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ABSTRACT

Protein methylation is an important and reversible
post-translational modification of proteins (PTMs),
which governs cellular dynamics and plasticity.
Experimental identification of the methylation site is
labor-intensive and often limited by the availability
of reagents, such as methyl-specific antibodies and
optimization of enzymatic reaction. Computational
analysis may facilitate the identification of potential
methylation sites with ease and provide insight for
further experimentation. Here we present a novel
protein methylation prediction web server named
MeMo, protein methylation modification prediction,
implemented in Support Vector Machines (SVMs).
Our present analysis is primarily focused on methy-
lation on lysine and arginine, two major protein
methylation sites. However, our computational plat-
form can be easily extended into the analyses of
other amino acids. The accuracies for prediction of
protein methylation on lysine and arginine have
reached 67.1 and 86.7%, respectively. Thus, the
MeMo system is a novel tool for predicting protein
methylation and may prove useful in the study of
protein methylation function and dynamics. The
MeMo web server is available at: http://www.bioinfo.
tsinghua.edu.cn/~tigerchen/memo.html.

INTRODUCTION

In the post-genomic era, much attention has been paid to
understanding the dynamics of the proteome, transcriptional

regulation and post-translational modification of proteins
(PTMs). Numerous PTMs supply the proteome with structural
and functional diversity, and govern cellular plasticity and
dynamics. Types of PTMs include phosphorylation (1,2),
sumoylation (3), ubiquitination and methylation. Compared
to well-known and extensively studied protein phosphoryla-
tion (1,2), protein methylation attracts much less attention,
despite the fact that it was discovered nearly half a century
ago (4). Protein methylation can modify the nitrogen atoms of
either the backbone or side-chain (N-methylation) in several
types of amino acids, such as lysine, arginine, histidine, alai-
nine and asparagine, etc (5–11). Also, methylation occurs at
cysteine residues as S-methylation (12). In this field, the pre-
dominant studies have focused on modifications of lysine and
arginine residues.

Lysine residues can be mono-, di- or tri-methylated by
histone lysine methyltransferases (HKMTs) (5,8,10,11).
The methylation of lysine has been mostly studied in H3
and H4 histone proteins, which play essential roles in many
biological processes, such as heterochromatin compaction,
X-chromosome inactivation and transcriptional silencing or
activation (5,10,11). Furthermore, the HKMTs also modify
a variety of non-histone proteins with diverse functions
(5,8,10,11). For example, Set9 methylates a transcription fac-
tor TAF10 to increase its interacting affinity for RNA poly-
merase II, which is implicated in transcriptional regulation of
TAF10 target genes (13). In addition, methylation of p53 by
Set9 in vivo increases its stability and regulates the expression
of p53-dependent genes (14). Furthermore, the activity of
lysine methylation of cytosolic Ezh2-containing methyltrans-
ferase complex is essential for receptor-induced actin organ-
ization and proliferation (15). Thus lysine methylation may
also function in signaling processes.

Protein methylation can also occur on the guanidino
nitrogen atoms of arginine (6,7,9,10,16). Although arginine
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methylation can also modify the core histones and form
‘histone code’ together with lysine methylation (5,11), the
substrates of PRMTs are much more diverse than HKMTs
(6,7,10). Thus protein arginine methylation may be involved
in more functional processes. Indeed, arginine methylation
plays important roles in numerous cellular processes, includ-
ing RNA processing, transcriptional regulation, signal trans-
duction and DNA repair (6,7,10). For example, arginine
methylation of SPT5 regulates its binding with RNA poly-
merase II to modulate the transcriptional elongation (17).
And PMRT1 methylates NIP45, the nuclear factor of
activated T cell (NFAT) cofactor protein, to play an essential
role in cytokine gene transcription (18). In addition, as a
potential role ‘arginine protection’, PRMTs may modify
and protect the arginines against endogenous reactive
methylglyoxal (9).

Protein methylation is a reversible type of PTM, just
like phosphorylation and sumoylation. Recent study shows
that LSD1 (lysine-specific demethylase 1) is responsible
for the demethylation of histone H3 lysine 4 (5). Very recently,
it has been verified that JHDM1 (JmjC domain-containing
histone demethylase 1) is responsible for the demethyla-
tion of lysine 36 (19). Furthermore, peptidyl-arginine
deiminase PAD4 is able to deiminate both unmodified
arginine and monomethylarginine residues in histones into
citrullines (6).

The full extent of regulatory roles of protein methyla-
tion is still elusive. Importantly, identification of methylated
proteins with their sites will be a foundation of understanding
the molecular mechanism of protein methylation. Besides
the conventional experimental methods, such as mutagenesis
of potential methylated residues, methylation-specific
antibodies (20) and mass-spectrometry (21–23) have also
been deployed. However, these experimental approaches
are laborious and expensive. Therefore computational predic-
tion of methylation sites is much more desirable for its con-
venience and fast speed. Unfortunately, although many
methods with satisfying accuracies have been developed to
predict phosphorylated protein sites (2,24), only one work,
which focuses on only disordered regions of considered
proteins, has been published on prediction of methylation
sites (25).

In this work, we provide a novel online tool for protein
methylation site prediction of MeMo, protein Methylation
Modification prediction, employing the algorithm of Support
Vector Machines (SVMs) (26) (http://www.csie.ntu.edu.tw/
~cjlin/libsvm). We have collected all annotated methylated
residues in SWISS-PROT version 48 (27). We have also
manually mined literatures to extract experimentally verified
methylated residues. Then we have combined the two datasets
into an integrated positive (+) dataset for training after homo-
logy reducing. Limited by the available data, only methylated
lysines and arginines have been considered. The suitable
parameters have been used to train SVM models (26). A
7-fold cross validations have been performed to check the
models’ accuracies and generality. The accuracies of MeMo
are 67.1% on lysines and 86.7% on arginines. The prediction
results of MeMo remain to be experimentally verified. For
convenience, we have implemented the prediction system in
a web server, which is now available at: http://www.bioinfo.
tsinghua.edu.cn/~tigerchen/memo.html.

IMPLEMENTATION

First, we obtained the dataset of methylation sites from
the feature table of SWISS-PROT (version 48) (27). Only
experimentally verified methylated sites were preserved.
Potential methylated sites with keywords of ‘By similarity’,
‘Potential’ or ‘Probable’ in SWISS-PROT’s comments were
removed. In total we obtained 328 positive (+) sites, including
lysines (148 items), arginines (76 items), histidines,
asparagines and other kinds of residues (Supplementary
Table 1). Then we searched the PubMed with the keywords
of ‘methylation lysine’ and ‘methylation arginine’ for
information on lysine and arginine methylation, respectively.
From �1700 scientific articles, we collected 107 and 264
experimentally verified methylation sites for lysine and
arginine, respectively. In addition, we combined the manually
curated data and the data from SWISS-PROT into an inte-
grated positive (+) dataset. As a result, only lysines (227 items)
and arginines (273 items) had enough data entries to train and
test the SVM models. In the present work we focused on
methylated lysine and arginine residues, and did not take
other amino acids into consideration.

The positive (+) dataset for training might contain some
homologous sites from homologous proteins. If the testing
data were highly homologous to the training data, the predic-
tion accuracy would be overestimated. To avoid the overes-
timation, we clustered the protein sequences from positive(+)
dataset with a threshold of 30% identity by BLASTCLUST,
one program in the BLAST package (28). If two proteins were
similar with �30% identity, we re-aligned the proteins with
BL2SEQ, another program in the BLAST package (28), and
checked the results manually. If two methylation sites from the
two proteins were at the same position in alignment, only one
item was kept while the other one was discarded. Thus, we
obtained positive (+) data of high quality with 156 lysine and
250 arginine-methylated sites. As described previously (2,24),
the negative (�) sites were taken from non-annotated lysine/
arginine sites in the same proteins from which (+) sites were
chosen. The homology reducing process was also carried out
on (�) data.

LIBSVM (26) was employed to build SVM models. Suit-
able parameters were deployed to train SVM models. Finally,
MeMo was implemented in PERL and hosted by Apache
running on a Debian Linux system. A screenshot of MeMo
is shown in Figure 1. More details about the algorithm and
implementation are described in Supplementary Data. The
web server of MeMo (version beta 1.0) has been available
since Jan, 2005. The current version of MeMo is 2.0.

USAGE

To mimic queries from biologist users, we have randomly
submitted to MeMo three proteins, PBX4 (Q9BYU1), Syn-
taxin 10 (O60499) and Sorting nexin (SNX)-17 (Q15036)
from a large-scale experiment to identify the potential methy-
lated proteins (20), as examples to demonstrate the simplicity
and accuracy of MeMo (Table 1). With methyl-specific anti-
bodies, there have been �200 putatively arginine-methylated
proteins to be identified (20). However, the precise arginine
methylation sites on these substrates still remain to be verified.
From the list we have blindly taken three proteins, which have
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not been included in our training dataset, and predicted the
potential arginine methylation sites in these proteins. Tran-
scription factor PBX4 is a member of the Pbx family that is
implicated in a variety of developmental processes including
axial patterning, hindbrain development and organogenesis
(29,30). Syntaxin 10 is a SNARE (soluble N-ethylmaleimide
sensitive factor attachment protein receptor) protein. As a
member of the syntaxin family, syntaxin 10 localizes to the
trans-Golgi network (TGN) and play a potential role in regu-
lating the expression profile of transferrin receptor (TfR) (31).
SNX17 is a member of the SNX family that is involved in the
sorting of transmembrane proteins (32). SNX17 associates
with LDL receptor-related protein (LRP) to modulate its
cell surface levels (33). In all three cases, the regulatory
roles of arginine methylation remain to be elucidated. We
have employed the MeMo web tool to predict the arginine
methylation sites on these proteins.

We have retrieved the protein sequences of the three pro-
teins in FASTA format, and pasted them in the INPUT form of
MeMo. The prediction result is diagramed in Supplementary
Figure 2. MeMo predicts R55, R57 and R63 of PBX4, R11 and
R22 of Syntaxin 10 and R339, R341, R399 and R442
of Sorting nexin-17 as potentially positive hits (Table 2).

Interestingly, six of nine predicted sites are consistent with
the methyl-specific antibody epitopes (20). The examples used
here also shows that MeMo could be an important and useful
computational tool for further experimental work. The predic-
tion results still remain to be experimentally verified.

DISCUSSION

MeMo reaches the accuracies of 67.1% on lysines and 86.7%
on arginines. Our approach can be comparable with previous
method (25). More details about performance comparison are
shown and discussed in Supplementary Data (Supplementary
Table 3).

Our results point to several paths for future research. Firstly,
the prediction systems are greatly hampered by lack of data.
The known methylated protein residues (Supplementary
Table 1) are still far fewer than known phosphorylated resi-
dues (1,2). In addition, the accuracies may also be affected by
a lack of training data. However, as proteomic techniques
improve, more and more methylation sites will be identified.
We can expect that the prediction systems could be expanded
to other kinds of methylated residues besides arginine and
lysine. The accuracies will also improve with more training
data. In addition, a powerful predictor of methylation sites in a
methyltransferase family-specific fashion is also desirable.
Moreover, some other machine learning methods could be
applied, i.e. Group-based Prediction and Scoring algorithm
(GPS) (2), artificial neural networks and hidden Markov mod-
els. These approaches could be used separately or combined
together to build potentially better models. Furthermore,
evolutionary information, e.g. phylogenetic conservation
between human and mouse (3), could be integrated into the
prediction system to improve its accuracy. Finally, the
sequence patterns and structural specificities, which facilitate
the binding between methylation sites and methyltransferases,
remain to be dissected.

CONCLUSIONS

Here we have developed a high-performance protein methy-
lation predictor using the SVMs. Due to the data limitation our
system focuses on methylated arginine and lysine sites. The
accuracies for lysine and arginine methylation reach 67.1 and
86.7%, respectively. We have implemented our method in
an accessible web server, and expect that the Memo may
serve as a useful tool to experimentalists, who study protein
methylation function and dynamics.

Table 1. The best parameters and accuracy measurements

MeMo Parameter used Accuracy of MeMo
Window length Kernel type Degreea Gammab Cc Accuracy Sensitivity Specificity MCC

Lysine 14 Polynomiald 3 0.004 10 67.10% 69.20% 66.70% 0.29
Arginine 14 RBFe — 0.001 10 86.70% 69.60% 89.20% 0.54

aDegree: degree in polynomial kernel function.
bGamma: gamma value in the kernel functions.
cC: trade-off between training error and margin.
dPolynomial: (gamma*u0*v + coef0)degree.
eRBF: radial basis function, exp(�gamma*|u�v|2).

Figure 1. The screenshot of MeMo, Methylation Modification Prediction
Server.
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SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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