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Abstract: The application of arynes as radical acceptors is
described. The stable radical TEMPO (2,2,6,6-tetramethyl
piperidine 1-oxyl) is shown to add to various ortho-substituted
benzynes generating the corresponding aryl radicals which
engage in 5-exo or 6-endo cyclizations. The cyclized radicals
are eventually trapped by TEMPO. The introduced method
provides ready access to various dihydrobenzofurans, oxin-
doles, and sultones by a conceptually novel approach.

Arynes are an interesting class of reactive intermediates
which can be used as versatile building blocks in organic
chemistry, as convincingly documented by their application in
natural product synthesis.!! Structurally, arynes exhibit
a strained triple bond with a large singlet—triplet gap in the
ground state (37.7 kcalmol™' for benzyne).” A direct con-
sequence of this unusual bent alkyne structure is their low-
lying LUMO which renders arynes highly reactive.'*3 The
electrophilic character of arynes has been intensively studied
and multi-component,™ aryne relay,”’ and o-bond insertion®!
reactions have been developed (Scheme 1 A). Furthermore,
the aryne triple bond engages in pericyclic reactions, which
has been exploited in [242] and [4+42] cycloadditions
(Scheme 1B).[" Arynes have also found use as intermediates
in transition-metal-catalyzed [24242] reactions,”! o-bond
insertions,”) C—H activations,"”) and multicomponent reac-
tions" (Scheme 1C). For example, in the presence of
a Pd catalyst, benzyne undergoes a cyclotrimerization to
give triphenylene .

The low-lying LUMO of arynes should also make them
ideal radical acceptors; however, cascades comprising arynes
as acceptors are neatly unexplored.'” The main challenge in
such transformations lies in the low concentrations of both
aryne and radical, as both reaction components are highly
reactive intermediates.”® Therefore, coupling of a radical
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with an aryne in a chain reaction is highly challenging and, not
surprisingly, only very few aryne radical reactions have been
reported, mostly discovered as unexpected processes. For
example, Shioji and co-workers found that benzyne reacts
with sterically highly congested thiones not via the targeted
[242] cycloaddition but as a biradical adding to the C-S
double bond.*! Wang and co-workers!'* isolated dibenzo-
selenophenes by reacting tetraynes generated in a hexadehy-
dro Diels—Alder process with diphenyldiselenide. They sug-
gested a mechanism based on a free-radical reaction. Murphy
and Tuttle showed that benzyne can act as a radical initiator in
base-promoted homolytic aromatic substitutions."?s! How-
ever, to the best of our knowledge, preparative valuable
radical cascades comprising arynes as acceptors exploiting
their biradical character have not been reported to date.

A) Nucleophilic additions (e.g., anionic, neutral, or 6-bond insertion)
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Scheme 1. Arynes as reactive intermediates in synthesis
(TEMPO =2,2,6,6-tetramethyl piperidine 1-oxyl, TMP = (2,2,6,6-tetra-
methyl)-piperidin-1-yl).
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We envisioned to address the critical “concentration
problem” of aryne radical chemistry by using nitroxides that
are stable and persistent radicals as the aryne reaction
partners.®™!¥ To our knowledge, reactions of arynes with
nitroxides have not been reported to date. Our strategy is
depicted in Scheme 1D. An in situ generated aryne of type A
bearing a pendant second radical acceptor should react with
TEMPO, added as a stable reagent, to the aryl radical B. This
in turn will undergo a fast 5-exo-cyclization to the corre-
sponding cyclized alkyl radical, which will be finally trapped
by a second equivalent of TEMPO to give the trapping
product 1. This unique transformation, comprising three
consecutive o-bond formations, deserves further comments:
Since TEMPO addition to an unactivated alkene is not an
efficient reaction,”! we expect a highly chemoselective initial
addition of TEMPO to the highly reactive aryne functionality
in A. Moreover, due to the bulkiness of TEMPO, addition
onto the aryne should occur with high regioselectivity."® The
subsequent 5-exo-cyclization should be faster than direct
intermolecular TEMPO trapping of B and the terminating
radical/radical cross coupling of the cyclized radical with the
second TEMPO should be selective due to the high relative
concentration of the persistent TEMPO radical.l'*!

To evaluate the feasibility of such an unprecedented
cascade, we first investigated the reactivity of benzyne
towards TEMPO. TEMPO is a cheap, commercially available
and bench-stable nitroxyl radical which has been used as
a radical trapping reagent, in living radical polymerizations
and in oxidations of alcohols in combination with stoichio-
metric amounts of a cooxidant.!'”! The Kobayashi method was
selected for aryne generation.'>?"! Pleasingly, we found that
the reaction of the triflate 2 with CsF (3.0 equiv) and 18-
crown-6 ether (3.0equiv) in the presence of TEMPO
(5.0 equiv) in n-hexane provided the TEMPO-bisadduct 3 in
48 % yield, clearly documenting that TEMPO addition onto
an aryne is occurring (Scheme 2). Product 3 is formed by the
trapping of the intermediately generated TEMPO adduct aryl
radical with a second equivalent of TEMPO. Notably,
bisalkoxyamine 3 was found to be moderately stable and its
structure was unambiguously confirmed by X-ray crystallo-
graphy.?!

Encouraged by this result, we next investigated the radical
cascade suggested in Scheme 1D. To this end, triflate 4a was
prepared as the model substrate (Table 1). We were very
pleased to find that upon reacting 4a with CsF (3.0 equiv) and
18-crown-6 ether (3.0 equiv) in the presence of TEMPO

>(j< [{ cwn
TEMPO N '
CsF (I) N@‘L\
TMS  18-crown-6 ether o /1
X o
OTf n-hexane, rt, 1 h Q CJ\ §e e
N 4N
N1 */
2 3 (48%) :

Scheme 2. Radical reaction of benzyne with TEMPO to give the
bisalkoxyamine 3 and crystal structure of 3 (H-atoms are omitted).

www.angewandte.org

Communications

© 2020 The Authors. Published by Wiley-VCH GmbH

Angewandte

intemationaldition’y) Chemie

Table 1: Reaction optimization.?!

o/\/ 0 O‘N
@iTMS conditions
- (0]
OTf TEMPO >G)<
4a 1a
Entry TEMPO Solvent T Yield 1Ta
(equiv) [%]
10 5 n-hexane rt 59
2 2 n-hexane rt 35
30l 10 n-hexane rt 57
40! 5 n-hexane 0°C 59
501 5 PhMe 0°C 60
6 5 MeCN rt 58
7 5 MeCN 0°C 50
8 5 MeCN -20°C 56
9 5 1,2-DCE rt 34
10 5 MeCN 70°C 30
118 5 MeCN rt 53

[a] Reaction conditions: 4a (0.1 mmol, 1.0 equiv), TEMPO (0.5 mmol,
5.0 equiv), CsF (0.3 mmol, 3.0 equiv), and solvent (1 mL, 0.1 m). Yields
represent isolated yields. [b] 18-crown-6 ether (0.3 mmol, 3.0 equiv) was
added. [c] CsF (0.2 mmol, 2.0 equiv) and 18-crown-6 ether (0.2 mmol,
2.0 equiv) were used. [d] K,CO; (0.40 mmol, 4.0 equiv) and 18-crown-6
ether (0.40 mmol, 4.0 equiv) were used to prepare the aryne. [e] Tetra-
butylammonium difluorotriphenylsilicate (TBAT, 0.30 mmol, 3.0 equiv)
was used to prepare the aryne. rt=room temperature.

(5.0 equiv) in n-hexane at room temperature the targeted
dihydrobenzofuran 1a was obtained in 59 % yield (Table 1,
entry 1).?? Decreasing the amount of TEMPO to 2 equiv-
alents led to a lower yield of 4a, whereas increasing the
TEMPO amount provided a similar yield (35% and 57 %,
Table 1, entries2 and 3). Solvent screening revealed n-
hexane, toluene, and acetonitrile to be good solvents for this
cascade, but a worse result was achieved in 1,2-dichloroethane
(Table 1, entry 9). The good solvents show small differences in
the amount of product formed (Table 1, entries 4-6). For
reactions carried out in n-hexane, 18-crown-6 ether was
required in order to increase the solubility of the fluoride
source. Variation of the temperature (—20°C to rt) showed
only little impact on the yield (Table 1, entries 6-8). CsF can
be replaced by TBAT or K,CO; at 70°C for aryne generation,
although lower yields were noted in these cases (30 %, 53 %,
Table 1, entries 10 and 11).

With optimized conditions in hand (Table 1, entry 1), we
tested different triflates 4b-n in this novel cascade
(Scheme 3). For the preparation of the starting materials,
we refer to the Supporting Information (SI). A substituent at
the 5-position of the intermediate 3-allyoxy aryne is tolerated:
Electron-donating groups such as phenyl (1b) and methoxy
(1¢) led to lower yields, whereas the electron-withdrawing
chloro-substituent showed little effect on the yield (1d). In
the NMR spectra of products 1b to 1d an inseparable side
product was identified in each case (3-9 %, see SI). These side
products derive from a 1,6-HAT from the TEMPO-methyl
group of the intermediate aryl radical B with subsequent
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Scheme 3. Radical reaction of o-substituted arynes with TEMPO and
cyclization to bisalkoxyamines. Yields represent isolated yields. Reac-
tion time t=1-18 hours. Conditions: [a] Method A: 4 (0.20 mmol,

1.0 equiv), TEMPO (1.0 mmol, 5.0 equiv), CsF (0.60 mmol, 3.0 equiv),
18-crown-6 ether (0.60 mmol, 3.0 equiv), and n-hexane (2.0 mL).

[b] Method B: 4 (0.20 mmol, 1.0 equiv), TEMPO (1.0 mmol, 5.0 equiv),
CsF (0.60 mmol, 3.0 equiv), and MeCN (2.0 mL). [c] Reaction was
performed on 0.25 mmol scale.

TEMPO trapping (see analogous compound 6e in Scheme 4
below). Moreover, the generally moderate yields observed
are also caused by the instability of the products (labile N—O
bond in aryl-TEMPO alkoxyamines).

The allyloxy group can be further substituted (R? group)
by an ester (1e), acetyl (1f) or methyl group (1i) providing
the corresponding dihydrobenzofurans in 38-58% yields®®!
with moderate diastereoselectivities for the TEMPO-trapping
step (3:1 to 5:1). The structure of the major isomer of ester 1e
was confirmed by X-ray crystallography (Figure 1).”" o.p-
Unsaturated sulfonate esters 4g and 4h gave the targeted
sultones 1g and 1h in 46 % and 41 % yield, respectively. The
sultone 1h was formed as a diastereomeric mixture (dr=3:1)
and the structure of the major isomer was unambiguously
assigned by X-ray crystallography (Figure 1).1°"

By installing an a-substituent at the allyloxy group we also
addressed the diastereoselectivity of the fast radical 5-exo-
cyclization. For a tested system (4k), only a moderate
selectivity was noted and the 2,3-disubstituted dihydrobenzo-
furan 1k was obtained in 62 % yield (dr=1.5:1). As expected,
for pB-substituted 3-allyloxyarynes, the regioselectivity of the
radical cyclization was not complete. Hence, with the
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5e 6e (15%)1 1.6-HAT
Scheme 4. Reactions of arynes with TEMPO involving 1,5- or 1,4-HAT
to give bisalkoxyamines 6a—d. Reaction conditions: 5 (0.20 mmol,
1.0 equiv), TEMPO (1.0 mmol, 5.0 equiv), CsF (0.60 mmol, 3.0 equiv),
18-crown-6 ether (0.60 mmol, 3.0 equiv), and n-hexane (2.0 mL).

[a] Reaction condition: 5e (1.0 mmol, 1.0 equiv), TEMPO (3.0 mmol,
3.0 equiv), CsF (3.0 mmol, 3.0 equiv), and MeCN (10 mL). Yields
represent isolated yields.

e > 1h

Figure 1. X-ray crystal structures of the major diastereomers of ester
1e and sultone Th. H-atoms are only shown at the stereocenters.

activating ester moiety, a significant amount of the 6-endo
product 11" was formed (5-exo/6-endo =1:1.5). However, the
[-methyl congener afforded exclusively the 5-exo product 1j.
In the NMR spectra of 1j we identified an inseparable side
product that is derived from a 1,6-HAT from the TEMPO
moiety of intermediate B with subsequent TEMPO trapping.
To our surprise, reaction of the acryl amide 4m with TEMPO
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under optimized conditions did not afford the expected
bisalkoxyamine, but the oxindole 1m was isolated in 38 %
yield. Methacrylamide 4n furnished the quinolinone 1n in
59% yield via a 6-endo cyclization. In these two cases (1m,
1n), facile TEMPOH elimination is occurring from the
targeted products via an ionic or a radical pathway.*)

Finally, we investigated the reactivity of the intermediate
aryl radical generated by TEMPO addition to an aryne
towards intramolecular hydrogen atom transfer (HAT),
further leveraging the potential of radical aryne chemistry
(Scheme 4). Of note, radical translocation via 1,5-HAT to aryl
radicals has been successfully used in organic synthesis.”" The
ortho-alkoxyl substituted aryne precursors Sa—c bearing a C—
H bond at the (-position of the alkoxyl group engaged in the
cascade and the bisalkoxyamines 6a, 6b, and 6¢ were
obtained with similar yields (47-54%). These reactions
proceed via TEMPO addition to the intermediate aryne to
give the corresponding adduct aryl radical that further reacts
via a 1,5-HAT. The thus generated translocated alkyl radical is
eventually trapped by the second equivalent of TEMPO to
give compounds of type 6. Considering triflate Sc, the
bisalkoxyamine derived from a 1,6-HAT was not identified.
In analogy, triflate 5d reacted via a 1,4-HAT to the mixed
acetal 6d (47 %). Surprisingly, subjecting triflate 5e to the
standard reaction conditions did not provide the expected 1,4-
HAT-derived acetal; instead, we isolated the 1,6-HAT/
TEMPO trapping product 6e (15 %).

In summary, we have shown that arynes react as in situ
generated radical acceptors with the persistent TEMPO
radical. The adduct aryl radical thus generated can then
engage in different typical radical reactions such as direct
TEMPO trapping, cyclization and intramolecular hydrogen
atom transfer. The rearranged radicals generated in the latter
two cases can finally be trapped by the persistent TEMPO
radical in a highly selective radical/radical cross coupling. In
all cases, bisalkoxyamines result in rather good yields
considering the complexity of these cascades. Aryne radical
chemistry nicely complements existing ionic or transition-
metal based reactions of arynes opening new doors in that
timely research area.
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