indicates that timing does not rely on
dedicated circuits in the brain but instead, is an intrinsic compu-
tation that emerges from the inherent dynamics of neural circuits
(3, 14). Spatial working memory and DM are believed to rely
mostly on a prefrontoparietal circuit (15, 16). The dynamics and
the network structure that enable this circuit to combine spatial
working memory and DM with flexible timing remain unclear.
Overall, our understanding of the processing of time intervals in
the brain is fragmentary and incomplete. It is, therefore, essen-
tial to develop a systematic understanding of the fundamental
principle of temporal processing and its combination with spatial
information processing and DM.

The formation of temporal signals in the brain is another
unexplored question. Strong temporal signals were found in
the brain even when monkeys performed working memory
tasks where temporal information was not needed (17–21).
In a vibrotactile working memory task (17), monkeys were
trained to report which of the two vibrotactile stimuli sepa-
rated by a fixed delay period had higher frequency (Fig. 1D).
Surprisingly, although the duration of the delay period was

Significance

Perceiving, maintaining, and using time intervals in working
memory are crucial for animals to anticipate or act correctly at
the right time in the ever-changing world. Here, we system-
atically study the underlying neural mechanisms by training
recurrent neural networks to perform temporal tasks or com-
plex tasks in combination with spatial information processing
and decision making. We found that neural networks perceive
time through state evolution along stereotypical trajectories
and produce time intervals by scaling evolution speed. Tem-
poral and nontemporal information is jointly coded in a way
that facilitates decoding generalizability. We also provided
potential sources for the temporal signals observed in nontim-
ing tasks. Our study revealed the computational principles of
a number of experimental phenomena and provided several
predictions.

Author contributions: Z.B. and C.Z. designed research; Z.B. performed research; Z.B.
analyzed data; and Z.B. and C.Z. wrote the paper.y

The authors declare no competing interest.y

This article is a PNAS Direct Submission.y

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).y

Data deposition: The computer code is available from GitHub (https://github.com/
zedongbi/IntervalTiming).y
1 To whom correspondence may be addressed. Email: cszhou@hkbu.edu.hk.y

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.1921609117/-/DCSupplemental.y

First published April 27, 2020.

10530–10540 | PNAS | May 12, 2020 | vol. 117 | no. 19 www.pnas.org/cgi/doi/10.1073/pnas.1921609117

http://orcid.org/0000-0002-4130-0216
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/zedongbi/IntervalTiming
https://github.com/zedongbi/IntervalTiming
mailto:cszhou@hkbu.edu.hk
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1921609117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1921609117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1921609117
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1921609117&domain=pdf


N
EU

RO
SC

IE
N

CE
BI

O
PH

YS
IC

S
A

N
D

CO
M

PU
TA

TI
O

N
A

L
BI

O
LO

G
Y

Interval 
production(IP):

T T

Pulse 1 Pulse 2 Go

Movement

Perception
epoch

Delay
epoch

Production
epoch

Time

Timed spatial 
reproduction(t-SR):

Timed decision 
making(t-DM):

Which 
stimulus 

stronger?

Variable 
duration

Signal 1

Signal 2

x

Stimulus1 Stimulus2
Which 

duration 
longer?

Variable 
delay
epoch

Interval 
comparison(IC):

Go epoch

x

Frequency 
comparison:

f1 f2

f1>f2/f1<f2?Fixed delay

T TVariable 
duration

all-to-all 
recurrent 
network

A

B

C

D

T T

Fig. 1. Model setup. (A) All-to-all connected recurrent networks with soft plus units are trained. (B) Basic timing tasks. IP: The duration T of the perception
epoch determines the movement time after the go cue. IC: The duration T of the stimulus 1 epoch is compared with the duration T′ of the stimulus 2 epoch.
Stimuli with different colors (red, yellow, or blue) indicate that they are input to the network through different synaptic weights. (C) Combined timing tasks.
T determines the movement time after the go cue. Spatial location (t-SR) or decision choice (t-DM) determines the movement behavior. (D) A nontiming
task in the experimental study (18). Although the duration of the delay period is not needed to perform the task, there exists strong temporal signals in the
delay period.

not needed to perform this task, temporal information was
still coded in the neuronal population state during the delay
period, with the time-dependent variance explaining more than
75% of the total variance (18, 19). A similar scenario was also
found in other nontiming working memory tasks (19–21). It is
unclear why such strong temporal signals arose in nontiming
tasks.

Previous works showed that, after being trained to perform
tasks such as categorization, working memory, DM, and motion
generation, artificial neural networks (ANNs) exhibited cod-
ing or dynamic properties surprisingly similar to experimen-
tal observations (22–25). Compared with animal experiments,
ANN can cheaply and easily implement a series of tasks,
greatly facilitating the test of various hypotheses and the cap-
ture of common underlying computational principles (26, 27).
In this paper, we trained recurrent neural networks (RNNs)

(Fig. 1A) to study the processing of temporal information. First,
by training networks on basic timing tasks, which require only
temporal information to perform (Fig. 1B), we studied how
time intervals are perceived, maintained, and used in work-
ing memory. Second, by training networks on combined timing
tasks, which require both temporal and nontemporal informa-
tion to perform (Fig. 1C), we studied how the processing of
time is combined with spatial information processing and DM,
the influence of this combination on decoding generalizabil-
ity, and the network structure that this combination is based
on. Third, by training networks on nontiming tasks (Fig. 1D),
we studied why such a large time-dependent variance arises in
nontiming tasks, thereby understanding the factors that facili-
tate the formation of temporal signals in the brain. Our work
presents a thorough understanding of the neural computation
of time.
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Results
We trained an RNN of 256 soft plus units supervisedly using back
propagation through time (28). Self-connections of the RNN
were initialized to one, and off-diagonal connections were ini-
tialized as independent Gaussian variables with mean of zero
(27), with different training configurations initialized using dif-
ferent random seeds. The strong self-connections supported self-
sustained activity after training (SI Appendix, Fig. S1B), and the
nonzero initialization of the off-diagonal connections induced
sequential activity comparable with experimental observations
(27). We stopped training as soon as the performance of the net-
work reached criterion (23, 25) (performance examples are in SI
Appendix, Fig. S1).

Basic Timing Tasks: Interval Production and Interval Comparison
Tasks.
Interval production task. In the interval production (IP) task (the
first task of Fig. 1B), the network was to perceive the inter-
val T between the first two pulses, maintain the interval during
the delay epoch with variable duration, and then produce an
action at time T after the go cue. Neuronal activities after train-
ing exhibited strong fluctuations (Fig. 2A). In the following, we
report on the dynamics of the network in the perception, delay,
and production epochs of IP (Fig. 1 has an illustration of these
epochs).

The first epoch is the perception epoch. In response to the first
stimulus pulse, the network started to evolve from almost the
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Fig. 2. IP task. (A) The activities of example neurons (indicated by lines of different colors) when the time interval T between the first two pulses is 900 ms.
Vertical blue shadings indicate the pulse input to the network. (B) Population activity in the perception epoch in the subspace of the first three PCs. Colors
indicate the time interval T . Stars and circles indicate the starting and ending points of the perception epoch, respectively. The trajectories for T = 600 and
1,200 ms are labeled. (C) Firing profiles of two example neurons in the perception epoch. Line colors have the same meaning as in B. (D) Coefficient of
determination (R2) of how much the neuronal firing profile with the largest T can explain the variance of the firing profiles with smaller T in the perception
epoch. Error bar indicates SD over different neurons and T values. (E) Population activity in the subspace of the first three PCs in the delay epoch. Colors
indicate trajectory speed. The increasing blackness of stars and circles indicates trajectories with T = 600, 700· · · 1,200 ms. The dashed curve connecting
the end points of the delay epoch marks manifoldM. (F) Trajectory speed as a function of time in the delay epoch when T = 600 ms (blue) and 1,200 ms
(red). Shaded belts indicate SEM over training configurations. (G) Ratio of explained variance of the first five PCs of manifoldM. Error bars that indicate
SEM are smaller than plot markers. (H) The position of the state at the end of the delay epoch projected in the first PC of manifoldM as a function of T .
The position when T = 600 ms (or 1,200 ms) is normalized to be 0 (or 1). Gray curves: 16 training configurations. Blue curve: mean value. (I) The distance
between two adjacent curves in the delay epoch as a function of time, with the distance at the beginning of the delay epoch normalized to be one. Shaded
belts indicate SD. (J) Firing rates of example neurons of MoD, MoI, and non-M types as functions of T in manifoldM. (K) The portions of the three types of
neurons. (L) Population activity in the production epoch in the subspace of the first three PCs. Colors indicate the time intervals to be produced as shown in
the color bar of B. Stars and circles indicate the starting and ending points of the production epoch, respectively. (M, Upper) Firing profiles of two example
neurons in the production epoch. (M, Lower) Firing profiles of the two neurons after being temporally scaled according to produced intervals. (N) A point
at horizontal coordinate x means the SI (blue) or the ratio of explained variance (orange) of the subspace spanned by the first x SCs. Dashed lines indicate
that a subspace with SI 0.98 explains, on average, 43% of the total variance. (O) Trajectory speed in the subspace of the first three SCs as the function of
the time interval to be produced. In K, N, and O, error bars indicate SEM over training configurations. During training, we added recurrent and input noises
(Materials and Methods). Here and in the following, when analyzing the network properties after training, we turned off noises by default. We kept noises
for the perception epoch in B–D. Without noise, the trajectories in the perception epoch would fully overlap under different T values.
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same state along an almost identical trajectory in different sim-
ulation trials with different T values until another pulse came
(Fig. 2B); the activities of individual neurons before the sec-
ond pulse in different trials highly overlapped (Fig. 2 C and D).
Therefore, the network state evolved along a stereotypical trajec-
tory starting from the first pulse, and the time interval T between
the first two pulses can be read out using the position in this
trajectory when the second pulse came. Behaviorally, a human’s
perception of the time interval between two acoustic pulses is
impaired if a distractor pulse appears shortly before the first
pulse (29). A modeling work (29) explained that this is because
successful perception requires the network state to start to evolve
from near a state s0 in response to the first pulse, whereas the
distractor pulse kicks the network state far away from s0. This
explanation is consistent with our results that interval perception
requires a stereotypical trajectory.

We then studied how the information of timing interval T
between the first two pulses was maintained during the delay
epoch. We have the following findings. 1) The speeds of the tra-
jectories decreased with time in the delay epoch (Fig. 2 E and F).
2) The states sEndDelay at the end of the delay epoch at different T
values were aligned in a manifoldM in which the first principal
component (PC) explained 90% of its variance (Fig. 2G). 3) For
a specific simulation trial, the position of sEndDelay in manifoldM
linearly encoded the T value of the trial (Fig. 2H). 4) The dis-
tance between two adjacent trajectories kept almost unchanged
with time during the delay neither decayed to zero nor exploded
(Fig. 2I): this stable dynamics supported the information of T
encoded by the position in the stereotypical trajectory at the end
of the perception epoch in being maintained during the delay.
Collectively,M approximated a line attractor (24, 30) with slow
dynamics, and T was encoded as the position in M. To better
understand the scheme of coding T inM, we classified neuronal
activity f (T ) in manifoldM as a function of T into three types
(Fig. 2 J and K): monotonically decreasing (MoD), monoton-
ically increasing (MoI), and nonmonotonic (non-M) (Materials
and Methods). We found that most neurons were MoD or MoI,
whereas only a small portion were non-M neurons (Fig. 2K). This
implies that the network mainly used a complementary (i.e., con-
currently increasing and decreasing) monotonic scheme to code
time intervals in the delay epoch, similar to the scheme revealed
in refs. 17 and 31. This dominance of monotonic neurons may
be the reason why the first PC ofM explained so much variance
(Fig. 2G); SI Appendix, section S2 and Fig. S2 G and H has a
simple explanation.

In the production epoch, the trajectories of the different T
values tended to be isomorphic (Fig. 2L). The neuronal activ-
ity profiles were self-similar when stretched or compressed in
accordance with the produced interval (Fig. 2M), suggesting tem-
poral scaling with T (12). To quantify this temporal scaling, we
defined the scaling index (SI) of a subspace S as the portion
of variance of the projections of trajectories into S that can be
explained by temporal scaling (12). We found that the distri-
bution of SI of individual neurons aggregated toward one (SI
Appendix, Fig. S2B), and the first two PCs that explained most
variance have the highest SI (SI Appendix, Fig. S2C). We then
used a dimensionality reduction technique that furnished a set
of orthogonal directions (called scaling components [SCs]) in
the network state space that were ordered according to their
SI (Materials and Methods). We found that a subspace (spanned
by the first three SCs) that had high SI (=0.98) occupied about
40% of the total variance of trajectories (Fig. 2N), in contrast
with the low SI of the perception epoch (SI Appendix, Fig. S2F).
The average speed of the trajectory in the subspace of the first
three SCs was inversely proportional to T (Fig. 2O). Collectively,
the network adjusted its dynamic speed to produce different
time intervals in the production epoch, similar to observations
of the medial frontal cortex of monkeys (12, 32). Additionally,

we found a nonscaling subspace in which mean activity dur-
ing the production epoch changed linearly with T (SI Appendix,
Fig. S2 D and E), also similar to the experimental observations
in refs. 12 and 32.
Interval comparison task. In the interval comparison (IC) task
(the second task of Fig. 1B), the network was successively
presented two intervals; it was then required to judge which
interval was longer. IC required the network to perceive the
time interval T of the stimulus 1 epoch, to maintain the inter-
val in the delay epoch, and to use it in the stimulus 2 epoch
in which duration is T ′. Similar to IP, the network perceived
time interval with a stereotypical trajectory in the stimulus 1
epoch (SI Appendix, Fig. S3 A–C) and maintained time inter-
val using attractor dynamics with a complementary monotonic
coding scheme in the delay epoch (SI Appendix, Fig. S3 D–H).
The trajectory in the stimulus 2 epoch had a critical point scrit

at time T after the start of stimulus 2. The network was to give
different comparison (COMP) outputs at the go epoch depend-
ing on whether or not the trajectory had passed scrit at the end
of stimulus 2. To make a correct COMP choice, only the period
from the start of stimulus 2 to scrit (or to the end of stimulus 2 if
T >T ′) needs to be timed: as long as the trajectory had passed
scrit, the network could readily make the decision that T <T ′,
with no more timing required. After training, we studied the tra-
jectories from the start of stimulus 2 to scrit in the cases that
T <T ′ and found temporal scaling (SI Appendix, Fig. S3 J–N)
similar to the production epoch of IP consistently with animal
experiments (33, 34). These similarities between IP and IC on
how to perceive, maintain, and use time intervals imply universal
computational schemes for neural networks to process temporal
information.

The average speed of the trajectory after scrit increased with T
(SI Appendix, Fig. S3O), whereas the speed before scrit decreased
with T : this implies that the dynamics after scrit was indeed
different from that before.

Combined Timing Tasks: Timed Spatial Reproduction and Timed
DM Tasks. It is a ubiquitous phenomenon that neural networks
encode more than one quantity simultaneously (35–37). In this
subsection, we will discuss how neural networks encode tempo-
ral and spatial information (or decision choice) simultaneously,
which enables the brain to take the right action at the right time.
Timed spatial reproduction task. In the timed spatial reproduc-
tion (t-SR) task (the first task in Fig. 1C), the network was to
not only take action at the desired time but also, act at the spa-
tial location indicated by the first pulse. Similar to IP and IC,
the network used stereotypical trajectories, attractors, and speed
scaling to perceive, maintain, and produce time intervals (SI
Appendix, Fig. S4). In the following, we will focus on the coding
combination of temporal and spatial information.

In the perception epoch, under the two cases when the first
pulse was at two locations x and y separately, the activities
ri,perc(t , x ) and ri,perc(t , y) of the i th neuron exhibited similar
profiles with time t (Fig. 3B), especially when x and y had close
values. In our simulation, the location of the first pulse was rep-
resented by a Gaussian bump with standard deviation (SD) of
2., which is much smaller than the smallest spatial distance 6
between two different colors in Fig. 3 A and B; thus, the simi-
larity of the temporal profiles in Fig. 3B should not result from
the overlap of the sensory inputs from the first pulse but rather,
should emerge during training.

To quantitatively investigated the coding combination of tem-
poral and spatial information, we studied the first temporal flow
PC (F-PC1) of the neuronal population, namely the first PC
of {〈ri,perc(t , x )〉x}i , and the first spatial PC (S-PC1), namely
the first PC of {〈ri,perc(t , x )〉t}i , with 〈·〉a indicating averag-
ing over parameter a . By temporal flow, we mean the time
elapsed from the beginning of a specific epoch. We found
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between F-PC1 and S-PC1 in the perception epoch over 32 training configurations. *Significant (P < 0.05) larger than 45◦ (t test). (E) Portion of variance
explained by spatial information (S), temporal flow (F), and their mixture (S + F) in the perception epoch, averaging over 32 training configurations. (F)
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epoch; in G–J, T = 600, 700· · · 1,200 ms for the delay and production epochs.

that the angle between F-PC1 and S-PC1 distributed around
90◦, significantly larger than 45◦ (Fig. 3D). This indicates that
temporal flow and spatial information were coded in almost
orthogonal subspaces (Fig. 3C). We then studied the mixed
variance (19). Specifically, the variance explained by tempo-
ral (or spatial) information is vt =Vari,t(〈ri,perc(t , x )〉x ) [or
vx =Vari,x (〈ri,perc(t , x )〉t)], and the mixed variance is vt+x =
vtot− vt − vx , where vtot =Vari,t,x (ri,perc(t , x )) is the total vari-
ance. We found that the mixed variance took a small por-
tion of the total variance, smaller than the variance of either
temporal or spatial information (Fig. 3E). To understand the
implication of this result, we noted that a sufficient condition
for vt+x =0 is that different isospace (or isotemporal flow)
lines are related to each other through translational move-
ment (Fig. 3 F, Upper Left), where an isospace (or isotemporal
flow) line is a manifold in the state space with different tem-
poral flow (or space) values but a fixed space (or temporal
flow) value. The opposite extreme case vt+x = vtot implies that
different isospace (or isotemporal flow) lines are strongly inter-
twined; SI Appendix, section S3 has details. Together, orthog-
onality and small mixed variance suggest that isospace and
isotime lines interweave into rectangle-like grids (Fig. 3 F,
Lower); SI Appendix, Fig. S6 has illustrations of the simulation
results.

In the delay epoch, the population states were attracted
toward a manifold M of slow dynamics at the end of the delay
epoch (Fig. 2 E–I and SI Appendix, Fig. S4 B–D), maintaining
both the duration T of the perception epoch and the spatial
information x . We studied the coding combination of T and x in
M in a similar way to above. We found that the first time interval
PC (I-PC1), namely the first PC to code T , was largely orthogo-
nal with S-PC1 (Fig. 3G), and the mixed variance between T and
x was small (Fig. 3H).

In the production epoch, the network needed to maintain
three pieces of information: temporal flow t , time interval T , and
spatial location x . We studied the angle between the first PCs
of any two of them (i.e., F-PC1, I-PC1, and S-PC1). We found
that S-PC1 was orthogonal with F-PC1 and I-PC1 but that F-PC1
and I-PC1 was not orthogonal (Fig. 3I). For any two parameters,
their mixed variance was smaller than the variance of their own
(Fig. 3J); Materials and Methods has details.

Collectively, in all of the three epochs, the coding subspaces of
temporal and spatial information were largely orthogonal with
small mixed variance, suggesting rectangle-like grids of isospace
and isotime lines; SI Appendix, Fig. S6 has illustrations.
Timed DM task. In the timed decision-making (t-DM) task (the
second task in Fig. 1C), the network was to make a decision
choice at the desired time to indicate which of the two pre-
sented stimuli was stronger. Similar to IP, IC, and t-SR, the
network used stereotypical trajectories, attractors, and speed
scaling to separately perceive, maintain, and produce time inter-
vals (SI Appendix, Fig. S5 A–M). In all of the three epochs
of t-DM, the first PC to code decision choice was orthogonal
with F-PC1 or I-PC1, and the mixed variance between any two
parameters was small (SI Appendix, Fig. S5 N–S); however, F-
PC1 and I-PC1 in the production epoch were not orthogonal
(SI Appendix, Fig. S5R). These results are all similar to those
of the t-SR task.

Decoding Generalizability. We then studied how the above geom-
etry of coding space influences decoding generalizability: sup-
pose that the population state space is parameterized by a and b;
we want to know the error of decoding a from a state f0 in an iso-
b line f(a; btest) after training the decoder using another iso-b line
f(a; btrain) (Fig. 4A). We considered two types of nearest-centroid
decoders (20). Decoder 1 projects both f0 and f(a; btrain) into the
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Fig. 4. Decoding generalizability. (A) A schematic that explains Decoder 1 and Decoder 2. The decoders read the value of a through state f0 in iso-b
line f(a; btest) (green) after being trained by another iso-b line f(a; btrain) (orange). Decoder 1 reads a to be the same as that of f1 because f0 and f1

project to the same point on PC1 (black horizontal line) of f(a; btrain). Decoder 2 first translationally moves f(a; btest) so that its mass center T (O) after
translational movement T projects to the same point as the mass center Otrain of f(a; btrain) on PC1 and then reads a according to T (f0), which is the
a value of f2. (B) Two error sources of Decoder 1. (B, Upper) The mass centers O and Otrain do not project to the same point on PC1. (B, Lower) The
projections of f(a; btrain) and f(a; btest) on PC1 (lines AtrainBtrain and AtestBtest) do not have the same length. (C) The error of Decoder 1 (indicated by dot
color) to read temporal flow across different spatial locations as a function of the angle (AG) and mixed variance (MV) between the temporal flow and
spatial subspaces in the production epoch of t-SR task. (D) Correlations between decoding error (DE) and AG and between DE and MV. (E and F) The
same as C and D except for Decoder 2. (G) DE as a function of |xtrain− xtest| after Decoder 1 (solid line) or Decoder 2 (dashed line) is trained to read
the temporal flow using the isospace line at spatial location xtrain and then tested at spatial location xtest . The horizontal dashed line indicates chance
level, supposing that the decoder works by random guess. Error bars represent mean ± SEM across simulation trials. C–F analyze the data averaging over
|xtrain− xtest| in individual training configurations. T = 1,200 ms. Decoding generalizability in other epochs of the t-SR task and the t-DM task is shown
in SI Appendix, Figs. S7 and S8.

first PC of f(a; btrain) and reads the value of a to be the value
that minimized the distance between Pdec[f(a; btrain)] and Pdec[f0],
where Pdec[·] indicates the projection operation. Decoder 2
first translationally moves the whole iso-b line f(a; btest) so that
the mass center of Pdec[T [f(a; btest)]] coincides with that of
Pdec[f(a; btrain)], where T indicates the translation operation, and
then reads a according to Pdec[T [f0]] (Fig. 4A). Apparently, zero
error of Decoder 1 requires Pdec[f(a; btest)] and Pdec[f(a; btrain)]
to perfectly overlap. If the grids woven by iso-a and iso-b lines
are tilted (Fig. 3 F, Upper Left) or nonparallelogram like (Fig. 3
F, Upper Right), which can be quantified by the orthogonality

or mixed variance ratio, respectively, introduced in the above
section, the projections Pdec[f(a; btest)] and Pdec[f(a; btrain)] may
have nonoverlapping mass centers (Fig. 4 B, Upper) or differ-
ent lengths (Fig. 4 B, Lower), causing decoding error. Decoder
2 translationally moves the mass center of Pdec[f(a; btest)] to the
position of that of Pdec[f(a; btrain)], and therefore, its decoding
error only depends on the nonparallelogram likeness of grids.
Biologically, the projection onto the first PC of f(a; btrain) can
be realized by Hebbian learning of decoding weights (38), the
nearest-centroid scheme can be realized by winner-take-all DM
(20), and the overlap of the mass centers in Decoder 2 can be
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realized by homeostatic mechanisms (39) to keep the mean neu-
ronal activity over different iso-b lines unchanged (SI Appendix,
Eq. S19).

Consistent with the decoding scenario above, when decod-
ing temporal flow generalizing across spatial information in the
production epoch of t-SR, the error of Decoder 1 negatively cor-
related with the angle θ between F-PC1 and S-PC1 and positively
correlated with the portion ρmix of mixed variance (Fig. 4 C and
D); the error of Decoder 2 depended weakly on θ and positively
correlated with ρmix (Fig. 4 E and F). Materials and Methods
has details. Thanks to the angle orthogonality and small mixed
variance (Fig. 3), both decoders have above-chance performance
(Fig. 4G). Additionally for both t-SR and t-DM tasks, we studied
the decoding generalization of temporal (nontemporal) infor-
mation across nontemporal (temporal) information in all of the
perception, delay, and production epochs. In all cases, we found
how the decoding error depended on the angle between the first
PCs of the decoded and generalized variables, and the mixed
variance followed a similar scenario to that above (SI Appendix,
Figs. S7 and S8).

Sequential Activity and Network Structure. A common feature of
the network dynamics in all of the epochs of the four tim-
ing tasks above was neuronal sequential firing (Fig. 5A and SI
Appendix, Fig. S9 A–C). We ordered the peak firing time of
the neurons and then measured the recurrent weight as a func-
tion of the order difference between two neurons. We found, on
average, stronger connections from earlier- to later-peaking neu-
rons than from later- to earlier-peaking neurons (Fig. 5B and

SI Appendix, Fig. S9 D–F) (27, 40, 41). To study the network
structure that supported the coding orthogonality of temporal
flow and nontemporal information in the perception and pro-
duction epochs of t-SR (or t-DM), we classified the neurons
into groups according to their preferred spatial location (or deci-
sion choice). Given a neuron i and a group G of neurons (i
may or may not belong to G), we ordered their peak times and
investigated the recurrent weight from i to each neuron of G
(except i itself if i ∈G); Materials and Methods has details. In this
way, we studied the recurrent weight w(opost− opre, |xpost− xpre|)
as a function of the difference opost− opre between the peak
orders of post- and presynaptic neurons and the difference
|xpost− xpre| of their preferred nontemporal information (Fig. 5
C and D). In t-SR, first, w(opost− opre, 0) exhibited similar
asymmetry as that in IP (Fig. 5B) (positive if opost− opre > 0
and negative if opost− opre < 0), which drove sequential activ-
ity. Second, w(1, |xpost− xpre|) decreased with |xpost− xpre| and
became negative when |xpost− xpre| was large enough (Fig. 5C).
Together, the network of t-SR can be regarded as of several
feedforward sequences, with two sequences exciting or inhibit-
ing each other depending on whether their spatial preferences
are similar or far different. The sequential activity coded the
flow of time, and the short-range excitation and long-range
inhibition maintained the spatial information (42). A simi-
lar scenario also existed in the network of t-DM (Fig. 5D),
where the sequential activity coded the flow of time, and the
inhibition between the sequences of different decision pref-
erences provided the mutual inhibition necessary for making
decisions (43).

A B

C D

Fig. 5. Sequential activity and network structure. (A) An example of neuronal activity (with maximum normalized to one) in the perception epoch of IP
task sorted according to peak time. (B) Mean (solid line) and SD (shaded belt) of the recurrent weights as a function of the peak order difference between
post- and presynaptic neurons in the perception epoch of IP. (C) Recurrent weight as a function of the difference |x1− x2| between the preferred spatial
locations of post- and presynaptic neurons and their peak order difference in the perception epoch of t-SR. (D) Recurrent weight as a function of peak order
difference in the sequence of neurons with the same (blue) or different (orange) preferred decision choices in the perception epoch of t-DM. The shaded
belt indicates SEM. The sequential activity and network structure in other epochs of the four timing tasks of Fig. 1 B and C are shown in SI Appendix, Fig. S9.
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The scenario that feedforward structure hidden in recurrent
connections drives sequential firing has been observed in a num-
ber of modeling works (27, 40, 41). Our work extends this
scenario to the interaction of multiple feedforward sequences,
which can code temporal flow and nontemporal information
simultaneously.

Understanding the Strong Temporal Signals in Nontiming Tasks. We
have shown that in the perception and production epochs of t-SR
and t-DM, when the network is required to record the temporal
flow and maintain the nontemporal information simultaneously,
neuronal temporal profiles exhibit similarity across nontempo-
ral information (Fig. 3B and SI Appendix, Fig. S5A) and that
the subspaces coding temporal flow and nontemporal informa-
tion are orthogonal with small mixed variance (Fig. 3 D, E, I,

and J). Interestingly, in tasks that do not require temporal infor-
mation to perform, such profile similarity, orthogonality, and
small mixed variance were also experimentally observed (18, 19).
Moreover, the time-dependent variance explained more than
75% of the total variance in some nontiming tasks (18, 19). It
would be interesting to ask why nontiming tasks developed such
strong temporal signals, thereby understanding the factors that
facilitate the formation of time sense of animals.

Before we studied the reasons for the strong temporal signals
observed in nontiming tasks, we studied how the requirement
of temporal processing influences the temporal signal strength.
To this end, we studied the spatial reproduction (SR) task,
where the network was to reproduce the spatial location imme-
diately after a fixed delay (Fig. 6 A, Left, first row), and the
DM task, where the network was to decide which stimulus
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Fig. 6. Understanding the strong temporal signals in nontiming tasks. (A) Schematic of the nontiming tasks that we studied. (B) Bar charts show how the
total signal variance is split among temporal information, nontemporal information, and the residual variance unexplained by temporal and nontemporal
information in SR, t-SR, DM, and t-DM. (C) The portion of total variance explained by temporal signals in nontiming tasks. Error bars represent mean ±
SEM across training configurations. Each dot corresponds to the value in a training configuration. *Significant difference at P < 0.05 (two-sided Welch’s t
test), the same as in D–F and H. (D) The portion of time-dependent variance before (blue) and after (green) broadening the tuning curves of the sensory
neurons. (E) The portion of time-dependent variance in SR or DM when the network is trained on SR or DM only (blue) or trained on t-SR or t-DM
concurrently (green). (F) The portion of time-dependent variance in fixed delay (blue) or variable delay (green) tasks. (G, Left) Schematic of the feedback
connections (dashed arrows) to the sensory neurons (blue dot) to study anticipatory attention. Solid arrows represent feedforward connections. (G, Right)
Firing threshold of sensory neuron decreases with feedback current until zero. (H) The portion of time-dependent variance before (blue) and after (green)
adding feedback to sensory neurons. (I) Feedback current as a function of time in the delay epoch of SR. Blue line: mean value. Gray lines: individual training
configurations.
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was stronger immediately after the presentation of two stimuli
(Fig. 6 A, Right, first row). Unlike t-SR (or t-DM) (Fig. 1C), SR
(or DM) did not require the network to record time between
the two pulses (or during the presentation of the two stim-
uli). We used Pt =Vari,t(〈ri(t , x )〉x )/Vari,t,x (ri(t , x )) to be
the portion of time-dependent variance in the total variance
Vari,t,x (ri(t , x )), with ri(t , x ) being the firing rate of the i th
neuron at time t and nontemporal information x . We com-
pared the portions Pt(t-SR) and Pt(t-DM) in the perception
epochs of t-SR and t-DM with the portion Pt(SR) in the delay
epoch of SR and the Pt(DM) during the presentation of stim-
uli in DM. We found that Pt(SR)<Pt(t-SR) and Pt(DM)<
Pt(t-DM) (Fig. 6B). Therefore, temporal signals are stronger in
timing tasks. However, even in the two timing tasks t-SR and
t-DM that we studied, the portion of time-dependent variance
was smaller than the portion (75%) experimentally observed in
nontiming tasks (18, 19) (Fig. 6B). Therefore, there should exist
other factors than the timing requirement that are important to
the formation of temporal signals.

Specifically, we studied the following four factors: 1) temporal
complexity of task, 2) overlap of sensory input, 3) multitasking,
and 4) timing anticipation.
Temporal complexity of task. Temporal complexity measures the
complexity of spatiotemporal patterns that the network receives
or outputs in a task (27). To test the influence of temporal
complexity on the strength of temporal signals, we designed
COMP and change detection (CD) tasks that enhanced the tem-
poral complexity of SR and a cue-dependent decision-making
(cue-DM) task that enhanced the temporal complexity of DM
(Fig. 6A). In COMP, the network was to report whether the
spatial coordinate of the stimulus presented before the delay
was smaller or larger than that of the stimulus presented after
the delay, consistent with its vibrotactile version (18) (Fig. 1D).
In CD, the network was to report whether the two stimuli
presented before and after the delay were the same (21). In
cue-DM, the network was to report the index of the stronger
or weaker stimulus depending on the cue flashed at the end
of the presented stimuli. COMP and CD have higher tempo-
ral complexity than SR because the output not only depends
on the stimulus before the delay but also, the stimulus after the
delay. Similarly, cue-DM has higher temporal complexity than
DM because the output also depends on the cue. We found
that Pt(SR)<Pt(CD), Pt(SR)<Pt(COMP), and Pt(DM)<
Pt(cue-DM), suggesting that temporal complexity increases the
portion of time-dependent variance (Fig. 6C). It has been empir-
ically found that the task temporal complexity increases the
temporal fluctuations in neuronal sequential firing (27). Here,
we showed that the temporal fluctuation of the average neu-
ronal activity {〈ri(t , x )〉x}i over nontiming information also
increases with the temporal complexity of the task. The result
Pt(SR)<Pt(COMP) is consistent with the experimental obser-
vation that the population state varied more with time in COMP
than in SR (20).
Overlap of sensory input. Suppose that the population states of
the sensory neurons in response to two stimuli x1 and x2 are
s1 and s2, respectively. If s1 and s2 have high overlap, then the
evolution trajectories of the recurrent network in response to x1
and x2 should be close to each other. In this case, the variance
of the trajectories induced by the stimulus difference is small,
and the time-dependent variance explains a large portion of the
total variance. To test this idea, we broadened the Gaussian tun-
ing curves of the sensory neurons in t-SR, SR, COMP, and CD
tasks and found an increased portion of time-dependent variance
(Fig. 6D).
Multitasking. The brain has been well trained on various timing
tasks in everyday life, and therefore, the animal may also have a
sense of time when performing nontiming tasks, which increases
the time-dependent variance. To test this hypothesis, we trained

networks on t-SR and SR concurrently so that the network could
perform either t-SR or SR indicated by an input signal (26). We
also trained t-DM and DM concurrently. We only considered
these two task pairs because the two tasks in each pair share the
same number and type of inputs and outputs (except for a scalar
go cue input in t-SR and t-DM); hence, they do not require any
changes in the network architecture. We found that both Pt(SR)
and Pt(DM) were larger in networks that were also trained on
timing tasks than in networks trained solely on nontiming tasks
(Fig. 6E).
Timing anticipation. In the working memory experiments that
observed strong time-dependent variance (18, 19), the delay
period had fixed duration. This enabled the animals to learn
this duration after long-term training and predict the end of
the delay, thereby getting ready to take actions or receive new
stimuli toward the end of the delay. If the delay period is vari-
able, then the end of the delay will no longer be predictable. We
found that the temporal signals in fixed delay tasks were stronger
than those in variable delay tasks (Fig. 6F), which suggests that
timing anticipation is a reason for strong temporal signals. A
possible functional role of timing anticipation is anticipatory
attention: a monkey might pay more attention to its finger or
a visual location when a vibrotactile or visual cue was about to
come toward the end of the delay to increase its sensitivity to the
stimulus. To study the influence of this anticipatory attention to
the formation of temporal signals, we supposed feedback con-
nections from the recurrent network to the sensory neurons in
our model (Fig. 6G). Feedback currents could reduce the firing
thresholds of sensory neurons through disinhibition mechanism
(44). We also added L2 regularization on the feedback current
(Fig. 6G) to reduce the energy cost of the brain (Materials and
Methods). After training, the feedback current stayed at a low
level to reduce the energy cost but became high when the cue was
about to come to increase the sensitivity of the network (Fig. 6I).
We found that adding this feedback mechanism increased the
portion of time-dependent variance (Fig. 6H) because the feed-
back current, which increased with time toward the end of the
delay (Fig. 6I), provided a time-dependent component of the
population activity.

Collectively, other than the timing requirement in timing tasks,
we identified four possible factors that facilitate the formation
of strong temporal signals: 1) high temporal complexity of tasks,
2) large sensory overlap under different stimuli, 3) transfer of
timing sense due to multitasking, and 4) timing anticipation.

Discussion
In summary, neural networks perceive time intervals through
stereotypical dynamic trajectories, maintain time intervals by
attractor dynamics in a complementary monotonic coding
scheme, and perform IP or IC by scaling evolution speed.
Temporal and nontemporal information is coded in orthogonal
subspaces with small mixed variance, which facilitates decod-
ing generalization. The network structure after training exhibits
multiple feedforward sequences that mutually excite or inhibit
depending on whether their preferences of nontemporal infor-
mation are similar or not. We identified four possible factors
that facilitate the formation of strong temporal signals in nontim-
ing tasks: temporal complexity of task, overlap of sensory input,
multitasking, and timing anticipation.

Perception and Production of Time Intervals. In the perception
epoch, the network evolved along a stereotypical trajectory after
the first pulse (Fig. 2 B and C). Consistently, some neurons in
the prefrontal cortex and striatum prefer to peak their activi-
ties around specific time points after an event (45). In the brain,
such a stereotypical trajectory may be formed by not only neu-
ronal activity state but also, synaptic state, such as slow synaptic
current or short-term plasticity. The temporal information coded
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by the evolution of synaptic state can be read out by the network
activity in response to a stimulus (29, 46, 47).

We also studied the trajectory speed with time during the
perception epoch. We found that, after a transient period, the
speed in the IP task stayed around a constant value (SI Appendix,
Fig. S2A), the speed in the IC and t-DM tasks increased with time
(SI Appendix, Figs. S3C and S5C), and the speed in the t-SR task
decreased with time (SI Appendix, Fig. S4B). Therefore, we did
not make any general conclusion on the trajectory speed when
the network was perceiving time intervals.

The temporal scaling when producing or comparing intervals
has been observed in animal experiments (12, 32, 34). A possi-
ble reason why temporal scaling exhibits in both the production
epoch of IP and the stimulus 2 epoch of IC (Fig. 2 L–O and SI
Appendix, Fig. S3 I–N) is that both epochs require the network to
compare the currently elapsed time with the time interval main-
tained in working memory. In IC, the decision choice is switched
as soon as the trajectory has passed the critical point at which the
elapsed time t equals the maintained interval T ; in IP, the net-
work is required to output a movement as soon as t =T : both
tasks share a DM process around the t =T time point. This tem-
poral scaling enables generalizable decoding of the portion t/T
of the elapsed time (SI Appendix, Figs. S7G and S8G), which
enables people to identify the same speech or music played at
different speeds (48, 49).

When the to be produced interval T gets changed, the trajec-
tory in the perception epoch is truncated or lengthened (Fig. 2
B–D), whereas the trajectory in the production epoch is tempo-
rally scaled (Fig. 2 L–O). This difference helps us to infer the
psychological activity of the animal. For example, in the fixed
delay working memory task when the delay period was changed,
the neuronal activity during the delay was temporally scaled (18).
This implies that the animals had already learned the duration of
the delay and were actively using this knowledge to anticipate the
coming stimulus instead of passively perceiving time. However,
this anticipation was not feasible before the animal had learned
the delay duration. Therefore, we predict that, at the beginning
of training, the animal perceived time using stereotypical tra-
jectory, and the scaling phenomenon gradually emerged during
training.

Combination of Temporal and Nontemporal Information. Tempo-
ral and nontemporal information is coded orthogonally with
small mixed variance (Fig. 3). Physically, time is consistently
flowing regardless of the nontemporal information, and much
information is also invariant with time. The decoding general-
izability that resulted from this coding geometry (Fig. 4) helps
the brain to develop a shared representation of time across
nontemporal information or a shared representation of non-
temporal information across time using a fixed set of readout
weights. Decoding generalizability of nontemporal information
across time has been studied in working memory tasks (20, 50)
and has been considered as an advantage of working memory
models in which information is maintained in stable or a sta-
ble subspace of neuronal activity (20, 51). Here, we showed that,
with this geometry, such advantage also exists for reading out
temporal information.

Interestingly, the orthogonality and small mixed variance have
been experimentally observed in nontiming tasks (18, 19), and
therefore, their formation does not seem to depend on the timing
task requirement. Consistently, in the delay epoch of t-SR and t-
DM, although the network needed not to record the temporal
flow to perform the tasks, temporal flow and nontemporal infor-
mation were still coded orthogonally with small mixed variance
(SI Appendix, Fig. S10 A–D). By comparing the orthogonality and
mixed variance in the perception epoch of t-SR and t-DM with
those in the nontiming tasks (Fig. 6A), we found that timing task
requirement did not influence the orthogonality but generally

reduced the mixed variance (SI Appendix, Fig. S10 E and F). The
network structure in nontiming tasks also exhibited interacting
feedforward sequences (SI Appendix, Fig. S10 G–K).

Strong Temporal Signals in Nontiming Tasks. Our results concern-
ing the various factors that affect the strength of temporal signals
in nontiming tasks lead to testable experimental predictions. The
result of sensory overlap (Fig. 6D) implies that sensory neurons
with large receptive fields are essential to the strong temporal
signals. The result of multitasking (Fig. 6E) implies that animals
better trained on timing or music have stronger temporal sig-
nals when performing nontiming tasks. The result of temporal
complexity (Fig. 6C) implies that animals have stronger temporal
signals when performing tasks with higher temporal complexity,
which is consistent with some experimental clues (20). The result
of timing anticipation (Fig. 6F), consistent with ref. 27, implies
that, if the appearance of an event is unpredictable, then the
temporal signals should be weakened. Other than anticipatory
attention (Fig. 6G), anticipation may influence the temporal sig-
nals through other mechanisms. In the fixed delay COMP task
(Fig. 1D), suppose that a stimulus a appeared before the delay;
then, both the population firing rate and the information about
a in the population state increase toward the end of the delay
period (52). It is believed that this is because the information
about a was stored in short-term potentiated synapses in the mid-
dle of the delay to save the energetic cost of neuronal activity,
while they got retrieved into the population state near the end of
the delay period to facilitate information manipulation (53). This
storing and retrieving process may also be a source of temporal
signals.

Interval and Beat-Based Timing. We have discussed the process-
ing of single time intervals using our model. However, recent
evidence implies that the brain may use different neural sub-
strates and mechanisms to process regular beats from single time
intervals (54, 55). Dynamically, in the medial premotor cortices,
different regular tapping tempos are coded by different radii of
circular trajectories that travel at a constant speed (55), which
is different from the stereotypical trajectory or speed scaling
scenario revealed in our model (Fig. 2 B–D and L–O). The dis-
tribution of the preferred intervals of the tapping interval-tuned
neurons is wide, peaking around 850 ms (56, 57), which is also
different from the complementary monotonic tuning scenario in
our model (Fig. 2 J and K). Additionally, humans tend to use
a counting scheme to estimate single time intervals when the
interval duration is longer than 1,200 ms (58), which implies that
the beat-based scheme is mentally used to reduce the estima-
tion error of single long intervals even without external regular
beats. However, after we trained our network model to produce
intervals up to 2,400 ms, it processed intervals between 1,200 and
2,400 ms in similar schemes (SI Appendix, Fig. S11) to that illus-
trated in Fig. 2 for intervals below 1,200 ms. All of these results
suggest the limitation of our model to explain beat-based tim-
ing. Modeling work on beat-based timing is the task of future
research.

Materials and Methods
Methods are provided in SI Appendix as well as SI Appendix, Figs. S1–S11. In
SI Appendix, section S1, we present the details of our computational model,
including the network structure, the tasks to be performed, and the meth-
ods that we used to train the network model. We also present the details
to analyze the interval coding scheme in the delay and production epochs
(Fig. 2), the coding combination of temporal and nontemporal information
(Figs. 3 and 6B), and decoding generalization (Fig. 4) as well as the firing
and structural sequences (Fig. 5). We also explain the relationship between
the monotonic coding at the end of the delay epoch and the low dimen-
sionality of the attractor (Fig. 2 G and K) as well as the geometric meaning
of mixed variance (Fig. 3) in SI Appendix. Computer code is available from
https://github.com/zedongbi/IntervalTiming.
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