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Abstract

We performed a genome-level computational study of sequence and structure similarity, the latter using crystal structures
and models, of the proteases of Homo sapiens and the human parasite Trypanosoma brucei. Using sequence and structure
similarity networks to summarize the results, we constructed global views that show visually the relative abundance and
variety of proteases in the degradome landscapes of these two species, and provide insights into evolutionary relationships
between proteases. The results also indicate how broadly these sequence sets are covered by three-dimensional structures.
These views facilitate cross-species comparisons and offer clues for drug design from knowledge about the sequences and
structures of potential drug targets and their homologs. Two protease groups (‘‘M32’’ and ‘‘C51’’) that are very different in
sequence from human proteases are examined in structural detail, illustrating the application of this global approach in
mining new pathogen genomes for potential drug targets. Based on our analyses, a human ACE2 inhibitor was selected for
experimental testing on one of these parasite proteases, TbM32, and was shown to inhibit it. These sequence and structure
data, along with interactive versions of the protein similarity networks generated in this study, are available at http://
babbittlab.ucsf.edu/resources.html.
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Introduction

The recent explosion of sequence and structure information in

the public databases has made possible surveys of proteins on a

genomic scale. Structural genomics initiatives have rapidly

increased our knowledge of protein structures, and this has

provided a foundation for better elucidating reaction mechanisms

and ligand binding, for understanding substrate specificity, and for

creating many new three-dimensional (3D) structural models [1].

One use of such information is to inform drug discovery. For

example, Vidovic et al examined human protein-tyrosine phos-

phatases as targets for rational drug design [2]. Rational drug

design has been shown to produce selective drugs: for example, a

number of effective cancer drugs have been produced that have

fewer side effects than traditional, cytotoxic drugs [3]. Evaluating

potential off-target effects is an important consideration in the

process, and surveying homologs of target proteins can reveal

unanticipated interactions [4,5]. Conversely, some drugs show

efficacy with unanticipated targets making them useful in treating

diseases other than those for which they were designed. For

example, Kinnings et al. used a computational approach to

compare proteins with similar binding sites to those of the targets

of commercially available drugs and found that a drug approved

for Parkinson’s disease may be effective for treating tuberculosis

[6]. Thus, the larger context provided by examining the

differences between structurally related proteins may aid in the

design of more selective drugs, while study of their similarities can

give clues for new starting points in drug design.

While the public databases are rich with sequence and structure

data, retrieving specific data and synthesizing the information into

views that are intuitively interpretable is not a trivial task, even for

an experienced user of bioinformatics tools. The central idea

behind our study is to take the approach illustrated by Vidovic et al

one step further and construct genome-wide views for more than

one organism; specifically, for a host and parasite, allowing cross-

species comparisons. We constructed these views using sequences

and structures of the proteases of the pathogen Trypanosoma brucei

and its human host Homo sapiens. The full diversity of a set of

sequences or structures is often termed ‘‘sequence space’’ or

‘‘structure space.’’ To visualize the information, we used similarity

networks, whereby sequences or structures are clustered graphi-

cally by similarity. Such networks represent a powerful way to

visualize relationships across large sets of sequences and structures

[7]. To construct the structure similarity networks, existing crystal
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structures and homology models, as well as newly created models,

were utilized.

Proteases were chosen for this computational study because a

number of these proteins have been validated as druggable targets

and many have available structures. Protease inhibitors are

currently under investigation to treat various parasite infections,

cancer, HIV, hypertension, and diabetes [8–18]. Here, we employ

the nomenclature of the protease database MEROPS [19] in

labeling proteases by the evolutionary units of family and clan (see

Methods). Proteases catalyze the hydrolytic breakdown or

processing of proteins and account for about 2% of all expressed

genes [20]. The set of an organism’s proteases expressed at a

particular time or circumstance has been called its ‘‘degradome’’

[21]. Here, we use the term to refer more generally to all the active

proteases coded by an organism’s genome.

The parasite degradome targeted in this study is that of the

protist T. brucei, which causes human African trypanosomiasis

(‘‘HAT’’) or sleeping sickness, a disease that affects an estimated

50,000 to 70,000 people, mostly in sub-Saharan Africa [22]. HAT

is one of a number of ‘neglected’ tropical diseases that primarily

afflict the poor [15,22]. The few existing treatments for such

diseases often have severe side effects. Without drug treatment,

HAT is often fatal; yet the standard drug used to treat infection of

the central nervous system is itself often lethal [23]. T. brucei is

related to two other human pathogens, Trypanosoma cruzi and

Leishmania major, that share many physical characteristics [24].

These three species are referred to as the ‘‘Tritryps’’ [24]. As will

be illustrated here for T. brucei, knowledge about well-character-

ized proteins in the other Tritryp species is valuable for inferring

characteristics about related but less well-characterized proteins in

the target species, for example, by enabling the creation of

homology models.

The objectives of this study were first to compare the array of

proteases in the human host with that of the T. brucei pathogen and

to determine the breadth of sequence space in each organism that

was covered by 3D structure. Secondly, we aimed to use the

similarities and differences within and between protease sequence

and structure similarity groups to obtain insights into possible new

targets for drug design. The global views produced here will also

be useful for guiding phylogenetic and other more detailed studies

comparing proteases of the parasite and its human host. We found

that structure coverage of sequence space in human and parasite is

broad, making global structural comparisons both feasible and

informative. To illustrate how these results may be used to better

understand structurally related human and parasite proteases, we

include a detailed structural evaluation of two groups of parasite

proteases that may have potential as new drug targets. For one of

these protease targets, TbM32, we predicted and experimentally

confirmed its inhibition by a known human drug.

Methods

We used a protease reference dataset (‘‘pep82’’) composed of

peptidase domain sequences from the manually curated database

MEROPS release 8.2 downloaded from http://merops.sanger.ac.

uk [19]. The dataset pep82 includes only the regions of sequences

that correspond to peptidase-like domains, rather than the full-

length sequences that are also available from MEROPS. Families

in MEROPS are defined by sequence similarity where each family

member has statistically significantly similarity to at least one other

family member in at least the region of the sequence where the

catalytic residues are located [25]. The first letter of a family name

designates the protease catalytic type defined by the characteristic

moiety needed for catalysis: A (aspartic (catalytic type); aspartic

acid (characteristic moiety)), C (cysteine), G (glutamic; glutamic

acid), M (metallo; metal ligand), S (serine), and T (threonine). For

example, ‘‘S01’’ is a prominent family of the serine protease

catalytic type. MEROPS also categorizes proteases into more

remotely related groups called clans that include distant homologs

identified using structure-based comparisons. Clans are denoted

by two letter labels where the first letter represents the family’s

catalytic type and the second differentiates clans. A first letter of

‘‘P’’ indicates that a clan contains families of one or more of the

serine, threonine, and cysteine catalytic types. A dash instead of a

second letter indicates that a family is not yet formally assigned to

a clan. While families and clans indicate groupings that are likely

to be related evolutionarily, the catalytic type defines groups only

by whether members have shared catalytic moieties; thus some

members of a catalytic type may not be related.

Identification of T. brucei proteases predicted to be active
Predicted T. brucei proteins were from the T. brucei genome

project (9,192 sequences, file ‘‘Tb927_Proteins_May08_v4.fas’’

downloaded from ftp.sanger.ac.uk) [26], and will be referred to

hereafter as ‘‘Tb_proteins.’’ To identify protease-like sequences,

we used a protocol similar to that used by Berriman et al. [27]. The

Tb_proteins were BLAST searched using blastp [28] against

pep82, and the results limited to those with E-value cutoff #1e-4,

which yielded 477 ‘‘provisional proteases.’’ Note: scientific ‘‘e

notation’’ is used to express E-values, e.g., where 1e-4 represents

161024. Because this E-value is rather non-stringent, these hits

were compared with similar sequences in Swiss-Prot (downloaded

November 2, 2008), a manually curated set of protein sequences

known to have reliable annotations [29,30]. Additionally, the

provisional proteases were searched against 219 profile hidden

Markov models (profile HMMs) from Pfam [31] version 22.0 that

corresponded to MEROPS peptidase families (personal communica-

tion with Neil Rawlings) using the program HMMER (v2.3.2; trusted

cutoff) [32]. Because profile HMMs define the likelihood of finding

particular amino acids in a column in a multiple sequence

alignment of relevant sequences, they are helpful in identifying

Author Summary

Human African trypanosomiasis (HAT) is caused by the
protozoan parasite Trypanosoma brucei. HAT is fatal unless
treated, yet the current treatment itself can cause death.
New treatments are urgently needed. Our study focuses on
proteases, which are enzymes that break down proteins.
Because of their roles in many centrally important
biological processes, proteases are targets for drugs to
treat a variety of diseases including parasite infection. The
recent explosion of protein sequence and structure
information in public databases has made surveys of
proteins on a genomic scale possible. However, collecting
specific data of interest from diverse databases and
synthesizing them in a way that is easy to interpret can
be difficult. We used T. brucei and human protease
sequences, crystal structures, and models to create
network views that show how proteases cluster by
similarity. Such views are valuable not only for under-
standing the evolution of the protein repertoire in each
species, but also can give important clues for drug design.
Two T. brucei protease groups (‘‘M32’’ and ‘‘C51’’) that are
very different in sequence from human proteases were
examined in structural detail. Based on our analyses, a
human ACE2 inhibitor was selected for experimental
testing on one of these parasite proteases, TbM32, and
was shown to inhibit it.
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distantly related proteins by scoring more highly the presence of

specific regions and residues important to a known family. [32]. T.

brucei sequences were removed as false hits if they were similar to

SwissProt sequences annotated with non-protease functions or if

they matched a Pfam model to non-protease families. After

removing false hits, 251 ‘‘putative proteases’’ remained.

Predicted active proteases were identified using tools at the

MEROPS website where metal-binding and active site residue

(MASR) sites for a sequence can be predicted based on BLAST

alignments to pre-computed alignments of families. Of 251

putative proteases, 127 were predicted to be active proteases and

trimmed to remove non-peptidase regions by examining the results

of our original BLAST searches of T. brucei sequences against

pep82 and removing regions that were not included in the

alignments to the MEROPS peptidase domains. This final set of

predicted active protease sequences is called ‘‘Tbpep.’’

Identification of predicted active human proteases
Unlike T. brucei, human sequences were already well-curated in

MEROPS with MASR data readily available for each sequence.

Of the 958 human peptidase domain sequences from pep82, 574

were predicted to be active according to the MASR data; this set is

hereafter called ‘‘Hspep82.’’ Twenty additional human peptidase

sequences were identified from the Mammalian Degradome

Database (‘‘MDD’’), a manually curated dataset of proteases from

the Lopez-Otin group (http://degradome.uniovi.es) [33] that were

found to be dissimilar to Hspep82 sequences but predicted to be

active peptidases (by BLAST searches against pep82 and MASR

prediction similar to the procedure for T. brucei). These 20

sequences were trimmed to remove non-peptidase regions and

added to the 574 sequences above. This final set of 594 predicted

active human peptidase sequences is called the ‘‘HsLOpep82’’

dataset.

Identification of crystal structures corresponding to
peptidase sequences

PDB entries representing Tbpep and HsLOpep82 sequences

were found by BLAST searches of the PDB protein sequences and

those with good resolution (#3.5 Å) were kept for analysis. The

150 human and one T. brucei pdb files were trimmed to remove

non-peptidase regions. This was done because a trial test showed

that structure similarity detection between peptidases can be

obscured if non-peptidase regions are included in structures being

compared (data not shown).

ModBase models for peptidase sequences
For sequences without crystal structures, models were taken

from ModBase (http://modbase.compbio.ucsf.edu) [34], a large

database of comparative structural models (homology models)

created using the Modeller program [35]. Only good quality

models, as determined by using the recommended cutoff of

ModPipe Protein Quality Score (MPQS) .1.1, were used in this

analysis. There were 174 human models and 48 T. brucei models

initially identified. Models were checked to make sure that they

spanned the peptidase regions of the target sequences, and those

with unacceptably short or incorrect regions were discarded. 141

human and 47 T. brucei models passed this check. These were then

trimmed to exclude non-protease regions.

ModWeb models for peptidase sequences
Because modeling is computationally- and time-intensive, we

created new models only for representatives of clusters of similar

sequences for which no structure (crystal structure or ModBase

model) existed. Representative sequences of clusters with #40%

sequence identity (‘‘sequence ID,’’ clustered with CD-HIT [36])

that had no structures were submitted to ModWeb, a homology

modeling web server that utilizes Modeller (http://modbase.

compbio.ucsf.edu) [34]. This yielded 51 and 23 new human and

T. brucei models with MPQS .1.1, respectively.

A note on model quality assessment
It has been shown that better quality models (about 1.5 Å or better

root mean square (RMS) error between template and model) generally

result from using templates with $30% sequence ID to the target

sequence [37]. However, sequence identity alone can be misleading.

Additional factors can be important indications of model quality such

as how much of the template sequence aligns well to the target and

whether inter-atomic distances in the model are similar to those seen in

real proteins. The MPQS reported in Modeller is a composite score

that includes a number of such factors. Of the models included here,

80% have $30% sequence ID to their templates.

Additional modeling
An updated model for the T. brucei M32 sequence (TbM32) was

created using the program Prime (Prime 2.0208, Maestro 8.5207,

Schrodinger LLC, Portland, OR). The structure for a T. cruzi M32

protease (PDB code 3DWC) [38] was used as the template for

modeling because it possesses a higher sequence ID to TbM32

than the 1KA2 structure previously used for the ModBase model

(72% vs. 33%).

Creation of sequence similarity networks
All-by-all blastp scores were computed on the 594 HsLOpep82

and 127 Tbpep sequences (total of 721 nodes), and the data

viewed with the network visualization program Cytoscape [39]

using the ‘‘organic’’ layout setting, which clusters nodes more

tightly if they are more highly connected; a BLAST E-value

threshold of #1e-5 was required for drawing edges between any

two nodes, resulting in 10,188 edges (Figure 1). This corresponds

to $40% sequence ID for alignments $50 residues. Nodes are

color- and shape-coded by species, MEROPS family (according to

the family of the best BLAST hit to pep82 sequences as described

above), and structure representation.

Creation of structure similarity networks
An all-by-all pairwise structure similarity comparison was

performed using the program FAST [40] on the trimmed pdb

files (crystal structures, ModBase models, and ModWeb models)

for the 71 T. brucei and 342 human predicted active peptidases

(total 413) with structure representation. The data were visualized

with Cytoscape (‘‘organic’’ layout; a threshold of normalized

FAST score (SN) $4.5 was used to draw edges. This score is well

above the minimum cutoff (1.5) stated by the authors of FAST to

be statistically significant. Nodes were color- and shape-coded by

species, MEROPS family, and structure representation.

Structure and sequence alignment and visualization
Protein structures were aligned, visualized, and root-mean-

square deviation (RMSD) values calculated using the MatchMaker

tool from the Chimera software package [41]. Default settings

were used, with aligned pairs of atoms #2 Å included in the

RMSD calculation. Alignments with similar RMSDs but with

more aligned pairs within this threshold indicate higher overall

structural similarity. Multiple sequence alignments (MSAs) were

created using MUSCLE [42] and visualized with the program

GCG SeqLab (Wisconsin Package Version 10.3, Accelyris Inc.,

Comparison of the Human and T. brucei Degradomes
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San Diego, CA). For the T. brucei protease of family M32 (TbM32)

and human angiotensin-converting enzyme 2 (ACE2, PDB code

1R4L), the structure-based sequence alignment was visualized with

ESPript [43] (http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi).

Structure similarity searching via PDBeFold
To find structural relatives for the T. brucei C51 family in the

PDB, the structure alignment server PDBeFold [44] at ebi (www.

ebi.ac.uk/msd-srv/ssm) was utilized by submitting the ModWeb

model for the amidase domain of trypanothione synthetase-amidase

(‘‘TbTSAAm’’) and specifying 40% as the lowest acceptable match

of secondary structure elements for both query and target.

Expression and purification of polyHis-tagged
recombinant TbM32

The TbM32 gene was amplified by PCR from genomic DNA

with Phusion polymerase using sense (59 - GCGCGCCATAT-
GATGAAGGCATACAAAGAGCT - 39) and antisense (59 - A-

TGCATGTCGACTCAGTTGGCATCGTCACGGT -39) prim-

ers. The PCR product was cloned into the pET28a expression

vector (Invitrogen, Carlsbad, CA) and the N-terminal polyhisti-

dine-M32 expressed in E. coli strain BL21-DE3. The recombinant

enzyme was purified in two steps: first using a Ni-NTA slurry, then

further purified on a Ni column (5 mL HisTRAP FF column)

using an ÄKTA FPLC system (GE Healthcare Life Sciences,

Piscataway, NJ) at 4uC from which the protein was eluted using a

0–250 mM imidazole linear gradient in 2 column volumes. Active

fractions were analyzed by gel electrophoresis, and pure samples

were combined, flash frozen and stored at 280uC for future use.

Enzyme assays
Recombinant TbM32 (2 mM) was assayed using the synthetic

carboxypeptidase substrate FA {N-(3-[2-furyl]acryloyl)}-Phe-Phe

(‘‘FAFF’’, BACHEM, Torrance, CA) as substrate (100 mM) in

50 mM Tris/HCl, pH 7.4. Initial steady-state velocity (‘‘Vi’’) was

determined by continuous assay for a range of substrate concentra-

tions at 340 nm with a SpectraMax Plus platereader (Molecular

Devices, Sunnyvale, CA). Vi was calculated as milliunits/min using

SoftMaxPro software (Molecular Devices). For inhibition studies,

protease and inhibitor were pre-incubated for 30 min at room

temperature prior to adding substrate. Concentrations of inhibitors

and controls were: 10 mM of the ACE2 inhibitor 28FII (3-{[1-(2-

acetylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-hydroxy-phosphinoyl}-

2-benzyl-propionic acid, active diastereoisomer, a gift from the

laboratory of Vincent Dive [45]), 10 mM lisinopril (ACE inhibitor;

Toronto Research Chemicals, North York, Ontario, Canada),

100 mM 1,10P (1,10 phenanthroline, a divalent metal chelator, as a

positive control; Sigma-Aldrich), and 1% DMSO (negative control;

Sigma-Aldrich, St. Louis, MO). Measurements were taken in triplicate

and statistics were calculated using the software R v2.9.2 [46] by

running ANOVA and a TukeyHSD post-hoc test.

Results and Discussion

Overview
The sequence similarity network (Figure 1A) reveals on a global

scale the diversity of families of proteases predicted to be active in

humans and T. brucei, showing the protease families that are most

prevalent in both organisms as well as those that reflect the

Figure 1. Global view of predicted active proteases of human and T. brucei showing sequence similarity relationships. Protease
sequences are represented as nodes, and similarity relationships between sequences better than the threshold (BLAST E-value #1e-5) are depicted as
‘‘edges’’ or lines between nodes. In the network are represented 594 human and 127 T. brucei sequences (total of 721 nodes and 10,188 edges). (A)
Distribution by family of proteases. Nodes for human sequences are represented as circles and for T. brucei sequences as triangles, and are colored by
MEROPS-associated family (see Methods). Families of some of the larger clusters are labeled, and the parasite-specific C51 and M32 clusters are circled
in red. (B) Structure coverage of sequence space is broad in human and T. brucei. The same sequence similarity network as in panel A is shown except
that it is color-coded by species and nodes are enlarged and designated by different shapes to denote if a crystal structure or model exists for that
sequence. Node shapes: square = crystal structure; triangle = ModBase model; diamond = ModWeb model; small circle = no structure.
doi:10.1371/journal.pntd.0001942.g001

Comparison of the Human and T. brucei Degradomes
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greatest differences between them. Figure 2 shows the overall

distribution of peptidases by catalytic type. The network shown in

Figure 1B shows that when models generated by comparative

structural modeling (homology models) are included along with

crystal structures, most of T. brucei and human sequence space is

well covered by three-dimensional structures (See Methods and

the note on homology modeling below for a discussion of model

quality). This made it feasible to create the global structure

similarity network (Figure 3) that clusters human and parasite

proteases by similarity of 3D structures. In similarity networks,

large numbers of proteins can be viewed in a visually meaningful

way. The proteins are represented as nodes (points) and similarity

scores above a statistical significance threshold cutoff are expressed

as edges (lines) drawn between the nodes. The greater the number

of interconnections among the proteins within a grouping, the

closer they are drawn together. It should be noted that the

placement of such clusters as they are laid out in network views

such as shown in Figures 1 and 3 is done roughly by size so

proximity between separate clusters does not imply relatedness.

In the sections that follow, the overall patterns that emerge from

the degradome landscapes in these network views are discussed,

along with new hypotheses about parasite and host biology based

on these comparisons. We also include a detailed structural

examination of two protease groups, M32 and C51, that are very

different in sequence from human proteases and may have

potential as drug targets.

The sequence similarity network provides a visual catalog
of human and parasite proteases

In the sequence similarity network in Figure 1A, nodes are color

coded by assigned MEROPS protease family (see Methods for

definitions of family, clan, and catalytic type). There are five times

as many human proteases (594 sequences) as T. brucei proteases

(127), representing 71 and 37 different families, respectively. It has

Figure 2. Distribution by catalytic type of peptidases predicted
to be active in humans and T. brucei. In humans, proteases of
catalytic type S (where the catalytic moiety is serine) is dominant, but
metallo (type M) and cysteine (type C) peptidases are also abundant. In
contrast, in T. brucei, serine peptidases are less abundant, and cysteine
and metallo proteases are equally prominent. Other main catalytic
types in each organism include the threonine (type T) and aspartatic
(type A) proteases. Catalytic types were assigned by catalytic type
designated in the family of the closest BLAST hits to MEROPS
sequences.
doi:10.1371/journal.pntd.0001942.g002

Figure 3. Structure similarity network of human and T. brucei proteases using crystal structures and models. Nodes represent
experimentally characterized (crystal structure) or modeled structures and edges represent pairwise structural similarity above the structural similarity
threshold (FAST SN score $4.5). Nodes for 342 human and 71 T. brucei are shown in the network (total of 413 nodes and 7,234 edges). The two T.
brucei-specific families (TbM32 and C51) highlighted in the sequence similarity network shown in Figure 1 are circled in red. (A) Nodes are colored by
MEROPS-associated family, revealing cross-family structural relationships. Human structures are represented as circles and T. brucei as triangles. (B)
The same structure similarity network as in panel A is painted by species and structure representation. Nodes are color-coded by species and node
shape corresponds to type of structure representation for that sequence: square = crystal structure; triangle = ModBase model; diamond = ModWeb
model. In contrast to T. brucei, there are a large number of experimentally characterized (crystal) structures for humans, but many T. brucei structures
can be modeled.
doi:10.1371/journal.pntd.0001942.g003

Comparison of the Human and T. brucei Degradomes
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also been observed that in the degradome of the parasite

Schistosoma mansoni, the parasite has fewer proteases representing

fewer families than humans [27], but little work has been done to

address in detail why this may be a general trend, though this may

involve the specialization of parasites. In general, serine, cysteine,

and metallo catalytic type proteases dominate both degradome

landscapes. There are no glutamic proteases predicted to be active

in humans, and this is also the case in T. brucei. Half (35) of the

total families (73) in the network have both parasite and human

members. However, there are a large number of families in

humans (36) that are missing in T. brucei, and two families (C51

and M32) are specific to the parasite. Figure 2 shows the

distribution of human and T. brucei peptidases by catalytic type,

and Supplementary Table S1 shows the counts by family and the

more remotely-related grouping of clan.

Serine proteases comprise the most abundant catalytic type of

proteases in humans with 202 members. Among all species, the

serine protease catalytic type is known to be a large category of

proteins containing a number of independently-evolved families

from different clans representing a wide variety of functions [47].

In humans, the largest family in this catalytic type is the S01

(trypsin and chymotrypsin) family (115 members), with members

that have well-known roles in digestion as well as in blood

coagulation and immunity [47]. S01 is also the largest family by

far of any catalytic type in humans, with the second largest family

(C19) having 51 members.

In contrast to humans, cysteine proteases (48) predominate over

the serine protease catalytic type (22) in the T. brucei degradome

(Figures 1A and 2). Cysteine proteases have functions in virulence,

immunoevasion, and enzyme activation in parasites and are the

subject of active research [48,49]. There are 146 cysteine proteases

in humans predicted to be active. Before the Tritryps genomes were

available, previous work indicated that the majority of all proteases

detected in the Tritryps were cysteine proteases [48]. However, our

network using genomic data shows that metalloproteases are just as

numerous as cysteine proteases both in T. brucei (48) and in humans

(146) suggesting this may be a rich area for future studies.

Notably, the S01 family is devoid of T. brucei sequences (of several

S01 homologs in T. brucei, all are predicted to be inactive). Although

known to be generally quite distinct structurally, cysteine and serine

proteases have mechanistic similarities due to the chemical related-

ness of the active site sulfur and oxygen of cysteine and serine,

respectively [49]. Both act as nucleophiles on the peptide bond, but

sulfur is the better nucleophile. It may be that some ancestral C01

members were superseded by serine proteases that were somehow

functionally superior for humans. Given the importance of the S01

proteases in human biology [47,50], the absence of active members of

this family in the parasite underscores significant differences with

parasite biology, as has been noted previously [48,49].

The sequence similarity networks in Figure 1 use only sequence

data from human and T. brucei to create the groupings shown

resulting in some differences from assigned MEROPS family

classifications which assigns some divergent proteases to the same

family based on sequences from all known proteases from all species.

For example, Figure 1 shows that some families (e.g., family S01) are

composed of more than one cluster, revealing great diversity within

these clusters that may be interconnected if sequences from other

species are included. More divergent structure relationships are

evident in the structure similarity network discussed later.

Structural coverage for the human and parasite
degradomes

Figure 1B shows the same sequence similarity network as in

Figure 1A, but here the nodes are color-coded by species, and

sequences with structure representations (crystal structures or

homology models) are denoted with larger nodes. The human

degradome is covered much better in terms of crystal structure

than that of T. brucei: when the networks were initially constructed,

there were 150 crystal structures for human proteases, but only a

single crystal structure for T. brucei, the cathepsin L-like cysteine

protease rhodesain (from T. b. rhodesiense) [51]. When good quality

models are considered, coverage of the T. brucei degradome

becomes comparable to that of humans. In Figure 1B, 61% of the

clusters with T. brucei members have structure representation and

67% of clusters with human members also have structure

representation. The inclusion of homology models in the network

increases overall structure coverage by about 50%.

There are 8 sequence similarity clusters with three or more

members that have no structure representation (Supplementary

Table S2) and so may be good targets for structural character-

ization. The largest of these clusters are C85 (6 human, 2 T. brucei

sequences) and A22 (5, 1).

A note on homology modeling
Although models are not generally considered to have the same

accuracy as crystal structures, they can give valuable structural

information. It has been shown that a good quality homology

model generally results from using a template (crystal structure

used to guide the modeling) with $30% sequence ID to the target

sequence (protein to be modeled) [37]. At this level, there is

expected to be about 1.5 Å or better root mean square deviation

(RMSD) between the model and the actual structure, and the fold

and many of the details are likely to be accurate. Only good

quality models were included in our analyses (see Methods for

details). We compared the model for a T. brucei cathepsin B-like

protease in the network (TbCatB) with the crystal structure (PDB

3HHI [52]) that was solved for this protease after the networks

were constructed, and found that the model was quite accurate.

The overall structures aligned well (RMSD = 0.67 Å over 214

atom pairs) and the active site residues also aligned closely

(RMSD = 0.51 Å over 33 atom pairs). The network model for

TbCatB was based on human procathepsin B (PDB 3PBH; 48%

sequence ID to the target). For comparison, two structures of the

same protein, human ACE, solved by the same lab but bound to

different inhibitors (1UZE and 1UZF bound to enalaprilat and

captopril, respectively) have an RMSD of 0.22 Å over 574 atom

pairs.

The structure similarity network shows three-
dimensional (3D) structural similarity relationships of
proteases that may be distantly related

Figure 3 shows the structure similarity network in which human

and T. brucei crystal structures and homology models are clustered

by 3D structure similarity. Figure 3A is colored by MEROPS

family, and 3B by structure (crystal structure or model). There are

fewer clusters than in the sequence similarity network, not only

because some sequences lack structure representation, but also

because some divergent sequences that are not connected in the

sequence similarity network share similar structures (and are

connected with edges in the structure similarity network). This

reflects the phenomenon that protein structure evolves more

slowly than sequence [53–55]. Figure 3A shows that a number of

structure similarity clusters have members from more than one

MEROPs family, underscoring the sequence divergence within

clusters. Structure similarity is often used as evidence, along with

functional similarity, that proteins with divergent sequences are

evolutionarily related (i.e., are homologs) [56–58]. Most of the
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clusters in Figure 3 are composed of proteins that share the same

catalytic type, providing further support that these proteins are

homologs. Figure 4 shows the structure similarity network colored

by clan. As described in Methods, the clan is the highest level in

the MEROPS classification system where proteins are still

considered to be evolutionarily related, and the first letter of the

clan name represents the catalytic type of a clan’s member

families.

However, as can be seen in Figure 3A, two of the clusters are of

mixed catalytic type. The first cluster includes families C44, T01,

T02, and T03 and, consistent with the structure similarity

grouping, these have been assigned to one MEROPS clan (clan

PB, Figure 4) because they share a common fold and conserved

position of the nucleophile, even though the nature of the

nucleophile in each family is different [20].

The second mixed cluster (Figure 3A) contains families M14,

M17, M20, M28, and C15. Unlike the first cluster discussed

above, these families are assigned to different MEROPS clans

(Figure 4): MC (M14), MF (M17), MH (M20 and M28), and CF

(C15). This is based on differences in catalytic mechanism and

non-conserved locations of metal-binding residues [20]. Structural

similarity between members of these families has been detected by

others and is annotated accordingly in the SCOP structural

classification database [59], but opinions differ whether they are

evolutionarily related [20,60]. Strikingly, this is the only cluster in

the network that has mixed clans (Figure 4). Viewed at the same

level of structure similarity, all other clusters are composed of

single clans. In fact, two other unmixed clans (CA and MA) are

even more structurally divergent, each emerging as multiple,

separate clusters (Figure 4). It is intriguing that the scaffold for this

second group of mixed catalytic type shows such variation in

catalytic residues and metal-binding positions while sharing similar

function. While this question has previously been probed by

others, it would be interesting to address this again using the

broader context provided by new genomic data.

Structural analyses of M32 and C51, two families in T.
brucei that are distant in sequence space from human
proteases

One advantage of global views of degradome relationships

among species is the ease with which potentially important species

differences and similarities can be identified for further investiga-

tion. As indicated in Figure 1A, the sequences of two T. brucei

protease families, M32 and C51, with one and five members,

respectively, are quite distant from those of any human proteases.

Both M32 and C51 families are known to occur in prokaryotes

and parasitic protists [61,62]. However, as shown in Figure 3A,

despite its distance in sequence space from human proteases, the

T. brucei M32 singleton (TbM32) has several relatively close human

structural neighbors. In contrast, the C51 cluster has none.

The T. brucei M32 protease is similar in structure to
human ACE and ACE2

In the sequence similarity network, TbM32 (Tb_proteins ID

Tb11.02.0100, GI:71754837) fails to show a statistically significant

BLAST match to any other protease (the best match has an E-

value = 0.62). However, as seen in the structure similarity network

(Figure 3A), the homology model for TbM32 (‘‘TbM32m’’) has

several close human structural neighbors: Angiotensin I-converting

enzyme (ACE), ACE2, Neurolysin, Thimet oligopeptidase (TOP),

and Mitochondrial intermediate peptidase. RMSDs of human

crystal structures aligned with TbM32m range from 1.217 Å to

1.283 Å with number of aligned alpha carbon pairs ranging from

73 to 119. TbM32m was created using as a template the crystal

structure of an M32 protease from T. cruzi (designated here as

‘‘TcM32,’’ PDB code 3DWC). TcM32 is a metallocarboxyepti-

dase: it cleaves one amino acid from the C-terminus of a peptide

and requires a metal ion for activity [61]. Because of its high

sequence identity to TcM32 (72%) and the good alignment

between predicted active site residues to those of other M32

proteases, we predicted that TbM32 was also likely to be a

metallocarboxypeptidase.

The best characterized human structural neighbor to TbM32m

is the anti-hypertensive drug target ACE; however, its lesser

known homolog, ACE2, is the only human peptidase in the cluster

that is a carboxypeptidase. ACE is a dipeptidyl peptidase, cleaving

two residues from the end of a peptide. The presence of an

arginine (R273) in the ACE2 S1 binding pocket, instead of the

corresponding Gln in ACE, creates a smaller pocket in ACE2 that

allows only one residue to fit into the active site C-terminal to the

cleavage point. This difference also helps to rationalize the high

selectivity of inhibitors for ACE relative to ACE2 [63]. ACE and

ACE2 have roles in regulating blood pressure [64] and cardiac

function [65], respectively. A number of inhibitors have been

designed for ACE [66], and a few have been also developed for

ACE2 [45,67]. Figure 5 (inset) shows the overall structural

similarity between TbM32m and ACE2.

We created a structural alignment of TbM32m and the crystal

structure for ACE2 bound with inhibitor MLN-4760 (PDB code

1R4L) [63], which showed that a TbM32m arginine (R348) likely

corresponds to ACE2 R273 (Figure 5). However R348 is

somewhat receded, resulting in more space in the binding pocket

in TbM32m. In the TcM32 crystal structure, an arginine

superimposes closely with TbM32m R348, resulting in a similar

binding pocket space. It is known that ACE inhibitors do not bind

Figure 4. Structural similarity network of human and T. brucei
proteases labeled by clan. The same network as in Figure 3 is
colored here by assigned MEROPS clan (see Methods). One cluster is
composed of multiple clans (MC, MF, MH, and CF).
doi:10.1371/journal.pntd.0001942.g004
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to TcM32 ([38] and personal communication with JJ Cazzulo) despite

an apparently slightly larger pocket than ACE2. Some insight may

be given towards understanding this by the knowledge that ACE2

and some other metallopeptidases undergo significant ‘‘hinge

closure’’ upon binding a ligand [63]. Model TbM32m was built

using apoenzyme TcM32 as a template and it seems feasible that

both TbM32 and TcM32 could also undergo hinge closure upon

ligand binding, thereby leading to a smaller binding pocket and

consequent inability to bind ACE inhibitors. Visual inspection of

the structural alignment of TbM32m and ACE2 showed similar

binding pocket shapes and no steric clashes of TbM32m residues

with the superimposed ACE2 inhibitor, leading to a further

prediction that ACE2 inhibitors might bind TbM32.

To test these two computational predictions, we first cloned and

expressed TbM32 and showed that it cleaves the synthetic

carboxypeptidase substrate FA-Phe-Phe. Further, it is inhibited

by the metal chelator 1,10P (1,10 Phenanthroline). This is

consistent with a metallocarboxypeptidase function (Figure 6).

We then assayed the recombinant TbM32 with ACE2 inhibitor

28FII, a phosphinic peptide that mimics the transition state

structure of ACE2 substrates [45] (MLN-4760 is no longer

available). The ACE2 inhibitor produced statistically significant

inhibition of TbM32 whereas the ACE inhibitor lisinopril did not

(Figure 6). The IC50 of 28FII with human ACE2 has not been

published, but its Ki is low (0.13 nM) [45], suggesting its potential

as an inhibitor. For comparison, the compound MLN-4760 has an

IC50 of 0.44 nM with human ACE2 [63]. Our results show that

significant inhibition of TbM32 by an ACE2 inhibitor occurs at

10 mM; while this level is higher than the IC50 of an inhibitor

designed for ACE2 when used with ACE2, these preliminary

results suggest that ACE2 inhibitors may be worth consideration as

lead compounds for further development against TbM32.

Although TbM32m and ACE2 are highly similar in overall

structure, the a-carbon of the TbM32m R273 originates from a

different secondary structure element and has a different topology

than ACE2 (Supplementary Figure S1). The sequence identity

between these two proteins is ,10% so that structural data was

needed to give insight into ligand specificity in these highly

divergent proteins.

Predicted structures of the T. brucei C51 protease-like
sequences differ from those of human proteases

The T. brucei C51 family has five members, with pairwise

sequence identity among them ranging from 27%–96%. This

cluster is remote from human proteases both in terms of sequence

and structure. One of the five sequences has been previously

identified as T. brucei trypanothione synthetase-amidase

(‘‘TbTSA’’, Tb_proteins ID Tb927.2.4370, GI:84043680) and is

the only protein in the cluster that has been experimentally

characterized. TbTSA has a C-terminal synthetase domain that

catalyzes the production of trypanothione (TSH) from two

glutathione (GSH) and one spermidine (Spd) molecule. Its N-

terminal amidase (C51) domain catalyzes the reverse reactions

[68]. The biological role of the amidase domain is not completely

clear, but it likely plays a role in maintaining a concentration

balance between these compounds [69]. Unlike TbTSA, the other

T. brucei C51 sequences have only the amidase domain; a multiple

sequence alignment of all five sequences (not shown) indicates that

the active site residues predicted to be associated with peptidase/

amidase activity are well aligned. We modeled all five amidase

domains using as the template the TSA from L. major (‘‘LmTSA’’,

PDB code 2VOB), two of which are represented in Figure 3A (see

Methods). The amidase domain of TbTSA (‘‘TbTSAA’’) has 58%

sequence ID to LmTSA. A structural alignment of each T. brucei

C51 model to the model of TbTSAA (‘‘TbTSAAm’’) (not shown)

shows conservation of residues near the active site (an average of 9

of 17 selected pairs were strictly conserved), suggesting that one or

more of the uncharacterized C51s may have amidase activity.

RMSDs of overall alignments of the T. brucei C51 models to

Figure 5. The T. brucei M32 protease model shows active site
similarity to a human protease ACE2. The model of the T. brucei
M32 protease (TbM32m, purple) is shown structurally aligned with
crystal structure ACE2 (PDB code 1R4L, yellow). Depicted in ball-and-
stick representation near the zinc ion are the metal binding residues
and catalytic glutamate. ACE2 inhibitor MLN4760 is shown in green and
ACE inhibitor lisinopril is in orange stick format (the position of which is
from a structural alignment of ACE (1O86) with ACE2). The predicted
steric clash of R273 in the ACE2 S1 pocket with lisinopril is marked with
an arrow. The R273 CZ of ACE2 is predicted to be 1.5 Å from the
lisinopril C9, so that a terminal nitrogen of R273 is in position to overlap
with an oxygen of lisinopril. The arginine (R348) from TbM32m that is
predicted to be close to the ACE2 R273 is also in ball-and-stick
representation. The inset shows the overall structural similarity of the
two proteins.
doi:10.1371/journal.pntd.0001942.g005

Figure 6. TbM32 is inhibited by 28FII (ACE2 inhibitor) and not
by lisinopril (ACE inhibitor). The chart shows results from a
representative experiment with 1,10P (1,10 Phenanthroline, 100 mM),
lisinopril (10 mM), and 28FII (10 mM). ** indicates significant difference
from the control (DMSO vehicle) at p,0.005. The positive control 1,10P
is a metal chelator that inhibits metallopeptidases.
doi:10.1371/journal.pntd.0001942.g006
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TbTSAAm ranged from 0.282–0.586 Å with number of aligned

alpha carbon pairs ranging from 95–122.

GSH serves in anti-oxidant and detoxification roles in most

animals and plants [70]. However, trypanothione (TSH) serves

this purpose in trypanosomes [71] and does not occur in humans.

Experiments by others have suggested TbTSA has promise as a

drug target [69,72,73]. One gene knockout study suggested it is the

trypanothione synthetase domain and not the amidase domain

that is essential to the parasite; however, this study also showed

that both domains are important for parasite virulence [69]. It

may be that both domains, perhaps in tandem, are worthy of

consideration as drug targets due to their physical connection as a

two-domain protein and the biochemical relationship in their

roles, i.e., synthesis and hydrolysis of trypanothione. For example,

a trypanothione-like inhibitor that can bind both domains may be

worth consideration. Additionally, the amidase domain’s distinc-

tive structure among prokaryotes and parasitic protozoa, but not

in humans [62], makes it an intriguing subject for other cross-

species comparisons and for exploring possible drug targets in non-

trypanosomes.

The closest human structure neighbor to TbTSAAm is cathepsin

F (‘‘CatF’’, PDB 1M6D) (FAST SN score = 2.6, about 5% sequence

ID). Cathepsins are well-studied cysteine proteases in the C01

‘‘papain’’ family, with roles that range from general protein

degradation to wound healing [74]. A number of inhibitors have

been developed for this family [49]. The alignment of TbTSAAm

with 1M6D, which is complexed with a vinyl sulfone inhibitor (4-

morpholin-4-yl-piperidine-1-carboxylic acid [1-(3-benzenesulfonyl-

1-propyl-allycarbamoyl)-2-phenylethyl]-amide), shows some gener-

al, overall structure similarity (RMSD = 1.1 Å over 16 alpha carbon

pairs), but also some striking differences (Figure 7). Most impor-

tantly, we predict that a helix exists near the binding site in

TbTSAA that could obstruct the binding of a cathepsin-like

inhibitor, a feature that is absent in CatF (1M6D).

Upon searching the PDB, the most similar structure to

TbTSAAm co-crystallized with a ligand was found to be the

amidase domain of E. coli glutathionylspermidine (Gsp) synthe-

tase/amidase (‘‘EcGspSAA’’, PDB 3A2Y, 36% sequence ID to

TbTSAA). Superposition of TbTSAAm with EcGspSAA

(RMSD = 0.85 Å over 120 alpha carbon pairs) and human CatF

showed that EcGspSAA has a binding site helix similar to the one

in TbTSAAm. The TSH-related Gsp binds in a different

orientation and location than the protease inhibitor binds human

CatF. These observations suggest that such differences in

architecture may allow the design of TbTSAA-specific inhibitors

that would not cross-react with human C01 peptidases.

Conclusions

The explosion of data in sequence and structure databases in

recent years, along with advances in modeling technology,

presents researchers with the opportunity for creating more global

views of sequence and structure space from whole organisms than

has been possible previously. It has been estimated that sufficient

structural templates exist for modeling about 50% of all known

proteins [75]. However, leveraging existing data and synthesizing

the information into a form that is interpretable in an intuitive and

accurate way can be challenging.

We constructed networks presenting the first global views of the

degradome landscapes of the parasite, T. brucei and its human host,

allowing a side-by-side comparison of sequence and structure

similarity of predicted active proteases between the two species.

The networks show patterns of abundance and variety of proteases

while highlighting sequence clusters in which structures are sparse

and may be of higher priority for solving new structures. These

networks also give clues as to how divergent proteins might be

related.

In addition, such global views can give insights about potential

drug targets. Our results suggest that ACE2 inhibitors might serve

as lead compounds for inhibitor development against TbM32.

Also, we predict that uncharacterized C51 members may have an

amidase function and that structural differences relative to human

peptidases may make it possible to design specific inhibitors for this

family of parasite proteins.

Studies such as these should prove more useful as databases of

sequence, structure, and function continue to grow and species-

specific proteomes become more complete. The networks are

available for download and can be viewed and manipulated

interactively using the freely available program Cytoscape (www.

cytoscape.org).

Supporting Information

Figure S1 Alignment of T. brucei M32 (TbM32) and
human ACE2 shows great differences in sequence and
topology. The structure-based sequence alignment shown here

illustrates that, despite having similar overall structure and active

site architectures, these proteins are distant from each other by

sequence, and functionally important corresponding arginines that

are located in similar positions in 3D space have different origins

in topological space in the two proteins. Secondary structure is

shown as: alpha helix = squiggles; beta strand = arrow; turn = T.

Highlighted in yellow and with arrows are the arginines from

TbM32 (R348) and ACE2 (R273) in the S1 pocket that are likely

critical for inhibitor specificity and protein function determination.

(TIF)

Table S1 Predicted active peptidases, counts by family
and clan. (A) Counts are by descending order of peptidases

Figure 7. Structure alignment of T. brucei C51 model (TbC51m)
with a distant structure homolog, human Cathepsin F (CatF).
The superposition shows these two proteins have some general, overall
structural similarities, but also large differences near the active site. The
TbC51 model is colored in light orange, and the human CatF is in light
green. While the catalytic Cys-His dyads are closely superimposed
(depicted in ball-and-stick), a striking difference is marked by an arrow
indicating the predicted steric clash between the CatF vinyl sulfone
inhibitor (red) and the helix of TbC51 that partially obstructs the active
site.
doi:10.1371/journal.pntd.0001942.g007
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predicted to be active in humans and T. brucei according to

assigned MEROPS family (see Methods). * indicates a family is not

found in the other species. (B) Counts by assigned MEROPS clan

(see Methods) show that the three largest clans in humans are also

prominent in T. brucei except for clan PA, which includes the

trypsin/chymotrypsin (S01) family, which is devoid of clan

members in T. brucei.

(DOCX)

Table S2 Human and T. brucei sequence-similar clus-
ters with no structure representation. Human and T. brucei

clusters of size $3 are shown if they have no structure

representation (no crystal structures and no homology models).

There may be other structure-represented clusters in the sequence-

similarity network with members of the same families as shown

here, but the clusters here are composed of sequences divergent

from any other cluster (E-value .1e25). Family A22 has two

sequence-divergent clusters in the network with no structure

representation.

(DOCX)
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