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Abstract

Despite decades of research, our understanding of the relationship between color and form 

processing in the primate ventral visual pathway remains incomplete. Using fMRI multivoxel 

pattern analysis, we examined coding of color and form, using a simple form feature (orientation) 

and a mid-level form feature (curvature), in human ventral visual processing regions. We found 

that both color and form could be decoded from activity in early visual areas V1 to V4, as 

well as in the posterior color-selective region and shape-selective regions in ventral and lateral 

occipitotemporal cortex defined based on their univariate selectivity to color or shape, respectively 

(the central color region only showed color but not form decoding). Meanwhile, decoding biases 

towards one feature or the other existed in the color- and shape-selective regions, consistent with 

their univariate feature selectivity reported in past studies. Additional extensive analyses show that 

while all these regions contain independent (linearly additive) coding for both features, several 

early visual regions also encode the conjunction of color and the simple, but not the complex, form 

feature in a nonlinear, interactive manner. Taken together, the results show that color and form are 

encoded in a biased distributed and largely independent manner across ventral visual regions in the 

human brain.
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Introduction

Research over the past several decades has provided us with a wealth of knowledge 

regarding the representation of color and form information in the primate brain. Both color 

and form information have been shown to be represented and transformed across multiple 

levels of processing, with the relevant neural processes spanning the entire visual processing 
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hierarchy, from the retina to higher-level ventral stream regions. Notably, human fMRI 

studies have identified form-processing regions in lateral and ventral occipito-temporal 

cortex (OTC) (Malach et al., 1995; Grill-Spector et al., 1998; Kourtzi and Kanwisher, 2001; 

Orban et al., 2004), and both monkey neurophysiology and human fMRI studies have 

reported color-processing regions in ventral OTC (Hadjikhani et al., 1998; Brewer et al., 

2005; Conway et al., 2007; Lafer-Sousa and Conway, 2013; Lafer-Sousa et al., 2016; Chang 

et al., 2017; Conway, 2018). Despite these advances, past studies tended to examine a single 

feature in isolated brain regions with a range of different methods or stimuli, making it 

difficult to construct an overarching view of how color and form are coded relative to each 

other within a brain region and across different regions along the primate ventral processing 

pathway.

In the present study, we address these limitations by comprehensively probing visual 

processing regions along the ventral visual pathway with the same stimuli to document 

the extent to which color and form are encoded in overlapping versus independent brain 

regions, compare the magnitude of color and form decoding for the regions that encode both 

(allowing us to test whether regions that have shown univariate selectivity for a given feature 

exhibit a corresponding multivariate feature preference), and determine whether regions 

with information about both features encode it in an additive versus interactive manner. We 

draw on a paradigm developed by Seymour et al. (2010) that uses fMRI and multi-voxel 

pattern analysis (MVPA) to examine color and form coding, both replicating their results 

and extending them in two ways. First, in addition to the early visual areas examined in their 

study, we examined higher-level ventral stream regions exhibiting univariate selectivity to 

either color or shape information. Second, in addition to examining the coding of color and 

orientation (a low-level form feature) as in their study, we documented the coding of color 

and a mid-level form feature, curvature, across the early visual and ventral visual regions. 

Together, our approach provides an updated documentation of the representation of color, 

form, and their conjunction across the human ventral visual pathway.

Color and form processing across the visual hierarchy

Past work has demonstrated that both color and form information is successively 

transformed across a series of processing stages, spanning from early visual cortex to 

anterior temporal lobe regions. Early visual areas V1 to V4 have been shown to contain both 

color and shape information, with some degree of mesoscale segregation of neurons tuned 

to each of these two features (e.g., Livingstone and Hubel, 1988; Gegenfurter et al., 1996; 

Conway, 2001; Johnson et al., 2001; Ts’o et al., 2001; Brewer et al., 2005; Conway et al., 

2007; Brouwer and Heeger, 2009; Conway et al., 2010; Seymour et al., 2010; Shapley and 

Hawken, 2011).

For higher ventral regions beyond V4, coding for color and form exhibit more anatomical 

separation. Specifically, macaque inferotemporal cortex (IT) contains neurons tuned to high-

level shape features (e.g., Tanaka, 1996; DiCarlo et al., 2012; Lehky and Tanaka, 2016; Bao 

et al., 2020), and arguably homologous regions in the human lateral and ventral OTC exhibit 

higher fMRI responses to coherent shapes than scrambled stimuli (Malach et al., 1995; 

Grill-Spector et al., 1998; Kourtzi and Kanwisher, 2001; Orban et al., 2004). Critically, 
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damage to these cortical regions can result in loss of form perception, with spared color 

perception (Benson and Greenberg, 1969; Goodale and Milner, 2004). Analogously, a series 

of posterior, central and anterior color-selective regions in ventral visual cortex have been 

shown to exhibit color-tuning in the macaque, and show higher fMRI responses to colored 

than greyscale stimuli in the human brain (Hadjikhani et al., 1998; Brewer et al., 2005; 

Conway et al., 2007; Lafer-Sousa and Conway, 2013; Lafer-Sousa et al., 2016; Chang et 

al., 2017; Conway et al., 2018). Damage to these color regions has been linked to deficits 

in color processing with largely spared form processing (Siuda-Krzywicka and Bartolomeo, 

2020; Bouvier and Engel, 2006).

The existence of regions reliably showing univariate selectivity to color and form, along 

with the lesion data, is consistent with the view that different features are encoded by 

anatomically distinct neural populations in high-level vision. However, color and form 

information may be encoded in distributed, fine-grained activation patterns that univariate 

mean-activation methods cannot detect (e.g., Haxby et al., 2001). Indeed, macaque IT 

and color regions contain both color and form information (Komatsu and Ideura, 1993; 

McMahon and Olson, 2009; Chang et al., 2017; Rosenthal et al., 2018; Duyck et al., 2021) 

and the human shape-selective region in lateral occipital cortex has been found to contain 

color information using fMRI multivoxel pattern analysis (Bannert and Bartels, 2013, 2018).

How should we reconcile the existence of regions showing univariate selectivity for color 

or form with the evidence suggesting that tuning for these features might be broadly 

distributed throughout the ventral visual pathway? A primary goal of the present study is to 

systematically document the multivariate coding of color and form throughout the human 

ventral visual processing pathway, compare how the relative coding strength of these two 

types of features may vary across brain regions, and determine whether regions exhibiting 

univariate feature selectivity as reported in previous work would show a similar bias in 

multivariate feature decoding.

Independent or interactive coding of color and form?

The mesoscale segregation of neurons specialized for processing color and form features in 

early visual areas, the existence of distinct higher-level visual regions showing univariate 

selectivity to color or form, and the behavioral deficits associated with damage to these 

regions are consistent with independent coding of color and form in the primate brain. 

Available psychophysical evidence also supports this view, such as from visual search and 

illusory conjunction effects (e.g., Treisman and Gelade, 1980; Treisman and Schmidt, 1982), 

leading Treisman and Gelade (1980) to posit feature integration theory: different visual 

features are initially encoded on their own distinct feature maps, and focused attention then 

spatially links the different features associated with the same object to encode conjunctions 

of features.

Meanwhile, various behavioral studies have shown that color and form may be automatically 

encoded in a conjoined and interactive format without requiring a separate, laborious 

attention-driven binding step (e.g., Stromeyer, 1969; Victor et al., 1989; Cavanagh, 1991; 

Heywood et al., 1991; Barbur et al., 1994, 1998; Holcombe and Cavanagh, 2001; Mandelli 

and Kiper, 2005). At the level of neural coding, non-additive (interactive) feature coding has 

Taylor and Xu Page 3

Neuroimage. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



been found in human early visual areas (Engel, 2005; Seymour et al., 2010; see more details 

of the latter study below) and macaque V4 and color regions (Bushnell and Pasupathy, 

2012, and Chang et al., 2017). It is largely absent in IT, and has not been explicitly tested 

in V1 and V2 in macaques (Friedman et al., 2003; McMahon and Olson, 2009). Notably, 

interactive feature coding in the human brain has thus far only been tested for simple form 

features, such as orientation, leaving it unknown whether this processing format is also used 

for the conjunction of color with more complex form features.

A second goal of the present study is thus to examine the prevalence of non-additive color 

and form coding in the ventral visual pathway by testing whether it is present for both the 

conjunction of color and simple form features and that of color and more complex form 

features, and determining whether it can be found in lower as well as higher ventral regions 

in the human brain. Due to the “combinatorial explosion” involved in directly encoding 

every possible combination of color and form features, it is possible that interactive coding 

may only be used for some form features but not others, making it important to determine 

how broadly it applies.

Present study

To answer the outstanding questions raised above, we replicated and extended a previous 

human fMRI MVPA study by Seymour et al. (2010) that examined color and orientation 

coding in early visual areas. In this study, spiral stimuli were shown that were either 

clockwise or counterclockwise, and either red or green (see Fig. 1 for an illustration). In the 

single conjunction condition, spiral stimuli for each orientation and color combination were 

shown in different blocks of trials, with the phase of each spiral alternating over the course 

of the block to ensure that any form decoding was not a confound from differing retinotopic 

footprints of the stimuli. fMRI decoding revealed the presence of both color and orientation 

information in V1, V2, V3, and V4. In the double conjunction condition, pairs of stimuli 

with both features differing (e.g., either Red-Clockwise and Green-Counterclockwise, or 

Red-Counterclockwise and Green-Clockwise) were shown alternating throughout a block of 

trials, such that the two kinds of block had the same individual features, but differed in how 

they were conjoined. fMRI decoding revealed interactive coding of color and orientation 

throughout V1 to V4. These regions thus appeared to encode not just color and orientation, 

but also how they were combined.

While Seymour et al. (2010) was elegantly designed and theoretically informative, it was 

limited to the coding of color and orientation in early visual areas. To address the two main 

questions we raised earlier, here we extended Seymour et al. (2010) in two important ways: 

first, we examine not only early visual regions but also higher-level ventral stream regions 

defined based on their univariate selectivity to either color or form, and second, we examine 

color and form coding not just for a simple form feature (orientation), but also a mid-level 

form feature, curvature. Our study additionally allowed us to replicate the interactive coding 

for color/orientation conjunctions in early visual areas as reported by Seymour et al. (2010) 

and test whether such a coding scheme is specific to simple form features in early visual 

areas, or is a broader motif of color-form processing in human ventral cortex. As an 

additional extension of their study, we devised a new analysis technique, pattern difference 
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MVPA, that we used as a further method to probe for interactive color-form tuning; this 

method can also be used to look for subtle interaction effects in fMRI paradigms beyond the 

present study.

We found that color and form could be decoded from activity in early visual areas V1 to 

V4, as well as in the posterior color-selective region and shape-selective regions in ventral 

and lateral occipitotemporal cortex defined based on their univariate selectivity to color or 

shape, respectively (the central color region only showed color but not form decoding). 

Meanwhile, decoding bias towards one feature or the other existed in the color- and shape-

selective regions, largely consistent with their univariate feature selectivity reported in past 

studies. While all regions encoding both color and shape contained independent (linearly 

additive) coding of the two features, several analyses found evidence that early visual 

cortex additionally contains a tuning component that encodes the conjunction of color and 

the simple, but not the complex, form feature in a nonlinear, interactive manner. Taken 

together, the results show that color and form are encoded in a biased distributed and largely 

independent manner across ventral visual regions in the human brain.

Materials and methods

Participants

Experiment 1 included 12 healthy, right-handed adults (7 females, between 25 and 34 years 

old, average age 30.6 years old) with normal color vision and normal or corrected to normal 

visual acuity. Experiment 2 included 13 healthy adults (7 females, between 25 and 34 years 

old, average age 28.7 years old). Four participants partook in both experiments. Participants 

were members of the Harvard community with prior scanning experience. All participants 

gave informed consent prior to the experiments and received payment. The experiments 

were approved by the Committee on the Use of Human Subjects at Harvard University.

Stimuli

Experiment 1: Colored spirals—Stimulus design and experimental design for 

Experiment 1 were largely adapted from Seymour et al. (2010), with identical stimuli and 

tasks but some differences in the number and timing of the blocks. Participants viewed 

colored spiral stimuli that varied by color—red or green—and orientation—clockwise (CW) 

or counterclockwise (CCW)—resulting in four different kinds of spirals (Fig. 1A). Spirals 

were presented on a black background.

The spirals used were logarithmic spirals, defined by the formula r=aebθ, which have the 

property that the angle between the radius of the spiral and an arm of the spiral at any 

point is fixed, in this case at 45°. This property ensures that there is a constant relationship 

between the location of an edge of a spiral arm in visual space and the radial component of 

its angle, as would not be the case if oriented gratings were used (for example, a horizontal 

oriented grating would have a maximal radial component along the horizontal midline, 

and minimal radial component along the vertical midline). This constraint accounts for 

the known radial bias in early visual cortex, in which radial orientations are preferentially 

represented in early visual topographic maps (e.g., zones of cortex corresponding to the 
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top of the visual field have an over-representation of vertically oriented angles), ensuring 

that successful decoding of orientation could not simply be due to activation of different 

sub-regions of topographic maps (Sasaki et al., 2006; Mannion et al., 2009; Seymour et al., 

2010). Stimuli were generated by first drawing 40 spiral lines at evenly spaced angles from 

the origin according to the above formula and filling in alternating regions of the spiral with 

the stimulus color and the background color, black, resulting in 20 spiral arms. The spiral 

subtended a circular region covering 9.7° of visual angle, with an internal aperture in the 

middle, within which a white fixation dot was displayed. As mentioned earlier, the spiral 

arms could be oriented either clockwise or counterclockwise. Additionally, depending on 

which of the spiral arms were colored and which were black, each spiral could be presented 

in one of two phases.

The exact spiral colors used in the experiment were generated using the following 

procedure. To generate initially isoluminant shades of red and green, each participant 

performed a flicker-adjustment procedure inside the scanner (Kaiser, 1991), in which a 

flickering checkerboard with the two colors being adjusted flashed at 30 hz, and participants 

adjusted the colors until the flickering sensation was minimal. Specifically, the two colors 

had RGB values of the form red-hue = [178, 178 - X, 89] and green-hue = [0, X, 89], where 

participants adjusted the “X” parameter until isoluminance was achieved. This procedure 

guarantees that the two colors are isoluminant and sum to neutral gray, thereby equally 

stimulating all chromatic channels. Participants performed ten trials of this procedure, and 

the average “X” value was used to produce the initial colors. However, since this procedure 

might theoretically have some associated imprecision, each color was presented at either 

+/−10% of its initially calibrated luminance value on any given run of the experiment, 

where the number of high-luminance and low-luminance runs was balanced across the 

red and green colors. This manipulation ensures that any residual between-hue luminance 

differences will be far smaller than the within-hue luminance differences, reducing the 

likelihood that luminance, rather than hue, could drive MVPA classification during analysis. 

The luminance adjustment procedures were identical to those of Seymour et al. (2010), with 

the minor difference that their study varied the luminance settings of a given color within a 

run, whereas we varied it between runs.

Experiment 2: Colored tessellation patterns—For this experiment, we constructed 

two different tessellation stimuli, consisting either of a curvy or a spiky pattern within a 

circular aperture (Fig. 1A). These stimuli were deliberately designed so as not to resemble 

any real-world entities, and we decided upon a curvy versus spiky contrast because curvature 

is a salient mid-level visual feature, in contrast with orientation, which can be considered a 

lower-level visual feature (Gallant et al., 1993; Srihasam et al., 2014; Yue et al., 2014). The 

“phase” of the tessellation stimuli could also vary, based on whether a given region of the 

stimulus was currently colored or black. Exactly the same procedure as Experiment 1 was 

used to calibrate the colors of the two stimuli, and the stimuli subtended the same visual 

angle (9.7°) as in Experiment 1.
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Procedure

Experiment 1: Colored spirals—Participants viewed 12 s blocks of the stimuli and had 

to detect a 30% luminance increment or decrement using a button press (index finger for 

increase, middle finger for decrease). On any given block, two 500 ms luminance changes 

were presented, one in the first half and one in the second half of the block, and never 

in the first or last two stimuli of the block. The number and timing of the increments and 

decrements within the blocks was balanced across the whole experiment, and across all 

stimulus conditions described below. There were 9 s fixation blocks between the stimulus 

blocks and at the end of the run, with a 12 s fixation block at the beginning of the run. This 

allowed us to better separate fMRI responses from adjacent blocks (note that Seymour et al., 

2010 included no fixation blocks between stimulus blocks in their design).

The experiment included two kinds of runs (Fig. 1B). In the single-conjunction runs, only 

a single kind of spiral (RedCW, RedCCW, GreenCW, or GreenCCW) was presented for a 

given block, with its phase alternating once per second (for a total of 12 phase alternations 

per block), with no blank period between phase alternations within a block (i.e., the 

alternations between successive phases were instantaneous). This phase alternation ensures 

that all conditions were equated in their retinotopic footprint over the course of each block, 

removing this as a possible confound in form decoding. Since two starting phases were 

possible, each of the four spiral types could begin on either starting phase, resulting in 8 

different block types for these runs. Each run contained one instance of each of the 8 types 

of block, totaling 180 s per run. Participants completed 12 such runs, thus viewing a total 

of 24 blocks of each of the four spiral types over the whole session. To ensure that block 

types were roughly matched in terms of their placement within the runs and how frequently 

they appeared next to other block types, a random balanced Latin square procedure was used 

to generate the block order for each subject; specifically, two random 8 × 8 balanced Latin 

squares were generated, the second square was truncated to 4 × 8, and the two squares were 

concatenated, giving the block order for 12 runs of 8 blocks each.

In the double-conjunction runs, there were two block conditions: a block could either 

alternate between RedCW and GreenCCW, or between RedCCW and GreenCW, with the 

phase of each spiral type alternating at each presentation; for instance, an example block 

would progress through the sequence RedCW-Phase1, GreenCCW-Phase2, RedCW-Phase2, 

GreenCCW-Phase1, and then repeat. Since each block condition could begin on either 

one of the two spirals in either one of the two phases, there were therefore four different 

block types for each block condition. Due to how the spirals were constructed and how 

the stimuli alternated phase within each block type, varying the starting stimulus in this 

manner ensured that the two block conditions were matched in how frequently each pixel 

took on values of red (25% of the time), green (25% of the time), and black (50% of 

the time) both over the course of any given block and at any given time point across the 

four block types within each block condition. This ensured that pixel-level information 

could not drive decoding during the MVPA analysis. The stimulus timing, number of 

blocks, counterbalancing method, and task for these runs was otherwise identical to that 

of the single-conjunction runs. Participants completed 12 double-conjunction runs, and thus 

viewed each kind of double conjunction block 48 times. The single-conjunction runs and 
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double-conjunction runs alternated in sets of three (e.g., three double-conjunction runs, then 

three single-conjunction runs), with the type of the initial run set counterbalanced across 

participants. Note that while Seymour et al. (2010) interleaved single-conjunction blocks and 

double-conjunction blocks within the same run, we separated them into different runs. This 

allowed us to form two completely independent datasets to more rigorously validate results 

showing interactive coding of color and form.

Experiment 2: Colored tessellation patterns—Exactly the same task and 

experimental design were used in Experiment 2 as in Experiment 1, with only the stimuli 

varying. Due to how the tessellation stimuli were constructed and the manner in which 

they alternated phase within the double conjunction blocks, they shared with the spirals the 

property that each pixel was matched in its frequency of taking on values of red, green, and 

black both over the course of the block, and at corresponding timepoints for the two block 

conditions, across the four block types within each block condition.

Localizer experiments—As regions of interest in both experiments, we included 

retinotopically-defined regions V1, V2, V3, and V4 in early visual cortex, and functionally-

defined shape and color regions in occipitotemporal visual cortex.

To localize topographic visual field maps, we followed standard retinotopic mapping 

techniques (Sereno et al., 1995). A 72° polar angle wedge swept either clockwise or 

counterclockwise (alternating each run) across the entire screen, with a sweeping period 

of 36.4 s and 10 cycles per run. The entire display subtended 23.4 × 17.6° of visual angle. 

The wedge contained a colored checkerboard pattern that flashed at 4 Hz. Participants were 

asked to detect a dimming in the polar angle wedge. Each participant completed 4–6 runs, 

each lasting 364 s.

We localized two shape regions in lateral occipitotemporal (LOT) and ventral 

occipitotemporal (VOT) cortex, following the procedure described by Kourtzi and 

Kanwisher (2001), and subsequently used in several of our own lab’s studies (Vaziri-

Pashkam and Xu, 2017; Vaziri-Pashkam et al., 2019). LOT and VOT approximately 

correspond to the locations of LO and pFs (Malach et al., 1995; Grill-Spector et al., al., 

1998; Kourtzi and Kanwisher, 2001) but extend further into the temporal cortex in order to 

include as many form-selective voxels as possible in occipitotemporal regions. Specifically, 

in a separate scanning session from the main experiment (usually the same one as the 

retinotopic mapping session), participants viewed black-and-white pictures of faces, places, 

common objects, arrays of four objects, phase-scrambled noise, and white noise in a block 

design paradigm, and responded with a button press whenever the stimulus underwent a 

slight spatial jitter, which occurred randomly twice per block. Each block contained 20 

images from the same category, and each image was presented for 750 ms each, followed by 

a 50 ms blank display, totaling 16 s per block, with four blocks per stimulus category. Each 

run also contained a 12 s fixation block at the beginning, and an 8 s fixation block in the 

middle and end. Images subtended 9.5° of visual angle. Participants performed either two or 

three runs, each lasting 364 s.
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We also localized a series of color-selective regions in ventral temporal cortex, using a 

procedure similar to Lafer-Sousa et al. (2016). Two runs of a color localizer were presented 

during the main scan session, one at the middle and one at the end of the session. In these 

runs, participants viewed 16 s blocks consisting of either colorful, highly saturated natural 

scene images selected from the online Places scene database (Zhou et al., 2018) or greyscale 

versions of these images. Participants responded when an image jittered back and forth, 

which occurred twice per block. Images subtended 9.5° of visual angle, and were each 

presented for 750 ms (50 ms blank period between stimulus presentations within a block). 

Each run contained 16 blocks, 8 for each of the two stimulus types, for a total run duration 

of 292 s including an initial 20 s fixation block, and an 8 s fixation block in the middle and 

the end of the run.

MRI methods

MRI data were collected using a Siemens PRISMA 3T scanner, with a 32-channel receiver 

array headcoil. Participants lay on their backs inside the scanner and viewed the back-

projected display through an angled mirror mounted inside the headcoil. The display was 

projected using an LCD projector at a refresh rate of 60 Hz and a spatial resolution of 

1280×1024. An Apple Macbook Pro laptop was used to create the stimuli and collect the 

motor responses. Stimuli were created using Matlab and Psychtoolbox (Brainard 1997).

A high-resolution T1-weighted structural image (1.0 × 1.0 × 1.3 mm) was obtained from 

each participant for surface reconstruction. All Blood-oxygen-level-dependent (BOLD) data 

were collected via a T2*-weighted echo-planar imaging (EPI) pulse sequence that employed 

multiband RF pulses and Simultaneous Multi-Slice (SMS) acquisition. For the two main 

experiments, including the color localizer runs, 69 axial slices tilted 25° towards coronal 

from the AC-PC line (2 mm isotropic) were collected covering the whole brain (TR = 1.5 

s, TE = 30 ms, flip angle = 75°, FOV = 208 m, matrix = 104×104, SMS factor = 5). 

For the retinotopic mapping and LOC localizer sessions, 64 axial slices tilted 25° towards 

coronal from the AC-PC line (2.3 mm isotropic) were collected covering the whole brain 

(TR = 0.65 s, TE = 34.8 ms, flip angle = 52°, matrix = 90×90, SMS factor = 8). Different 

slice prescriptions were used here for the different localizers to be consistent with the 

parameters used in our previous studies, and to optimize data collection for each paradigm 

(e.g., retinotopic mapping using a rotating checkerboard wedge benefits from a low TR 

to more finely capture phase-varying voxel responses). The slices were used to construct 

3D brain volumes, which were then projected onto each participant’s cortical surface, thus 

placing the data from different localizers in a common anatomical space such that the exact 

slice prescriptions used had minimal impact on the final results.

Data analysis

FMRI data were analyzed using FreeSurfer (surfer.nmr.mgh.harvard.edu), FsFast (A.M. 

Dale, Fischl, and Sereno, 1999) and in-house Python scripts. The exact same analysis 

pipeline was used for the two experiments, except that any analyses comparing clockwise 

versus counterclockwise spirals in Experiment 1 instead compared the spiky and curvy 

tessellation patterns in Experiment 2, due to the differing stimuli used. Preprocessing was 

performed using FsFast. All functional data was motion-corrected to the first image of 
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the run of the experiment. Slicetiming correction was applied, but smoothing was not. A 

generalized linear model (GLM) with a boxcar function convolved with the canonical HRF 

was used to model the response of each trial, with the three motion parameters and a linear 

and quadratic trend used as covariates in the analysis. The first eight TRs of each run (prior 

to the presentation of the first stimulus) were included as nuisance regressors to remove 

them from further analysis. A beta value reflecting the brain response was extracted for each 

trial block in each voxel. ROIs were defined on the cortical surface (placing the results of the 

separate localizers in a common anatomical space) and then projected back to the native 3D 

functional space of the main experiment for further analysis.

ROI definitions—Using independent localizers, we defined ROIs in early visual areas and 

in higher visual regions showing univariate selectivity to shapes or colors. Fig. 2 depicts 

all ROIs for an example participant. For all ROIs, the results of the respective localizer 

paradigms described above were projected onto the cortical surface using Freesurfer and 

manually defined (details for different regions described below); ROIs were then converted 

to the native functional volume space of the main experiment to extract the voxels used in 

ROI analyses.

V1 to V4.: Areas V1 through V4 were localized on each participant’s cortical surface by 

manually tracing the borders of these visual maps activated by the vertical meridian of 

visual stimulation (identified by locating the phase reversals in the phase-encoded mapping), 

following the procedure outlined in Sereno et al. (1995).

LOT and VOT.: Following the procedure described by Kourtzi & Kanwisher (2001), LOT 

and VOT were defined as the clusters of voxels in lateral and ventral occipitotemporal 

cortex, respectively, that respond more to photos of real-world objects than to phase-

scrambled versions of the same objects (p <. 001 uncorrected). These regions correspond 

to the location of LO and pFs (Malach et al., 1995; Grill-Spector et al., al.,1998; Kourtzi 

& Kanwisher, 2001), but extend further into the temporal cortex in our effort to include as 

many object-selective voxels as possible in occipito-temporal regions.

Ventral Stream Color Regions.: Following Lafer-Sousa et al. (2016), several color regions 

were identified in ventral temporal cortex as clusters of voxels responding more to colored 

images than to greyscale versions of the same images (p < .001, uncorrected). Since 

participants had varying numbers of such regions, we divided the regions in each hemisphere 

into anterior, central, and posterior color regions, following Lafer-Sousa et al. (2016). We 

were able to identify posterior and central color regions in every hemisphere of every 

participant in both experiments. In Experiment 1, we were able to localize the anterior 

color region in both hemispheres of 7/12 participants, one hemisphere of 3/12 participants, 

and neither hemisphere of 2/12 participants. In Experiment 2, we were able to localize 

the anterior color region in both hemispheres of 8/13 participants, one hemisphere of 3/13 

participants, and neither hemisphere of 2/13 participants. The inconsistency in localizing 

this color region was possibly due to its location being close to the ear canals where 

large MRI susceptibility effects and signal dropoff could occur. We note that our rate of 

localizing this color region was similar to that of Lafer-Sousa et al. (2016), who reported 
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that this region was found in both hemispheres of 6/13 participants, one hemisphere of 

4/13 participants, and neither hemisphere of 3/13 participants. These anterior regions were 

generally relatively small (mean 49 voxels, std 46 voxels, min 4 voxels, max 163 voxels), 

precluding us from conducting meaningful decoding analyses in these regions. We thus omit 

them from further analysis. For reference, Supplemental Figure 1 shows these color-selective 

regions for all participants across both experiments (along with retinotopically-defined V4 

for comparison), since fewer studies have examined these regions compared to the early 

visual and shape-selective regions.

V4 and VOT with Color Regions Removed.: We observed that the color regions 

overlapped with areas V4 and VOT in some cases. To document the extent to which color 

and form decoding in V4 and VOT might be affected by the color regions within them, we 

also ran several of the analyses on versions of V4 and VOT with the color-selective regions 

removed.

ROI overlap analysis—As noted just previously, we observed that areas V4 (defined 

retinotopically), the posterior color region (defined using a color versus greyscale localizer), 

and area VOT (defined using an object versus scrambled localizer) overlapped to some 

degree. To quantify this overlap, we computed the pairwise percent overlap between each of 

these ROIs, where percent overlap was defined as the percentage of the number of overlap 

voxels over the averaged number of voxels for the two ROIs, as we did in a previous study 

(Cant and Xu, 2012; see also Kung et al., 2007).

Multivoxel pattern analysis—In order to equate the number of voxels used in each ROI, 

the top 300 most active voxels in a stimulus-versus-rest GLM contrast across all the runs 

were selected. In addition to the ROIs described above, we also constructed an ROI for each 

participant consisting of the 300 most active voxels from the entire V1–V4 sector defined 

by the union of V1–V4, in order to test more sensitively for potentially subtle effects in 

several analyses. For several of the analyses (noted in each section below that describes the 

analysis), we analyzed subsets of the 100, 200, 300, 400, and 500 most active voxels per 

ROI, to determine the extent to which the presence of an effect depended on the number 

of voxels selected. A beta value was extracted from each voxel of each ROI for every trial 

block. To remove response amplitude differences across stimulus conditions, trial blocks and 

ROIs, beta values were z-normalized across all the voxels for each trial block in each ROI. 

For each of the contrasts of interest (described below), these beta values were used to train 

and test a linear support vector machine (SVM) classifier (with regularization parameter 

c = 1), using leave-one-run-out cross-validation. T-tests were performed to compare the 

decoding accuracy of the various measures to chance (one-sample, one-tailed t-test; one-

tailed was used because below-chance decoding is not conceptually meaningful). To account 

for the fact that four participants partook in both experiments with the other participants 

being different between the two experiments, in cases where decoding was compared 

between pairs of conditions between the two experiments, a partially-overlapping t-test 
(Derrick et al., 2017) was performed. Likewise, to examine the influence of experiment, 

feature type, and their interaction on decoding in each region and between regions, a linear 

mixed effects analysis was performed (since this analysis, unlike the classical ANOVA, is 
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able to explicitly account for subject-specific variance when only a subset of participants 

complete both experiments). Correction for multiple comparisons was applied using the 

Benjamini–Hochberg procedure with false discovery rate controlled at q < 0.05, with the 

details of this correction described for each analysis below (Benjamini and Hochberg, 1995). 

Specific details for each analysis were as follows.

Feature Decoding.: To assess the extent to which regions carried information about single 

features, in the single-conjunction blocks we trained and tested the classifier on color 

(red vs. green) and form (CW vs. CCW spirals in Experiment 1 and curvy vs. spiky 

tessellations in Experiment 2), where both values of the other feature were fed into each 

bin of the classifier (e.g., for color decoding, RedCW and RedCCW versus GreenCW and 

GreenCCW). Decoding for each condition was compared to chance (one sample t-test, 

one-tailed). Decoding for each feature was also compared between experiments (partially-

overlapping t-test, two-tailed), and color and shape decoding compared within experiments 

(within-subjects t-test, two-tailed). Correction for multiple comparisons was performed 

within each ROI across analyses of the same kind: thus, for comparing decoding for each of 

the four conditions (two features by two experiments) to chance, correction for multiple 

comparisons was performed across these four comparisons; and for the four pairwise 

comparisons in each ROI (comparing color versus form decoding within each experiment, 

and comparing decoding for each feature across experiments), correction was performed 

across these four pairwise tests. We additionally performed mixed-effects analyses in each 

ROI to directly compare the results of the two experiments. The mixed-effect analysis is 

analogous to a two-way ANOVA, but takes into account the fact that a partially overlapping 

set of participants took part in the two experiments. We examined the main effect of 

feature type (color vs. form), the form features used in the two experiments (orientation and 

curvature), and their interaction. To test for broad trends in feature coding across the visual 

hierarchy, we also averaged the decoding accuracy of ROIs showing qualitatively similar 

response profiles via their proximity and their ordinal pattern of their feature decoding 

strengths over the two experiments, and the same analyses were performed for these sectors 

as were performed in the individual ROIs, with correction for multiple comparisons applied 

in the same manner. Note that this averaging of the individual ROI decoding accuracies 

across sectors is different from the V1–V4 macro-ROI described earlier that is used in other 

analyses, where decoding is performed once in a macro-ROI consisting of the most active 

voxels in the union of V1–V4. Further linear mixed-effects analyses were used to verify that 

the decoding profiles in these sectors in fact varied from one another.

Additionally, to document whether there exist any hemispheric differences in color and 

form coding, within each experiment we ran a within-subjects t-test between the left and 

right hemisphere for both color and form coding. Since this analysis was exploratory, no 

corrections for multiple comparisons were performed.

Finally, to examine the extent to which feature decoding results for V4 and VOT are driven 

by their overlap with the color regions, we constructed ROIs consisting of V4 and VOT 

minus their overlap with the color regions. The same feature decoding analyses were run 

for these ROIs as for the other ROIs, with the same correction for multiple comparisons 

applied. Additionally, two-way mixed-effects analyses with ROI and experiment as factors 
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were run to examine whether decoding for either color or form significantly decreased in 

either region when the color-selective regions were removed (analyses conducted separately 

for each feature).

Feature Cross-Decoding.: To assess whether the two features were represented 

independently in each ROI (i.e., whether the representation of one feature was invariant 

to changes in the other feature) and whether there was any evidence of interactive feature 

coding, in the single conjunction blocks we performed cross-feature decoding in which 

we trained a classifier to discriminate two values of a relevant feature while the irrelevant 

feature was held at one value, and tested the classifier’s performance on the relevant feature 

when the irrelevant feature changed to the other value (e.g., train an orientation classifier 

on RedCW vs. RedCCW, and test orientation decoding on GreenCW vs. GreenCCW, or 

vice versa, with the results from the two directions averaged together). We did this for 

both features serving as the relevant feature. For comparison purposes, we also performed 

within-feature decoding, where we held the irrelevant feature constant between training 

and testing. This allowed us to compare the cross- and within-feature decoding using a 

matched number of trials. Decoding of each condition was compared to chance (one-sample 

t-test, one-tailed). Additionally, within-feature and cross-feature decoding were compared 

(within-subjects t-test, one-tailed; one-tailed was performed because only a decrease, not 

an increase, in performance from cross-decoding is interpretable) within each feature and 

experiment to determine whether coding for each feature is tolerant to changes in the other. 

Correction for multiple comparisons was performed within the set of comparisons done for 

each ROI (i.e., eight comparisons for comparing each condition to chance; four comparisons 

for comparing within-feature decoding to cross-decoding for the two experiments and two 

features).

Since both kinds of cross-decoding drop — a drop in color decoding across form features, 

or a drop in form decoding across colors — are conceptually similar in that they both 

reflect a more interactive feature representation, a one-tailed t-test was performed within 

each experiment to take both effects into account to test for an overall main effect of lower 

decoding in the cross-feature versus within-feature decoding conditions (note that this is 

the same as assessing a main effect of decoding difference between the within-feature and 

cross-feature decoding conditions across the two types of features using an ANOVA test, but 

looking at this main effect in a particular direction). Since this comparison provides critical 

evidence regarding whether or not interactive color and form coding may exist in a brain 

region, to perform an exhaustive search, we ran this particular analysis separately for the top 

100, 200, 300, 400, and 500 most active voxels in each ROI, and also a combined V1–V4 

ROI that includes the most active n voxels across the entire early visual sector. Given that 

SVM is sensitive to both power and noise (such that including too few voxels may exclude 

some of the informative voxels and thus provide insufficient power, whereas including too 

many voxels may add noise), testing the effect at a range of voxel sizes allowed us to assess 

the stability of any positive results obtained and how it may be affected by the number of 

voxels included in the analysis. Correction for multiple comparisons is applied within each 

voxel set, and separately within the early visual ROIs (since these constitute a replication of 

the results of Seymour et al., 2010) and the ventral stream ROIs; thus, correction is applied 
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across five values for the early visual ROIs (V1, V2, V3, V4, and the combined V1–V4 

macro-ROI; while the last is not strictly independent of the first four, we include it in the 

correction to err on the conservative side), and four values for the ventral stream ROIs (LOT, 

VOT, and the posterior and central color regions).

Pattern Difference MVPA.: To probe for the presence of interactive color and form 

representation in an ROI, we ran a novel analysis to examine whether the encoding of one 

feature (form or color) depends on the value of the other feature—that is, whether voxels 

in an ROI show aggregate evidence of a color-by-shape interaction effect in their tuning. 

Specifically, we first took the difference between the z-normalized beta values associated 

with RedCW and RedCCW, and between GreenCW and GreenCCW (Fig. 3). We then 

trained and tested an SVM (leave one run out cross-validation) on these difference vectors 

to examine whether the pattern differences between the two orientations change based on 

the color of the stimulus. We also performed the opposite analysis, comparing the beta 

value differences for the two different orientations (RedCW — GreenCW versus RedCCW 

— GreenCCW). The mean classification accuracies of these two directions of the analysis 

were then averaged, since an interaction effect implies a “difference of differences” in both 

directions (i.e., a difference in form pattern differences across colors, or a difference in color 

pattern differences across form features). Simulations with a known ground truth verified 

that the two directions of the analysis yield similar results, and so the results from the 

two directions were averaged rather than arbitrarily choosing one direction or the other. 

If the encoding of one feature is invariant to values of the other feature (i.e., the voxels 

exhibit only main effects with no interactions), SVM should discriminate these difference 

vectors at chance (50%); by contrast, if the encoding of one feature changes based on 

the other feature (i.e., an interaction effect), the classification should be above chance. 

Thus, the SVM classification step serves to aggregate small and potentially heterogeneous 

interaction effects across voxels (e.g., one voxel might show a superadditive interaction 

effect for RedCW, while another voxel might show a superadditive interaction effect for 

Green-CCW), analogous to how standard SVM decoding analyses aggregate small and 

potentially heterogeneous pairwise effects (e.g., some voxels might slightly prefer one 

condition and other voxels might prefer another) across voxels. The same analysis was 

performed for the tessellation stimuli in Experiment 2, replacing CW and CCW with the 

spiky and curvy stimulus conditions. One sample, one-tailed t-tests were performed for each 

ROI to determine if decoding of the pattern differences was above chance (one-tailed t-tests 

were used because below-chance decoding is not conceptually meaningful).

As in the cross-decoding drop analysis, we also ran this analysis separately on the top 100, 

200, 300, 400, and 500 most active voxels in each ROI, so as to test exhaustively for the 

presence of interactive color-form coding in each ROI, and determine the extent to which the 

results depend upon the number of voxels selected; we also included the V1–V4 macro-ROI 

as in the previous analysis, and corrected for multiple comparisons in the same manner 

(separately within each voxel set and within the early visual and ventral stream ROIs).

We note that the information captured by this analysis is distinct from the information 

conveyed by feature cross-decoding. Feature cross-decoding would succeed so long as the 

pairs of patterns being cross-decoded end up on the correct side of the SVM decision 
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boundary, even if the differences between the respective patterns were distinct (i.e., if main 

effects in feature coding far exceeded any interaction effects), or even if most units in the 

population exhibited interactive tuning, with just a small subset of units exhibiting strong 

invariant tuning for either feature (such that they provide an axis along which cross-decoding 

could succeed). By contrast, this method provides a more direct test regarding the existence 

of interactive coding in the representational space.

Double Conjunction Decoding.: As another way of examining which regions may contain 

interactive coding of color and form, we trained and tested the classifier on the two kinds 

of double conjunction blocks in each experiment (e.g., RedCW/GreenCCW and RedCCW/

GreenCW). These blocks contained color and form features alternating once per second. 

Due to the sluggishness of the hemodynamic response, the pattern of BOLD activity present 

in each region would roughly constitute a superposition of the patterns associated with the 

two kinds of stimuli in each block. Since these two kinds of blocks both contained the two 

color and two form features used (e.g., red, green, clockwise, and counterclockwise), but 

differ in how they were conjoined, only regions encoding color and form in an interactive 

manner should be able to decode the two kinds of blocks from each other. The results 

of this analysis were compared against chance (50% decoding) using a one-sample, one-

tailed t-test (one-tailed t-tests were used because below-chance decoding is not conceptually 

meaningful).

As in the cross-decoding drop and pattern difference analyses, we performed this analysis 

separately on the top 100, 200, 300, 400, and 500 most active voxels in each ROI and a 

V1–V4 macro-ROI consisting of the most active voxels across the entire sector. Correction 

for multiple comparisons is applied in the same way as the previous two analyses: within 

each voxel set, and separately within the early visual ROIs and the ventral stream ROIs.

Results

Using fMRI MVPA, in the two experiments of this study, we examined the representation 

of simple and complex form features, color, and their conjunction in human early visual 

areas (V1 to V4) and higher-level ventral regions showing univariate selectivity to shape 

(LOT and VOT) and color (posterior and middle color regions) (see Fig. 2 for examples of 

these regions). This study served to both replicate the results of a study from Seymour et al. 

(2010), and extend their results from early visual cortex to higher-level ventral visual regions 

and from orientation to more complex form features. We aimed to understand the coding 

strength of these two types of features within a given brain region and across different 

brain regions along the ventral visual cortex, whether the multivariate feature selectivity of 

each region matches the univariate selectivity reported in past literature (e.g., Lafer-Sousa 

et al., 2016), and whether these two types of features are represented in a predominantly 

independent/orthogonal, or an interactive manner when representations of both features are 

found within the same brain region. We examined the coding of color and orientation in 

Experiment 1 by showing clockwise and counterclockwise spirals appearing in red and 

green colors, and the coding of color and curvature in Experiment 2 by showing spiky and 

curvy tessellations appearing in red and green colors. The phase of all stimuli alternated 

once per second, equating the overall stimulation across the visual field (and ruling out 
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the possibility that any “form” decoding could merely be due to differences in the spatial 

envelope of the stimuli). In some of the runs, only a single stimulus type was present in each 

block. FMRI pattern decoding from these runs were used to determine which brain regions 

contain color and/or form information and how the relative coding strength of color and 

form may change across the ventral visual pathway. From these blocks, two analyses were 

used to test for the presence of independent versus interactive coding for color and shape: a 

standard cross-decoding analysis, and a novel method that explicitly tested for color-shape 

interaction effects in the voxel tuning across each ROI. In the other runs, these stimuli were 

presented in blocks where stimuli of different forms and colors were alternated, which we 

analyzed using a method adapted from Seymour et al. (2010) as another metric to test for the 

presence of interactive coding.

ROI overlap

Since retinotopic V4, the posterior color region, and area VOT overlap to some degree, 

we quantified this overlap for each pair of these ROIs. Across all the participants from 

both Experiments 1 and 2, V4 and the posterior color region overlapped by 40.7% +/− 

2.4% (mean +/− s.e.). VOT and the posterior color region overlapped by 16.4% +/− 2.7%. 

VOT and V4 overlapped by 17.5% +/− 3.5%. There is thus a sizable overlap between 

V4 and the posterior color region, with both also overlapping slightly with VOT. Despite 

these overlaps, as described below, there were significant differences in how color and 

form were represented in these brain regions that could not be predicted by the amount 

of anatomical overlap. Consequently, we grouped brain regions in a later analysis by their 

overall functional response profile, rather than by the amount of anatomical overlap.

Color and form decoding

To document whether color and form information were present in a brain region, 

we compared color and form decoding accuracy in each region against chance level 

performance (Fig. 4). Here decoding was performed between fMRI response patterns 

differing in one feature dimension while allowing these patterns to take on either value 

of the other feature dimension (e.g., color decoding in Experiment 1 was performed 

by contrasting the red clockwise and red counterclockwise conditions against the green 

clockwise and green counterclockwise conditions). Except for the central color region, 

which showed no significant form decoding in either experiment (ts < 1.14, ps > 0.18), 

both color and form were decodable significantly above chance in both experiments in every 

brain region examined, including V1 through V4, the two shape regions LOT and VOT, and 

the posterior color region (ts > 2.27, ps < 0.03, one-tailed as only values above chance-level 

performance are meaningful here; results were corrected for multiple comparisons using 

the Benjamini-Hochberg procedure across the four tests within each ROI, since these tests 

were of the same kind; see Methods for more details). Fig. 4 depicts these results with the 

significance level of each t-test for above-chance decoding labeled with asterisks at the top 

of each bar. Color and form information is thus widely distributed throughout the ventral 

visual cortex, with both features present in every ROI tested with the exception of form 

information in the central color region.
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To characterize the coding strength of color and the two types of form features (i.e., 

orientation and curvature) within a given region, we next conducted detailed comparisons 

within and across the two experiments (all statistical results are reported in Table 1). We 

noted that color coding did not vary between the two experiments in any of the brain 

regions examined even though only a subset of the participants completed both experiments. 

Because color stimulation was comparable between the two experiments (as the stimuli in 

both experiments subtended the same visual angle, with the same pixel-level presentation 

of colors), this suggests that participant performance at the group level was comparable and 

fairly stable across the two experiments. This enabled us to directly compare orientation 

and curvature coding between the two experiments and evaluate how the processing of these 

two form features may differ within a brain region. To account for the fact that partially 

overlapping sets of participants partook in both experiments, a linear mixed effects analysis 

(analogous to an ANOVA test) was performed to determine the influence of experiment, 

feature type, and their interaction on decoding in each region and between regions, and a 

partially-overlapping t-test (Derrick et al., 2017; analogous to a t-test) was performed to 

compare between pairs of conditions across the two experiments. Within each experiment, 

within-subjects t-tests were used to compare color and form decoding. For these pairwise t-

tests (two comparing color and shape decoding within each experiment, and two comparing 

decoding for each feature across the two experiments), correction for multiple comparisons 

was applied across the four tests performed within each ROI.

As shown in Fig. 4 and Table 1, overall, in early visual areas, V1 and V2 showed a main 

effect of higher form than color decoding, with decoding further being higher for orientation 

than for either curvature or color. V3 also showed a main effect of higher form than color 

decoding, but with similar decoding for both form features. V4, on the other hand, showed 

a main effect of higher color than form decoding, with decoding further being higher for 

color and curvature than for orientation. In the two form-selective regions, VOT, like V4, 

showed a main effect of higher color than form decoding, with decoding further being 

higher for color and curvature than for orientation. LOT, on the other hand, showed no 

main effect of feature decoding, but higher decoding for curvature than for either color or 

orientation, consistent with its role in object shape processing. Both color regions showed 

a main effect of higher color than form decoding. While the posterior color region showed 

higher decoding for color and curvature than for orientation with no significant difference 

between decoding for color and curvature, the central color region showed higher decoding 

for color than for either kind of form feature.

Since V4 and VOT overlapped somewhat with the posterior color region, we performed 

additional analyses examining decoding in these regions when their overlap with the color-

selective regions was removed. The same feature decoding analyses were performed in these 

regions as in the other regions (Fig. 4). Mixed-effects analyses were also performed for each 

feature across the two experiments to directly compare form and color decoding in these 

regions with or without the parts of these regions that overlapped with the color regions. For 

form decoding, V4 showed no main effect of overlap when the overlap with color-selective 

regions was removed (Z = 0.58, p = .57), but VOT showed a slight main effect with a trend 

towards an increase in form decoding (Z = 1.66, p = .096). However, for color decoding, in 

both ROIs there was a main effect of overlap, with color decoding significantly decreasing 
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when the posterior color region was removed (Zs > 3.4, ps < 0.01), though color decoding 

remained significantly above chance (ts > 2.26, ps < 0.03, one-tailed; corrected for multiple 

comparisons across the four t-tests of decoding performance against chance in each ROI, as 

in all other ROIs). Removing the overlapping color region from V4 and VOT also changed 

the relative coding strength of color and form in these regions (see the detailed stats reported 

in Table 1). Both regions no longer showed an overall main effect of higher color than 

form decoding, with VOT now showing a greater sensitivity to curvature than to color or 

orientation changes. The latter is consistent with VOT’s role in object shape processing. 

Thus, removing the color-sensitive voxels from VOT and V4 removed their apparent feature 

preference for color.

Based on the overall similarity of their response profiles and their anatomical proximity, 

ROIs were grouped into sectors to allow us to directly compare the feature coding 

characteristics between the different sectors: early visual areas V1–V3, lateral visual area 

LOT, ventral visual areas V4/VOT, and Color Regions (including the posterior and central 

color regions). Decoding accuracies were averaged within each sector across the component 

brain regions. The decoding profiles within each sector are reported in Fig. 4 and Table 

1, and they are overall consistent with the profile of the individual regions comprising the 

sector. Three-way mixed-effects models (sector × feature × experiment) performed on each 

pair of sectors reveal significant or trending two-way and/or three-way interactions involving 

sector for each pair, verifying that each of these sectors indeed exhibits a distinct feature 

encoding profile from each of the others (significant or trending effects included: for Color 

Regions vs. LOT, sector × feature and 3-way interaction; for Color Regions vs. V1–V3, 

sector × feature and 3-way interaction; for Color regions vs. V4/VOT, 3-way interaction; 

for LOT vs. V1–V3, sector × feature and 3-way interaction; for LOT vs. V4/VOT, sector × 

feature; for V1–V3 vs. V4/VOT, sector × feature and 3-way interaction; all Zs > 1.8, ps < 

0.07).

We found only scattered and limited evidence for hemispheric differences in color or form 

coding. In Experiment 1, V1 showed higher form decoding in the right hemisphere, and V3 

showed higher color decoding in the right hemisphere (ts > 2.36, ps < 0.05; both two-tailed 

and uncorrected), but these effects were not present in Experiment 2 (ts < 0.60, ps > 0.56; 

two tailed and uncorrected), and no other ROIs exhibited a hemispheric difference for 

decoding of either feature (ts < 1.7, ps > 0.12; two tailed and uncorrected).

Overall, with the exception of the central color region, all other regions examined showed 

significant decoding for both color and form, even for shape and color regions defined based 

on their univariate selectivity for color or form. At the same time, significant coding bias 

also exists in every region examined: even early visual areas show some feature coding 

preference, and in higher visual regions, such a preference appears to be largely consistent 

between multivariate decoding and the univariate feature preferences that define the regions.

Color and form cross-decoding

To understand how color and form are coded together in a brain region, we next examined 

the extent to which each feature is encoded in a manner that is tolerant to changes in the 

other feature. To do so, we performed cross-decoding and trained an SVM classifier on one 
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feature (e.g., form) within one value of the other feature (e.g., red), and tested the classifier 

in the other value of the other feature (e.g., green). Additionally, to obtain a baseline 

measure of feature decoding with an equal amount of data for comparison purposes, we also 

performed within-feature decoding, and trained and tested a classifier in one feature within 

the same value of the other feature. Fig. 5 depicts the results of these analyses. Every region 

that showed successful decoding of a given feature in the previous analysis also exhibited 

significant cross-decoding of that feature (ts > 1.92, ps < 0.05; one-tailed t-test, corrected 

for multiple comparisons with the eight comparisons performed for each ROI). Meanwhile, 

V1 and V2, but not other regions, also exhibited a significant or trending drop in decoding 

when performing cross-feature rather than within-feature decoding (Fig. 5): specifically, 

V1 showed a significant or trending cross-decoding drop for both color and orientation in 

Experiment 1 (ts > 2.00, ps < 0.08; one-tailed and corrected for the four cross-decoding tests 

within the ROI), and V2 exhibited a significant or trending cross-decoding drop for color 

in Experiment 1, and for both color and curvature in Experiment 2 (ts > 1.61, ps < 0.09; 

one-tailed and corrected for the four cross-decoding tests within the ROI).

As the presence of a cross-decoding drop is an informative index of an interactive, rather 

than a completely orthogonal, relationship between color and form coding, to examine this 

effect in detail, we performed a set of further analyses. To increase power, we combined the 

effect from both color and form decoding (since a drop in either is suggestive of interactive 

coding between the features) and tested the amount of decoding drop in each ROI using 

one-tailed t-tests. Fig. 6 shows the results of this analysis for the main voxel set used 

throughout this study (i.e., 300 most active voxels in each ROI). To examine how the results 

may depend upon the number of voxels included in each ROI and reduce the possibility of 

obtaining null results due to too few or too many voxels being included, we also conducted 

this analysis separately for the top 100, 200, 300, 400, or 500 most active voxels in each 

ROI. Given that SVM is sensitive to both power and noise (such that including too few 

voxels may exclude some of the informative voxels and thus provide insufficient power 

whereas including too many voxels may add noise), testing the effect at a range of voxel 

sizes may provide us with a more sensitive way to document the effect. Tables 2 and 3 

(top panel) show the results of this analysis for Experiment 1 (spirals) and Experiment 2 

(tessellations), respectively. Correction for multiple comparisons was applied within each 

voxel set, and separately within the early visual and ventral ROIs.

In Experiment 1, V1, V2, and a macro-ROI composed of V1 through V4 exhibit a significant 

or trending drop in cross-decoding across multiple voxel selection conditions. By contrast, 

in Experiment 2, V2 showed a trend for a cross-decoding drop in just one voxel selection 

condition, and the posterior color region showed a significant cross-decoding drop in just 

one voxel selection condition. Thus, the strongest evidence for interactive coding based 

on the cross-decoding drop metric is for orientationcolor conjunctions in early visual 

regions. Other than these cases, however, color and form exhibit no significant drop in 

cross-decoding across the ventral visual pathway.
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Directly testing for interactive color-form coding using pattern difference analysis

Successful cross-decoding merely requires that the test patterns lie on the same side of 

the SVM classification boundary as the corresponding training patterns, and this can occur 

even in the presence of interactive tuning in the population. For example, a population with 

many units exhibiting interactive tuning can exhibit successful cross-decoding as long as the 

population also contains units with invariant tuning to the feature being cross-decoded, and 

so testing for a cross-decoding drop is only an indirect measurement of interactive tuning in 

a neural population. To remedy this and more directly test for interactive color-form coding 

across the human visual system, we performed a novel pattern difference MVPA analysis to 

specifically focus on the interactive effects that may be present in the response patterns in a 

brain region. Specifically, we extracted two difference vectors, each between two stimuli that 

differed on the same feature dimension (e.g., one difference vector could be RedCW minus 

GreenCW, while the other could be RedCCW minus GreenCCW). We then tested whether 

these two difference vectors could be discriminated using SVM. We did this separately for 

both color and form and then averaged the results (see Fig. 3 for a detailed illustration of 

this approach). If the encoding of one feature is completely independent and orthogonal to 

values of the other feature (i.e., only main effects), then chance-level decoding is expected; 

by contrast, if the encoding of one feature changes based on the other feature (i.e., an 

interaction effect), then above chance-level decoding is expected. This analysis essentially 

examines whether there is any interactive color and form coding in an ROI, with the SVM 

classification step serving to aggregate small interaction effects across voxels.

To test sensitively and exhaustively for the presence of interactive coding using this analysis 

method, and reduce the possibility that any null results are due to a nonoptimal number 

of voxels being used, for each ROI we performed the analysis separately for the top 100, 

200, 300, 400, or 500 most active voxels. Fig. 6 depicts the results of this analysis for 

the top 300 most active voxels (since this was the main voxel set used throughout this 

study); Tables 2 and 3 (middle panel) show the results for all voxel sets. In Experiment 1 

(spirals), we found trending or above-chance pattern difference decoding in multiple voxel 

sets from each of V1, V2, and the macro-ROI composed of V1–V4 (one-sample, one-tailed 

t-tests; corrected for multiple comparisons within each voxel set, and within each anatomical 

sector as described in Methods). In Experiment 2 (tessellations), we only found a trend 

in one voxel set each from V1 and the V1–V4 macro ROI, that did not replicate in any 

other voxel selection conditions. The overall pattern of results, then, is similar to that of the 

cross-decoding drop analysis: evidence of interactive color/form decoding is most reliably 

found in early visual cortex but not in higher-level ventral regions, and for orientation but 

not for curvature.

Testing for interactive color-form coding using double conjunction decoding

As another way to test for the presence of interactive coding of color and form, in an 

independent set of data, following Seymour et al. (2010), we examined which ROIs are 

able to discriminate between two pairs of stimuli, where each pair has the same set 

of four individual features, but conjoined in different ways. Specifically, we trained a 

classifier to discriminate between two kinds of blocks, each consisting of alternating pairs 

of stimuli with different form and color features, such that the same set of four features 
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is present in each kind of block, but combined in different ways (e.g., one kind of block 

alternated between RedCW spirals and GreenCCW spirals, and the other alternated between 

RedCCW and GreenCW spirals). If a region encodes these features in a completely additive, 

orthogonal manner, such that tuning to a feature does not depend on the value of the other 

feature, then patterns of activity in this region should not be able to distinguish these two 

kinds of block; by contrast, if there is any interactive coding of features, such that some 

voxels are sensitive to particular pairings of color and form features, then an SVM classifier 

should be able to distinguish these two kinds of blocks.

As in the decoding drop and pattern difference analyses, we performed this analysis 

separately on the top 100, 200, 300, 400, and 500 most active voxels from each ROI. Fig. 6 

shows the results of this analysis for the set of 300 voxels, and Tables 2 and 3 (bottom panel) 

show the results for all voxel sets (one-sample, one-tailed t-test; correction for multiple 

comparisons within each voxel set, and within each anatomical sector as described in 

Methods). In Experiment 1 (spirals), we found above-chance or trending double conjunction 

decoding for multiple voxel sets in V1, V2, V3, and the V1–V4 macro ROI. A trend was 

found in V4 for just one voxel set. By contrast, in Experiment 2 (tessellations), a trend was 

found for one voxel set in the central color region, with no other trending or significant 

results in any voxel set or ROI.

In order to compare our results more directly with those of Seymour et al. (2010), we 

also re-ran the analysis with three changes to the pipeline to better match their analysis 

approach. First, we included all voxels falling under p < .01 in a task versus rest contrast, 

instead of using the top 300 voxels in such a contrast. Second, instead of z-normalizing the 

beta values going into the analysis across voxels within each trial, we normalized the beta 

values of each voxel across all its trials. Third, we did not apply correction for multiple 

comparisons. When we used the p < .01 activation threshold for voxel selection, we found 

no significant conjunction decoding in any individual ROI, or in the V1–V4 macro-ROI, 

with either within-voxel normalization (ts < 1.07, ps > 0.15, uncorrected) or across-voxel 

normalization (ts < 1.17, ps > 0.13, uncorrected), with the exception of a trend in V1 (t(11) 
= 1.56, p = .07, uncorrected). When we selected the most active 300 voxels (as we primarily 

used in our study), but used the within-voxel normalization method used by Seymour et al. 

(2010), we found significant conjunction coding in V2, V3, and the V1–V4 macro-ROI (ts > 

2.62, ps < 0.02, uncorrected), along with a trend in V1 (t(11) = 1.59, p = .07, uncorrected) 

but no significant or trending decoding in V4 (t(11) = −0.14, p = .55, uncorrected). All in all, 

then, we replicate their finding of conjunction coding for V1, V2, and V3 when we apply the 

normalization method their study used, but not in V4.

Discussion

Using fMRI pattern decoding and examining color and orientation coding in Experiment 1 

and color and curvature coding in Experiment 2, the present study extends an earlier study 

by Seymour et al. (2010) and provides a comprehensive and updated documentation of the 

coding of color and form information across the ventral visual processing pathway in the 

human brain.
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Broadly, we found that color and form information is nearly always anatomically 

commingled in the human ventral visual pathway. This includes early visual areas V1 

to V4, thus replicating the color and form decoding results of Seymour et al. (2010), 

and previously documented higher ventral visual regions defined based on their univariate 

selectivity for color or shape, including the posterior color region, LOT, and VOT. This is 

especially striking in the case of LOT, since it is nowhere in the anatomical vicinity of the 

color-selective regions. The only exception to this pattern is the central color region which 

showed significant color decoding, but no form decoding, in both experiments, making it 

unique among the regions we examined. We were unable to reliably localize the anterior 

color region in every participant here due to its location near the MRI signal dropout zone 

(at a rate similar to Lafer-Sousa et al., 2016). Overall, across the human ventral visual 

processing pathway, we found a largely distributed representation of color and form features, 

even in higher visual regions defined by their univariate selectivity for one feature or the 

other.

That said, coding preference for either feature, quantified using MVPA, varied across 

regions, and depended on the specific form feature tested. V1 and V2 were most sensitive 

to orientation differences, and less so to either curvature and color differences, thus showing 

a preference for orientation over curvature and color. V3 showed higher sensitivity to 

either form feature than to color. VOT and V4, which greatly overlapped, showed equally 

strong sensitivity to color and curvature differences, but less sensitivity to orientation 

differences. The latter could potentially be due to the mirror symmetry of the clockwise 

and counterclockwise spirals used, since some evidence suggests that responses in VOT may 

be invariant to mirror-symmetric transformations (Dilks et al., 2011). The overlap of V4 and 

VOT with the color regions partially, but not entirely, drove color decoding in these regions: 

removing the color region overlap significantly decreased color decoding in these regions, 

but it remained above chance. Interestingly, removing the color region overlap also resulted 

in VOT showing a preference for curvature over orientation and color, consistent with 

this region’s univariate selectivity for complex object shapes. LOT showed roughly equal 

sensitivity to color and orientation changes, but far greater sensitivity to curvature changes, 

consistent with its univariate selectivity for complex object shapes. Finally, the posterior 

color region showed greater sensitivity to color than orientation, but an equal sensitivity to 

color and curvature, while the central color region showed a greater sensitivity to color than 

to either form feature. Thus, despite an overall distributed representation of color and form 

features, even early visual areas show a feature preference, and in higher visual regions, their 

feature preferences are largely consistent between the multivariate measures used in this 

study and their univariate feature selectivity extensively documented by previous studies. 

These results show that color and form features are represented in the human brain in a 

biased distributed manner.

That said, color and form information in different regions may potentially play different 

roles in visual information processing. For instance, achromatopsia patients can perceive 

isoluminant, color-defined shapes (e.g., a red square on a green background), even if they 

cannot report the colors that define the shape (Victor et al., 1989; Heywood et al., 1991; 

Barbur et al., 1994, 1998). This suggests that only feature information in some regions may 

be available to conscious perception.
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To understand how color and form may be represented together in regions that code for both 

features, we examined the extent to which color and form are encoded in an orthogonal 
manner (with coding for each feature unaffected by the value of the other feature), an 

interactive manner (where coding for each feature depends on the value of the other feature), 

or some mixture of these motifs. In order to exhaustively test for the presence of interactive 

tuning and examine whether the results depend upon the set of voxels examined in each 

ROI, we performed each of these analyses on the 100, 200, 300, 400 and 500 most active 

voxels in each region.

Using a cross-decoding approach, we found most regions encode color and form information 

in a manner that is tolerant to changes in the other feature, demonstrating some 

independence in representation between these two features in each region. To assess the 

existence of interactive coding, we examined the amount of cross-decoding drop. We also 

devised a novel analysis method, pattern difference MVPA, that tests for the presence of 

multivariate interaction effects in voxel populations with greater sensitivity (see Methods). 

We reasoned that successful cross-decoding could coexist with interaction effects in a 

population when the interaction effects are small and leave the representations on the correct 

side of the classification boundary, or if interactively tuned voxels coexist with voxels that 

show strong independent tuning. By contrast, pattern difference MVPA presents a more 

direct test of interactive coding in a population. As a final test of interactive coding, in 

a separate data set, we also examine decoding using the double conjunction methodology 

developed by Seymour et al. (2010).

Across these three different analysis techniques and two independent datasets, we found 

evidence for interactive coding for color and orientation in early visual cortex, with these 

effects replicating across varying numbers of voxels included in the decoding analysis. 

These results largely aligned with those of Seymour et al. (2010), with one exception: while 

their study found significant interactive color/orientation coding in V4, we only found weak 

and non-replicable evidence for such coding in V4, only finding a trend for one analysis 

method in one voxel set. On the other hand, evidence for interactive coding for color and 

curvature was scarce, with no brain region showing replicable significant results across 

different analysis methods or voxel sets. Thus replicable evidence exists for interactive 

coding of color and form in early visual cortex and for simple form features, but not in 

higher-level visual regions or for more complex form features, where color and form appear 

to be encoded more orthogonally. It should be noted that even in early visual cortex we 

obtained much stronger decoding results for single features than for feature conjunctions and 

that cross-decoding accuracy was above chance. This suggests that, despite the presence of 

interactive color and orientation coding in early visual areas, color and form representations 

still exhibit a high degree of independence in all regions examined.

As an experimental method, fMRI depends on the heterogeneity of neuronal tuning across 

voxels at the probed spatial resolution. Our results thus should be understood within the 

limitations of this method, like all other fMRI studies. That said, the spatial scale measured 

by fMRI often reasonably tracks the documented spatial heterogeneity of neuronal feature 

tuning in several of the ROIs that were examined. For example, V1 orientation columns 

are organized at a scale visible to fMRI and plausibly contribute to fMRI MVPA decoding 
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(Yacoub et al., 2008; Pratte et al., 2016), V2 neurons are organized into “stripe” patterns, 

approximately 1–2 m wide, with different kinds of stripes exhibiting different feature tuning 

(Ts’o et al., 2001), and monkey IT neurons are often organized into clusters 0.5 mm 

in diameter containing neurons with similar tuning (Wang et al., 1996; Tsunoda et al., 

2001). As such, neural organization at the mesoscale visible to fMRI is not arbitrary or 

meaningless, but well-suited to capture the spatial tuning heterogeneity across neurons 

in many cases. This has enabled the representations visible to fMRI to be linked to the 

underlying neural computations, with fMRI decoding strength from human ventral and 

dorsal visual regions being tightly correlated with behavioral performance. For example, 

color decoding in V4, but not V1, reflected perceptual color space (Brouwer and Heeger, 

2009), orientation decoding in early visual areas and superior intraparietal sulcus during 

the delay period of a visual working memory task tracked behavioral change detection 

performance (Bettencourt and Xu, 2016), and both object exemplar decoding and object 

category decoding in ventral and dorsal regions reflected perceived object similarity as 

measured by behavioral visual search and similarity judgement tasks (Mur et al., 2013; 

Charest et al., 2014; Jeong and Xu, 2016; Cohen et al., 2017; Xu and Vaziri-Pashkam, 

2019). Thus, the mesoscale neuronal organization visible to fMRI can be used to probe the 

underlying neural computations.

In our study, decoding for each feature depends on the amount of variation we introduced 

within each feature. Because similarity within a feature likely changes across brain regions 

(e.g., two similar colors in one region may become dissimilar in another region), it would 

not have been possible to equate color and form variations for all the brain regions 

examined. Thus we have chosen what we believe to be reasonably large variations within 

each feature, including choosing two spirals with opposite directions, two tessellation 

stimuli with either all straight or all curved contours (thereby greatly varying an important 

midlevel form feature, curvature), and two hues that are maximally distinctive. These feature 

variations allow us to make a reasonable evaluation of the relative coding strength of color 

and form in each brain region, and more importantly, how the feature coding bias may 

change across visual regions. Although it could be argued that perhaps a wider array of 

colors and form features could have been sampled, by using a small number of stimuli 

chosen to greatly differ with respect to a chosen dimension (hue, orientation, curvature), 

we were able to maximize our power, giving us more confidence that any null results were 

not due to an inadequate number of trials. Furthermore, the logic of the double-conjunction 

design we used in one of the analyses requires two pairs of stimuli that differ with respect to 

two features.

One confound in comparing MVPA decoding across different experiments is that decoding 

accuracy can be affected not just by the strength of the underlying neural tuning, but 

also by factors like different analysis parameters, different levels of noise, and differences 

in data quality. For the present two experiments, however, the analysis pipelines were 

completely identical, removing analysis-related confounds. Furthermore, color decoding was 

statistically indistinguishable between experiments for every ROI, providing a common 

metric that suggests that levels of noise and data quality did not substantially differ, lending 

validity to the between-experiment comparisons. Another important confound in fMRI 

decoding approaches is that two experimental conditions can be discriminated by a linear 
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classifier purely on the basis of differences in their noise covariance across voxels, even if 

their pattern centroids are the same (Hebart and Baker, 2018). Since our pattern difference 

analysis was novel, we therefore performed a control analysis in which we subtracted 

the mean pattern centroid of the training data within each condition to equate the pattern 

centroids between conditions while maintaining differences in covariance structure, and then 

fed these transformed patterns into our classifier. As a test case, we examined the macro-ROI 

consisting of the most active 300 voxels across V1–V4 in Experiment 1 (spirals), since we 

found replicable evidence for interactive color-form coding in this sector. We found chance 

level decoding with this data transformation (mean decoding accuracy 50.09%; t(11) = 0.21, 

p = .42 for one-sample, one-tailed t-test comparing against chance), suggesting that this 

confound does not account for our results.

One potential limitation of this study was that the stimuli were non-naturalistic and 

arguably “texture-like”. This may have contributed to several of the null results, such as 

the failure to find form coding in the central color patches (which Chang et al., 2017 found 

in the macaque), and the limited scope of conjunction coding that the study identified. 

However, one key advantage of the stimuli used was that, by repeatedly presenting the 

two complementary phases of the same stimuli we used in both experiments, it allowed 

the whole central visual field to be equally stimulated, increasing the odds of identifying 

conjunction decoding anywhere in the central visual field. Moreover, past work has found 

that object ensembles containing repeated shapes activate high-level object shape regions 

just like single objects, supporting the use of such stimuli to drive these regions (Cant and 

Xu, 2012). Although the stimuli in Experiment 2 were not scaled for eccentricity, this would 

only account for the null interactive coding findings if this coding motif only occurs over 

specific spatial scales, which would imply that it plays a rather specific rather than general 

role in visual processing.

In the present study, we found significant decoding of color and form much more reliably 

and broadly than we found evidence of interactive coding for these features, raising the 

question of what underlying patterns of neuronal tuning may account for these results. 

It is possible that neurons exhibiting interactive color/form tuning exist in higher-level 

ventral regions, but are not clustered in a sufficiently heterogeneous manner across voxels 

to be visible to fMRI MVPA. However, even if this is the case, it is interesting that such 

heterogeneity would be present for form- and color-coding neurons in higher-level ventral 

regions so as to enable decoding of individual features, and present for conjunction-coding 

neurons in early visual cortex so as to enable conjunction decoding in these regions, but 

absent for conjunction-coding neurons in higher-level ventral regions. At the very least, 

if these neuronal populations do exist, we can conclude that they are distributed very 

differently from the other neuronal populations involved in color and form coding in the 

ventral visual cortex. It is also possible such neuronal populations simply do not exist, 

thereby avoiding the potential combinatorial explosion involved in having dedicated neurons 

for encoding the combination of every form and every color.

Treisman and colleagues have famously argued that independently coded features can be 

conjoined via their shared location (Treisman and Gelade, 1980). One proposed neural 

mechanism for achieving this has been long-range synchronized firing between neurons 
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corresponding to different features of the same object at the same spatial location (Singer, 

1999), with the posterior parietal cortex (PPC) serving a critical role in mediating this 

process (Robertson, 2003) as damage to PPC can result in feature binding deficits (Cohen 

and Rafal, 1991; Friedman-Hill et al., 1995). However, it is unclear how such a code 

would be generated and read out, and the wiring patterns and temporal firing precision of 

neurons between brain regions may be insufficient to implement this code (Shadlen and 

Movshon, 1999). Nevertheless, binding through a shared location via a neural mechanism 

other than synchrony is still possible. Every region we examined was either defined through 

retinotopic mapping or plausibly overlaps with a region that exhibits retinotopy (e.g., the 

posterior color patches overlap with V4, and the central color patches potentially overlap 

with retinotopic regions VO1 and/or VO2; see Brewer et al., 2005; Larsson and Heeger, 

2006; Wandell and Winawer, 2011). The co-existence of color and form representation, 

together with the presence of a detailed spatial map, could facilitate a binding by location 

mechanism at the local level without evoking long-range couplings between brain regions 

through neural synchrony, thereby serving as a potential binding mechanism (see also 

Di Lollo, 2012). How should we then bridge our results with the documented role of 

parietal cortex in binding? While past accounts posit that parietal cortex plays a purely 

spatial role in linking different features (e.g., Cohen and Rafal, 1991; Friedman-Hill et al., 

1995), more recent accounts emphasize its role in the direct encoding and maintenance 

of task-relevant visual information (Bettencourt and Xu, 2016; Vaziri-Pashkam and Xu, 

2017; Xu, 2017; Xu; 2018a, 2018b). It is possible that the commingling of color and form 

information on spatially organized ventral stream cortical maps serves to implicitly define 

the binding of features, but that parietal cortex must then explicitly extract these bindings 

for conscious perception and task-relevant processing. At minimum, the present study charts 

the anatomical layout and coding scheme of the ventral stream feature representations over 

which any putative parietal mechanism involved in feature binding might operate.

To conclude, our comprehensive approach illuminates the overall architecture of color and 

form processing in the human brain. Color and form information was not anatomically 

segregated into distinct anatomical regions defined by their univariate selectivity to either 

feature, but instead was generally co-localized in the same brain regions in a biased 

distributed manner throughout the ventral visual processing pathway, with decoding from 

color- and shape-selective regions largely consistent with their univariate preferences. 

Convergent evidence from three analyses and two independent data sets further shows that 

the joint coding of color and form within a region is overwhelmingly additive, with an 

additional (and relatively small) interactive component present in a subset of cases, reliably 

found only for the joint coding of color with simple form features in early visual cortex. 

Thus, the predominant relationship between color and form processing in the human ventral 

visual hierarchy appears to be one of anatomical coexistence but mostly representational 

independence.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Taylor and Xu Page 26

Neuroimage. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgements

This research was supported by a National Science Foundation Graduate Research Fellowship (DGE1745303) 
to J.T., National Institute of Health Grants (1R01EY022355 and 1R01EY030854) to Y.X., and a NIH Shared 
Instrumentation Grant to Harvard Center for Brain Science (S10OD020039). We thank Talia Konkle, Geoge 
Alvarez, Alfonso Caramazza, and members of the Harvard Vision Lab and the Harvard Cognitive Neuropsychology 
Lab for their valuable feedback on this project.

Data and code availability statement

We make our data (specifically, the beta values from each ROI for each run, subject and 

experiment) freely available via the Open Science Framework at https://osf.io/cma6p/. In 

conducting our analyses, we made use of several open source packages: Freesurfer’s FsFast 

pipeline (A.M. Dale, Fischl, and Sereno, 1999) for preprocessing the data and conducting 

GLMs, and various open source Python packages-specifically, Nilearn, Nibabel (https://

github.com/nipy/nibabel/releases), and Scikit-Learn-for conducting all support vector 

machine analyses (Buitinck et al., 2013; Abraham et al., 2014).

References

Abraham A, Pedregosa F, Eickenberg M, Gervais P, Mueller A, Kossaifi J, …, Varoquaux G, 
2014. Machine learning for neuroimaging with scikit-learn. Front. Neuroinform 8, 14. [PubMed: 
24600388] 

Bannert MM, Bartels A, 2013. Decoding the yellow of a gray banana. Curr. Biol 23 (22), 2268–2272. 
[PubMed: 24184103] 

Bannert MM, Bartels A, 2018. Human V4 activity patterns predict behavioral performance in imagery 
of object color. J. Neurosci 38 (15), 3657–3668. [PubMed: 29519852] 

Bao P, She L, McGill M, Tsao DY, 2020. A map of object space in primate inferotemporal cortex. 
Nature 583 (7814), 103–108. [PubMed: 32494012] 

Barbur JL, Harlow J, Plant GT, 1994. Insights into the different exploits of colour in the visual cortex. 
Proc. R. Soc. Lond. B Biol. Sci 258 (1353), 327–334.

Benjamini Y, Hochberg Y, 1995. Controlling the false discovery rate: a practical and powerful 
approach to multiple testing. J. R. Stat. Soc.: Ser. B (Methodological) 57 (1), 289–300.

Benson DF, Greenberg JP, 1969. Visual form agnosia: a specific defect in visual discrimination. Arch. 
Neurol 20 (1), 82–89. [PubMed: 4303441] 

Bettencourt KC, Xu Y, 2016. Decoding the content of visual short-term memory under distraction in 
occipital and parietal areas. Nat. Neurosci 19 (1), 150–157. [PubMed: 26595654] 

Bouvier SE, Engel SA, 2006. Behavioral deficits and cortical damage loci in cerebral achromatopsia. 
Cereb. Cortex 16 (2), 183–191. [PubMed: 15858161] 

Brainard DH, 1997. The psychophysics toolbox. Spat. Vis 10 (4), 433–436. [PubMed: 9176952] 

Brewer AA, Liu J, Wade AR, Wandell BA, 2005. Visual field maps and stimulus selectivity in human 
ventral occipital cortex. Nat. Neurosci 8 (8), 1102–1109. [PubMed: 16025108] 

Brouwer GJ, Heeger DJ, 2009. Decoding and reconstructing color from responses in human visual 
cortex. J. Neurosci 29 (44), 13992–14003. [PubMed: 19890009] 

Bushnell BN, Pasupathy A, 2012. Form encoding consistency across colors in primate V4. J. 
Neurophysiol 108 (5), 1299–1308. [PubMed: 22673324] 

Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, …, &, Varoquaux G, 2013. 
API design for machine learning software: experiences from the scikit-learn project. arXiv preprint 
arXiv:1309.0238.

Cant JS, Xu Y, 2012. Object ensemble processing in human anterior-medial ventral visual cortex. J. 
Neurosci 32 (22), 7685–7700. [PubMed: 22649247] 

Cavanagh P, 1991. Vision at equiluminance. Vis. Visual Dysfunct.: Limit. Vis 5, 234–250.

Taylor and Xu Page 27

Neuroimage. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://osf.io/cma6p/
https://github.com/nipy/nibabel/releases
https://github.com/nipy/nibabel/releases


Chang L, Bao P, Tsao DY, 2017. The representation of colored objects in macaque color patches. Nat. 
Commun 8 (1), 1–14. [PubMed: 28232747] 

Charest I, Kievit RA, Schmitz TW, Deca D, Kriegeskorte N, 2014. Unique semantic space in the 
brain of each beholder predicts perceived similarity. Proc. Natl. Acad. Sci 111 (40), 14565–14570. 
[PubMed: 25246586] 

Cohen A, Rafal RD, 1991. Attention and feature integration: illusory conjunctions in a patient with a 
parietal lobe lesion. Psychol. Sci 2 (2), 106–110.

Cohen MA, Alvarez GA, Nakayama K, Konkle T, 2017. Visual search for object categories is 
predicted by the representational architecture of high-level visual cortex. J. Neurophysiol 117 
(1), 388–402. [PubMed: 27832600] 

Conway BR, 2001. Spatial structure of cone inputs to color cells in alert macaque primary visual 
cortex (V-1). J. Neurosci 21 (8), 2768–2783. [PubMed: 11306629] 

Conway BR, Moeller S, Tsao DY, 2007. Specialized color modules in macaque extrastriate cortex. 
Neuron 56 (3), 560–573. [PubMed: 17988638] 

Conway BR, Chatterjee S, Field GD, Horwitz GD, Johnson EN, Koida K, Mancuso K, 2010. 
Advances in color science: from retina to behavior. J. Neurosci 30 (45), 14955–14963. [PubMed: 
21068298] 

Conway BR, 2018. The organization and operation of inferior temporal cortex. Annu. Rev. Vis. Sci 4, 
381–402. [PubMed: 30059648] 

Dale AM, Fischl B, Sereno MI, 1999a. Cortical Surface-Based Analysis: I. Segmentation and Surface 
Reconstruction. Neuroimage 9 (2), 179–194. [PubMed: 9931268] 

Dale AM, Fischl B, Sereno MI, 1999b. Cortical surface-based analysis: I. Segmentation and surface 
reconstruction. Neuroimage 9 (2), 179–194. [PubMed: 9931268] 

Derrick B, Russ B, Toher D, White P, 2017. Test statistics for the comparison of means for two 
samples that include both paired and independent observations. J. Modern Appl. Stat. Method 16 
(1), 9.

DiCarlo JJ, Zoccolan D, Rust NC, 2012. How does the brain solve visual object recognition? Neuron 
73 (3), 415–434. [PubMed: 22325196] 

Dilks DD, Julian JB, Kubilius J, Spelke ES, Kanwisher N, 2011. Mirror-image sensitivity and 
invariance in object and scene processing pathways. J. Neurosci 31 (31), 11305–11312. [PubMed: 
21813690] 

Di Lollo V, 2012. The feature-binding problem is an ill-posed problem. Trends Cogn. Sci. (Regul. Ed.) 
16 (6), 317–321.

Duyck M, Chang AL, Gruen TJ, Tello LY, Eastman S, Fuller-Deets J, Conway BR, 2021. Color tuning 
of face-selective neurons in macaque inferior temporal cortex. eNeuro 8 (2).

Engel SA, 2005. Adaptation of oriented and unoriented color-selective neurons in human visual areas. 
Neuron 45 (4), 613–623. [PubMed: 15721246] 

Friedman-Hill SR, Robertson LC, Treisman A, 1995. Parietal contributions to visual feature binding: 
evidence from a patient with bilateral lesions. Science 269 (5225), 853–855. [PubMed: 7638604] 

Friedman HS, Zhou H, von der Heydt R, 2003. The coding of uniform colour figures in monkey visual 
cortex. J. Physiol. (Lond.) 548 (2), 593–613. [PubMed: 12611925] 

Gallant JL, Braun J, Essen DV, 1993. Selectivity for polar, hyperbolic, and Cartesian gratings in 
macaque visual cortex. Science 259 (5091), 100–103. [PubMed: 8418487] 

Gegenfurtner KR, Kiper DC, Fenstemaker SB, 1996. Processing of color, form, and motion in 
macaque area V2. Vis. Neurosci 13 (1), 161–172. [PubMed: 8730997] 

Goodale MA, Milner AD, 2004. Sight Unseen: An Exploration of Conscious and Unconscious Vision. 
Oxford University Press, Oxford.

Grill-Spector K, Kushnir T, Hendler T, Edelman S, Itzchak Y, Malach R, 1998. A sequence of 
object-processing stages revealed by fMRI in the human occipital lobe. Hum. Brain Mapp 6 (4), 
316–328. [PubMed: 9704268] 

Hadjikhani N, Liu AK, Dale AM, Cavanagh P, Tootell RB, 1998. Retinotopy and color sensitivity in 
human visual cortical area V8. Nat. Neurosci 1 (3), 235–241. [PubMed: 10195149] 

Taylor and Xu Page 28

Neuroimage. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P, 2001. Distributed and overlapping 
representations of faces and objects in ventral temporal cortex. Science 293 (5539), 2425–2430. 
[PubMed: 11577229] 

Hebart MN, Baker CI, 2018. Deconstructing multivariate decoding for the study of brain function. 
Neuroimage 180, 4–18. [PubMed: 28782682] 

Heywood CA, Cowey A, Newcombe F, 1991. Chromatic discrimination in a cortically colour blind 
observer. Eur. J. Neurosci 3 (8), 802–812. [PubMed: 12106466] 

Heywood CA, Kentridge RW, Cowey A, 1998. Form and motion from colour in cerebral 
achromatopsia. Exp. Brain. Res 123 (1), 145–153. [PubMed: 9835403] 

Holcombe AO, Cavanagh P, 2001. Early binding of feature pairs for visual perception. Nat. Neurosci 4 
(2), 127–128. [PubMed: 11175871] 

Jeong SK, Xu Y, 2016. Behaviorally relevant abstract object identity representation in the human 
parietal cortex. J. Neurosci 36 (5), 1607–1619. [PubMed: 26843642] 

Johnson EN, Hawken MJ, Shapley R, 2001. The spatial transformation of color in the primary visual 
cortex of the macaque monkey. Nat. Neurosci 4 (4), 409–416. [PubMed: 11276232] 

Kaiser PK, 1991. Flicker as a function of wavelength and heterochromatic flicker photometry. Limit. 
Vis 171–190.

Komatsu H, Ideura Y, 1993. Relationships between color, shape, and pattern selectivities of neurons in 
the inferior temporal cortex of the monkey. J. Neurophysiol 70 (2), 677–694. [PubMed: 8410167] 

Kourtzi Z, Kanwisher N, 2001. Representation of perceived object shape by the human lateral occipital 
complex. Science 293 (5534), 1506–1509. [PubMed: 11520991] 

Kung C, Peissig J, Tarr M, 2007. Is region-of-interest overlap comparison a reliable measure of 
category specificity? J. Cogn. Neurosci 19 (12), 2019–2034. [PubMed: 17892386] 

Lafer-Sousa R, Conway BR, 2013. Parallel, multi-stage processing of colors, faces and shapes in 
macaque inferior temporal cortex. Nat. Neurosci 16 (12), 1870. [PubMed: 24141314] 

Lafer-Sousa R, Conway BR, Kanwisher NG, 2016. Color-biased regions of the ventral visual pathway 
lie between face-and place-selective regions in humans, as in macaques. J. Neurosci 36 (5), 1682–
1697. [PubMed: 26843649] 

Larsson J, Heeger D, 2006. Two retinotopic visual areas in human lateral occipital cortex. J. Neurosci 
26 (51), 13128–13142. [PubMed: 17182764] 

Lehky S, Tanaka K, 2016. Neural representation for object recognition in inferotemporal cortex. Curr. 
Opin. Neurobiol 37, 23–35. [PubMed: 26771242] 

Livingstone M, Hubel D, 1988. Segregation of form, color, movement, and depth-Anatomy, 
physiology, and perception. Science 240 (4853), 740–749. [PubMed: 3283936] 

Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA, Ledden PJ, Brady TJ, Rosen 
BR, Tootell RB, 1995. Object-related activity revealed by functional magnetic resonance imaging 
in human occipital cortex. Proc. Natl. Acad. Sci 92 (18), 8135–8139. [PubMed: 7667258] 

Mandelli M-JF, Kiper DC, 2005. The local and global processing of chromatic Glass patterns. J. Vis 5 
(5) 2–2.

Mannion DJ, McDonald JS, Clifford CWG, 2009. Discrimination of the local orientation structure 
of spiral Glass patterns early in human visual cortex. Neuroimage 46 (2), 511–515. [PubMed: 
19385017] 

McMahon DBT, Olson CR, 2009. Linearly Additive color and form Signals in Monkey Inferotemporal 
Cortex. J. Neurophysiol 101 (4), 1867–1875. [PubMed: 19144745] 

Mur M, Meys M, Bodurka J, Goebel R, Bandettini PA, Kriegeskorte N, 2013. Human object-similarity 
judgments reflect and transcend the primate-IT object representation. Front. Psychol 4, 128. 
[PubMed: 23525516] 

Orban GA, Van Essen D, Vanduffel W, 2004. Comparative mapping of higher visual areas in monkeys 
and humans. Trends Cogn. Sci. (Regul. Ed.) 8 (7), 315–324.

Pratte MS, Sy JL, Swisher JD, Tong F, 2016. Radial bias is not necessary for orientation decoding. 
Neuroimage 127, 23–33. [PubMed: 26666900] 

Robertson LC, 2003. Binding, spatial attention and perceptual awareness. Nat. Rev. Neurosci 4 (2), 
93–102. [PubMed: 12563280] 

Taylor and Xu Page 29

Neuroimage. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Rosenthal I, Ratnasingam S, Haile T, Eastman S, Fuller-Deets J, Conway BR, 2018. Color statistics of 
objects, and color tuning of object cortex in macaque monkey. J. Vis 18 (11) 1–1.

Sasaki Y, Rajimehr R, Kim BW, Ekstrom LB, Vanduffel W, Tootell RBH, 2006. The radial bias: a 
different slant on visual orientation sensitivity in human and non-human primates. Neuron 51 (5), 
661–670. [PubMed: 16950163] 

Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB, 1995. 
Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. 
Science 268 (5212), 889–893. [PubMed: 7754376] 

Seymour K, Clifford CW, Logothetis NK, Bartels A, 2010. Coding and binding of color and form in 
visual cortex. Cereb. Cortex 20 (8), 1946–1954. [PubMed: 20019147] 

Shadlen MN, Movshon JA, 1999. Synchrony unbound: a critical evaluation of the temporal binding 
hypothesis. Neuron 24 (1), 67–77. [PubMed: 10677027] 

Shapley R, Hawken M, 2011. Color in the Cortex—Single- and double-opponent cells. Vision Res. 51 
(7), 701–717. [PubMed: 21333672] 

Singer W, 1999. Neuronal Synchrony: a Versatile Code for the Definition of Relations? Neuron 24 (1), 
49–65. [PubMed: 10677026] 

Siuda-Krzywicka K, Bartolomeo P, 2020. What cognitive neurology teaches us about our experience of 
color. Neuroscientist 26 (3), 252–265. [PubMed: 31691627] 

Srihasam K, Vincent JL, Livingstone MS, 2014. Novel domain formation reveals pro-to-architecture in 
inferotemporal cortex. Nat. Neurosci 17 (12), 1776–1783. [PubMed: 25362472] 

Stromeyer CF, 1969. Further studies of the McCollough effect. Percept. Psychophys 6 (2), 105–110.

Tanaka K, 1996. Inferotemporal cortex and object vision. Annu. Rev. Neurosci 19 (1), 109–139. 
[PubMed: 8833438] 

Treisman AM, Gelade G, 1980. A feature-integration theory of attention. Cogn. Psychol 12 (1), 97–
136. [PubMed: 7351125] 

Treisman A, Schmidt H, 1982. Illusory conjunctions in the perception of objects. Cogn. Psychol 14 
(1), 107–141. [PubMed: 7053925] 

Ts’o DY, Roe AW, Gilbert CD, 2001. A hierarchy of the functional organization for color, form and 
disparity in primate visual area V2. Vision Res. 41 (10), 1333–1349. [PubMed: 11322978] 

Tsunoda K, Yamane Y, Nishizaki M, Tanifuji M, 2001. Complex objects are represented in macaque 
inferotemporal cortex by the combination of feature columns. Nat. Neurosci 4 (8), 832–838. 
[PubMed: 11477430] 

Vaziri-Pashkam M, Taylor J, Xu Y, 2019. Spatial frequency tolerant visual object representations in the 
human ventral and dorsal visual processing pathways. J. Cogn. Neurosci 1–15.

Vaziri-Pashkam M, Xu Y, 2017. Goal-directed visual processing differentially impacts human ventral 
and dorsal visual representations. J. Neurosci 37 (36), 8767–8782. [PubMed: 28821655] 

Victor JD, Maiese K, Shapley R, Sidtis J, Gazzaniga MS, 1989. Acquired central dyschromatopsia: 
analysis of a case with preservation of color discrimination. Clinical Vision Sci. 4 (3), 183–196.

Wandell BA, Winawer J, 2011. Imaging retinotopic maps in the human brain. Vision Res. 51 (7), 
718–737. [PubMed: 20692278] 

Wang G, Tanaka K, Tanifuji M, 1996. Optical imaging of functional organization in the monkey 
inferotemporal cortex. Science 272 (5268), 1665–1668. [PubMed: 8658144] 

Xu Y, 2017. Reevaluating the sensory account of visual working memory storage. Trends Cogn. Sci. 
(Regul. Ed.) 21 (10), 794–815.

Xu Y, 2018a. The posterior parietal cortex in adaptive visual processing. Trends Neurosci. 41 (11), 
806–822. [PubMed: 30115412] 

Xu Y, 2018b. A tale of two visual systems: invariant and adaptive visual information representations in 
the primate brain. Annu. Rev. Vis. Sci 4, 311–336. [PubMed: 29949722] 

Xu Y, Vaziri-Pashkam M, 2019. Task modulation of the 2-pathway characterization of 
occipitotemporal and posterior parietal visual object representations. Neuropsychologia 132, 
107140. [PubMed: 31301350] 

Yacoub E, Harel N, U ğurbil K, 2008. High-field fMRI unveils orientation columns in humans. Proc. 
Natl. Acad. Sci 105 (30), 10607–10612. [PubMed: 18641121] 

Taylor and Xu Page 30

Neuroimage. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Yue X, Pourladian IS, Tootell RBH, Ungerleider LG, 2014. Curvature-processing network in macaque 
visual cortex. Proc. Natl. Acad. Sci 111 (33), E3467–E3475. [PubMed: 25092328] 

Zhou B, Lapedriza A, Khosla A, Oliva A, Torralba A, 2018. Places: a 10 Million Image Database 
for Scene Recognition. IEEE Trans. Pattern Anal. Mach. Intell 40 (6), 1452–1464. [PubMed: 
28692961] 

Taylor and Xu Page 31

Neuroimage. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Stimuli and experimental design. A. In Experiment 1 (left), logarithmic spiral stimuli 

(adapted from Seymour et al., 2010) were shown that could be oriented clockwise or 

counterclockwise, and colored red or green. These spirals have the property that their 

arms are a fixed angle from the radius at all points, ensuring that gross radial biases in 

cortical retinotopic maps could not drive decoder performance. In Experiment 2 (right), 

spiky and curvy tessellation stimuli were used, with the same colors as Experiment 1. The 

stimuli alternated phase once per second, such that black shapes within the circular aperture 

became colored, and vice versa. B. The two kinds of blocks present in both experiments. 

Stimuli were either presented in single-conjunction blocks, where a single stimulus type 
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(e.g., Red-CW spiral) was presented for the entire block with its phase alternating once per 

second, or in double-conjunction blocks, where stimuli varying with respect to both features 

alternated once per second within a block. Thus, in Experiment 1, the two kinds of double-

conjunction block were Red-CW/Green-CCW and Red-CCW/Green-CW; in Experiment 

2, the two kinds of double-conjunction block were Red-Spiky/Green-Pinwheel and Red-

Pinwheel/Green-Spiky.
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Fig. 2. 
Lateral and ventral views of left and right hemispheres from an example participant, 

showing all regions of interest used in the study. Retinotopically defined areas V1, V2, V3, 

and V4 shown with black outlines; object-selective regions LOT and VOT shown with white 

outlines; posterior, central, and anterior color-selective regions shown with blue, green, 

and magenta outlines, respectively, along with their activation maps from the color versus 

greyscale localizer used to define them.
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Fig. 3. 
Logic of the pattern difference MVPA analysis for A, the color and orientation spiral stimuli 

in Experiment 1, and B, the color and curvature tessellation stimuli in Experiment 2. In 

this analysis, we examined which ROIs might code features in a manner that depends on 

the value of the other feature. From each ROI, we extracted and z-normalized the patterns 

associated with pairs of conditions matched on one feature but varying on the other, and 

took the difference between these patterns (e.g., GreenCCW - RedCCW). We did the same 

for the other value of the constant feature (e.g., GreenCW - RedCW). We then used SVM 

to determine whether these difference patterns were distinguishable from each other. This 

was done both possible ways — discriminating pattern differences in form across colors, and 

distinguishing pattern differences in color across the two values of each form feature — and 

the decoding accuracies were averaged.
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Fig. 4. 
Results of color and form decoding in both experiments for (A) early visual areas, (B) shape 

regions, (C) color regions, and (D) sectors, which were formed by averaging the decoding 

of brain regions showing similar response profiles. Overall, V1 and V2 show a preference 

for orientation over curvature and color. V3 shows an equal preference to orientation and 

curvature over color. VOT and V4 showed equal preference to color and curvature over 

orientation; the overlap of V4 and VOT with the color regions partially, but not entirely, 

drove color decoding in these regions. Removing the color region overlap resulted in VOT 

showing a preference for curvature over orientation and color. LOT showed a preference for 

curvature over color and orientation. Lastly, the posterior color region showed a preference 

for color over orientation but not over curvature, while the central color region showed a 

preference for color over both form features. * p <0.05; ** p <0.01; *** p <0.001 for t-tests 

testing for above chance (> 50%) decoding (all one-sample t-tests, one-tailed, and corrected 

for multiple comparisons).
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Fig. 5. 
Results of feature cross-decoding analysis for (A) early visual areas, (B) shape regions, 

and (C) color regions. Solid bars show decoding accuracy for features trained and tested 

within the same value of the other feature (e.g., train on RedCW vs. RedCCW, test on 

RedCW vs. RedCCW); striped bars show decoding where training and testing for a feature 

is done across values of the other feature (e.g., train on RedCW vs. RedCCW, test on 

GreenCW vs. GreenCCW). Every region exhibiting successful decoding of a feature also 

exhibits significant cross-decoding; that said, V1 and V2 show a significant or trending 

drop in cross-decoding in several cases. † p <0.10, * p <0.05, ** p <0.01, *** p <0.001 

for t-tests testing for above chance (> 50%) decoding (one-sample t-tests, one-tailed) and 

for t-tests testing for greater within-feature decoding than cross-decoding (within-subjects 

t-tests, one-tailed), all corrected for multiple comparisons.
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Fig. 6. 
Results of the three analyses testing for interactive color/form coding — cross-decoding 

drop, pattern difference decoding, and double conjunction decoding — for Experiment 1 (A) 

and Experiment 2 (B), when the most active 300 voxels from each ROI were included in the 

analysis.
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Table 1

Summary of statistical comparisons within each ROI for color and form decoding results. Mixed-effects 

analyses were conducted to test the effect of experiment, feature type, and their interaction. Within-subject 

t-tests were conducted to test the difference between color and form decoding within each experiment. 

Partially-overlapping t-tests were conducted to compare the decoding of each feature across experiments.

Main Effects and Interaction Form vs. Color Within Experiment Spirals vs. Tessellations Within Feature

ROI Experiment Feature Interaction Spirals Tessellations Form Color

V1 z = 1.06 z = 5.80 z = 3.51 t(11) = 4.81 t(12) = 1.10 t(16.6) = 6.21 t(16.6) = 0.97

p = .29 p < .001 p < .001 p = .001 p = .34 p < .001 p = .34

*** *** ** ***

V2 z = 0.029 z = 5.50 z = 2.56 t(11) = 5.13 t(12) = 2.05 t(16.6) = 4.12 t(16.6) = 0.20

p = .98 p < .001 p = .01 p = .001 p = .09 p = .002 p = .84

*** * ** † **

V3 z = 0.85 z = 2.61 z = 0.082 t(11) = 2.21 t(12) = 2.71 t(16.6) = 1.14 t(16.6) = 1.20

p = .39 p = .009 p = .93 p = .096 p = .075 p = .27 p = .27

** † †

V4 z = 0.74 z = 3.87 z = 2.91 t(11) = −3.88 t(12) = 0.18 t(16.6) = −2.59 t(16.6) = 1.17

p = .46 p < .001 p = .004 p = .01 p = .85 p = .036 p = .34

*** ** * *

V4 w/out z = 0.69 z = 0.97 z = 2.31 t(11) = −0.15 t(12) = 2.01, t(16.6) = −2.38 t(16.6) = 0.97

Color p = .49 p = .33 p = .02 p = .34 p = .13 p = .11 p = .34

*

LOT z = 1.11 z = 0.42 z = 3.1 t(11) = 0.40 t(12) = 4.93 t(16.6) = −2.52 t(16.6) = 1.24

p = .26 p = .67 p = .002 p = .70 p = .001 p = .04 p = .31

** ** *

VOT z = 1.36 z = 4.06 z = 3.26 t(11) = −3.19 t(12) = 0.58 t(16.6) = −2.66 t(16.6) = 1.18

p = .18 p < .001 p = .001 p = .03 p = .57 p = .033 p = .33

*** ** * *

VOT w/out z = 0.88 z = 0.55 z = 2.70 t(11) = −0.44 t(12) = 3.96, t(16.6) = −2.59 t(16.6) = 0.92

Color p = .37 p = .58 p = .007 p = 0.66 p = .008 p = 0.038 p = .49

** ** *

Posterior 
Color z = 0.62 z = 3.80 z = 1.69 t(11) = −3.33 t(12) = 1.59 t(16.6) = −2.23 t(16.6) = 0.61

p = .54 p < .001 p = .091 p = 0.026 p = .18 p = .079 p = .55

*** † * † p = .55

Central Color z = 0.72 z = 4.19 z = 0.33 t(11) = −3.27 t(12) = −5.71 t(16.6) = −1.44 t(16.6) = −0.65

p = .47 p < .001 p = .74 p = 0.015 p < .001 p = 0.22 p = .52

*** * ***

V1–V3 z = 0.75 z = 5.51 z = 2.40 t(11) = 4.49, t(12) = 2.64, t(16.6) = 4.23 t(16.6) = 0.88

p = .46 p < .001 p = .017 p = .002 p = .03 p = .002 p = .39

*** * ** * **

V4/VOT z = 1.09 z = 4.50 z = 3.52 t(11) = −3.77 t(12) = 0.41 t(16.6) = −2.89 t(16.6) = 1.33
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Main Effects and Interaction Form vs. Color Within Experiment Spirals vs. Tessellations Within Feature

ROI Experiment Feature Interaction Spirals Tessellations Form Color

p = .28 p < .001 p = .001 p = .012 p = .69 p = .02 p = .26

*** ** * *

Color z = 0.78 z = 5.33 z = 1.50 t(11) = −4.30 t(12) = −3.81 t(16.6) = −1.69 t(16.6) = 0.73

Regions p = .43 p < .001 p = .13 p = .005 p = .005 p = .15 p = .47

*** ** **

†
p < .10;

*
p <0.05;

**
p <0.01;

***
p <0.001 (all two-tailed, and corrected for multiple comparisons).
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Table 2

Statistical results from Experiment 1 (spirals) for the three types of analyses that measure interactive coding 

for color and form: cross-decoding drop (top), pattern difference decoding (middle), and double conjunction 

decoding (bottom). Analyses were performed separately for the top 100 to 500 most active voxels in each 

ROI. All results were from one-sample, one-tailed t-tests examining whether the effects were significantly 

above chance. The first line of each cell shows the decoding accuracy (or cross-decoding accuracy drop) and 

standard error, and the second line shows the t-statistic and p-value separated by a slash; statistical significance 

is indicated with a marker on the right of each cell where applicable. Correction for multiple comparisons 

was applied across the set of ROIs within each combination of analysis, voxel set, and sector (e.g., across the 

4 tests conducted for pattern difference decoding in the Top300 voxel set for the higher-level ventral stream 

sector).

ROI Top100 Top200 Top300 Top400 Top500

Cross-Decoding Drop

V1 2.5 (1.4)
1.78 / .085
†

3.7 (1.6)
2.29 / .055
†

4.0 (1.5)
2.67 / .055
†

3.3 (1.6)
2.00 / .09
†

2.5 (1.6)
1.48 /
.14

V2 3.6 (1.1)
3.18 / .02
*

4.3 (1.4)
2.87 / .04
*

2.0 (1.8)
1.05 /
.19

3.6 (2.2)
1.54 /
.12

2.2 (2.5)
.85 /
.26

V3 0.5 (1.7)
.31 /
.48

2.0 (1.5)
1.25 /
.15

2.4 (2.1)
1.10 /
.19

2.9 (1.9)
1.40 /
.12

4.1 (2.3)
1.73 /
.14

V4 −1.6
(1.8)
−.82 / .78

0.0 (1.5)
0.0 / .5

1.5 (1.5)
.92 /
.19

.9 (1.8)

.46 / .33
.8 (1.6)
.49 / .32

V1–V4 3.2 (1.1)
2.70 / .03
*

1.5 (1.0)
1.48 /
.14

2.9 (1.6)
1.77 /
.13

3.6 (1.5)
2.24 / .09
†

2.8 (1.5)
1.86 /
.14

LOT −.3
(2.6)
−.129 / .55

−.5
(2.1)
−.22 / .73

−.5
(2.3)
−.20 / .58

0.0 (2.7)
.016 /
.67

0.7 (2.2)
.32 /
.59

VOT −.3
(2.1)
−.14 / .55

.2 (2.1)

.07 / .73
.7 (1.6)
.41 / .58

0.0 (2.0)
−.02 /
.67

−.4
(2.0)
−.19 / .59

Posterior Color .4 (2.3)
.18 / .55

1.8 (2.8)
.60 /
.73

2.8 (2.9)
.92 /
.58

2.3 (2.5)
.87 /
.67

2.5 (2.5)
.94 /
.59

Central Color .8 (2.2)
.36 / .55

−1.2
(1.9)
−.62 / .73

0.0 (2.4)
−.02 /
.58

−1.3
(2.9)
−.44 / .67

−.6
(2.4)
−.23 / .59

Pattern Difference Decoding

V1 54.0 (2.4)
1.62 /
.16

55.4 (2.6)
2.01 / .09
†

55.9 (2.5)
2.22 / .06
†

54.6 (3.6)
1.23 /
.15

55.7 (2.6)
2.13 / .05
†

V2 52.4 (1.7)
1.38 /
.16

56.8 (2.0)
3.28 / .02
*

53.4 (2.3)
1.43 /
.13

55.5 (2.2)
2.37 / .047
*

54.3 (2.0)
2.07 / .05
†

V3 50.8 (1.3)
.57 /
.29

51.3 (2.0)
.62 /
.27

49.9 (1.7)
−.05
/ .51

52.1 (1.6)
1.25 /
.15

51.9 (1.8)
1.01 /
.21

V4 51.9 (2.4)
.75 /
.29

52.9 (2.4)
1.16 /
.22

52.8 (2.0)
1.33 /
.13

51.5 (2.2)
.64 /
.27

51.7 (2.4)
.70 /
.25
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ROI Top100 Top200 Top300 Top400 Top500

V1–V4 53.7 (2.5)
1.43 /
.16

51.4 (1.7)
.76 /
.27

55.2 (2.0)
2.55 / .06
†

56.1 (2.0)
2.84 / .04
*

55.8 (2.0)
2.75 / .047
*

LOT 48.2 (2.7)
−.64
/ .92

50.9 (2.8)
.30 /
.76

50.3 (2.9)
.09 /
.69

50.3 (3.2)
.10 /
.82

50.5 (2.9)
.17 /
.75

VOT 47.2 (1.8)
−1.50
/ .92

48.8 (2.2)
−.52
/ .89

49.7 (2.3)
−.11
/ .69

47.7 (2.4)
−.94
/ .82

48.2 (2.5)
−.70
/ .75

Posterior Color 51.5 (2.7)
.53 /
.92

52.7 (2.7)
.95 /
.72

52.0 (2.8)
.69 /
.69

51.6 (2.8)
.54 /
.82

50.3 (2.5)
.13 /
.75

Central Color 49.1 (2.5)
−.33
/ .92

47.7 (1.7)
−1.3
/ .89

49.0 (1.9)
−.51
/ .69

49.0 (2.3)
−.39
/ .82

49.6 (2.2)
−.19
/ .75

Double Conjunction Decoding

V1 55.9 (1.8)
3.06 / .03
*

53.2 (1.9)
1.63 / .08
†

52.8 (2.1)
1.25 /
.20

53.1 (1.6)
1.87 / .055
†

52.4 (1.1)
2.10 / .049
*

V2 51.9 (1.8)
1.02 /
.21

54.4 (1.4)
3.1 / .012
*

54.9 (1.2)
4.07 / .002
**

54.3 (1.1)
3.68 / .009
**

54.3 (1.1)
3.79 / .008
**

V3 51.0 (1.2)
.82 /
.21

52.8 (1.6)
1.63 / .08
†

51.8 (1.8)
.99 /
.21

52.9 (1.4)
1.92 / .055
†

52.4 (1.5)
1.55 / .09
†

V4 52.2 (1.2)
1.80 / .08
†

50.2 (1.1)
.15 /
.44

48.4 (1.6)
−.96
/ .82

50.1 (1.9)
.044 /
.48

50.7 (2.1)
.32 /
.38

V1–V4 53.2 (1.3)
2.39 / .045
*

54.8 (1.1)
4.16 / .004
**

56.9 (1.4)
4.64 / .002
**

53.7 (1.5)
2.32 / .05
†

55.6 (1.7)
3.17 / .01
*

LOT 50.3 (1.5)
.19 /
.43

50.0 (1.1)
−.04
/ .66

49.7 (1.6)
−.21
/ .78

50.2 (2.3)
.07 /
.77

50.4 (1.8)
.23 /
.77

VOT 51.6 (1.0)
1.59 /
.28

51.7 (1.6)
1.01 /
.44

50.9 (1.7)
.50 /
.78

48.7 (1.6)
−.76
/ .77

50.8 (1.6)
.48 /
.77

Posterior Color 51.6 (1.5)
1.09 /
.30

51.3 (1.5)
.80 /
.44

48.9 (1.0)
−1.0
/ .84

49.8 (1.1)
−.15
/ .77

49.3 (.8)
−.83 /
.79

Central Color 51.2 (1.8)
.62 /
.37

49.2 (1.8)
−.42
/ .66

49.9 (1.9)
−.05
/ .78

49 (2.3)
−.41 /
.77

49.6 (2.2)
−.19
/ .77

†
p < .10,

*
p <0.05,

**
p <0.01, and

***
p <0.001.
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Table 3

Statistical results from Experiment 2 (tessellations) for the three types of analyses that measure interactive 

coding for color and form: cross-decoding drop (top), pattern difference decoding (middle), and double 

conjunction decoding (bottom). Analyses were performed separately for the top 100 to 500 most active 

voxels in each ROI. All results were from one-sample, one-tailed t-tests examining whether the effects 

were significantly above chance. The first line of each cell shows the decoding accuracy (or cross-decoding 

accuracy drop) and standard error, and the second line shows the t-statistic and p-value separated by a slash; 

statistical significance is indicated with a marker on the right of each cell where applicable. Correction for 

multiple comparisons was applied across the set of ROIs within each combination of analysis, voxel set, 

and sector (e.g., across the 4 tests conducted for pattern difference decoding in the Top300 voxel set for the 

higher-level ventral stream sector).

ROI Top100 Top200 Top300 Top400 Top500

Cross-Decoding Drop

V1 0.0 (1.2)
−.03 /
.51

2.2 (1.3)
1.62 /
.30

1.5 (1.3)
1.08 /
.33

.9 (1.5)

.58 / .47
.8 (1.8)
.42 / .57

V2 1.8 (1.7)
1.04 /
.51

1.8 (1.4)
1.25 /
.30

2.7 (1.0)
2.59 / .06
†

2.6 (1.5)
1.67 /
.30

1.3 (2.0)
.64 /
.57

V3 .7 (1.5)
.45 / .51

−.5
(1.6)
−.28 / .77

−1.0
(1.4)
−.67 / .91

−1.7
(1.3)
−1.29 / .89

−1.5
(1.7)
−.85 / .79

V4 .2 (1.4)
.14 / .51

−1.8
(1.4)
−1.21 / .88

−1.4
(.9)
−1.41 / .91

−.4
(.8)
−.48 / .85

−.4
(1.0)
−.39 / .79

V1–V4 .3 (1.2)
.23 / .51

−.2
(1.3)
−.17 / .77

1.4 (1.6)
.87 /
.33

1.2 (1.5)
.78 /
.47

1.6 (1.6)
.93 /
.57

LOT −2.4
(1.3)
−1.8 / .95

1.0 (.6)
1.72 /
.12

1.0 (1.3)
.71 /
.34

.8 (1.0)

.78 / .51
.1 (.9)
.14 / .57

VOT −1.6
(1.3)
−1.15 / .95

−.9
(1.1)
−.76 / .77

−.3
(1.8)
−1.6 / .93

−1.5
(2.2)
−.68 / .75

−.2
(2.3)
−.08 / .57

Posterior Color 3.0 (1.0)
2.95 / .02
*

2.0 (1.2)
1.67 /
.12

1.0 (1.2)
.77 /
.34

.7 (1.0)

.68 / .51

−.2
(1.2)
−.19 / .57

Central Color −1.6
(1.7)
−.88 / .95

.7 (1.3)

.52 / .41

1.1 (1.5)
.67 /
.34

.3 (1.6)

.17 / .58
.4 (1.5)
.28 / .57

Pattern Difference Decoding

V1 50.7 (1.7)
.40 /
.57

52.2 (2.1)
1.02 /
.27

53.0 (2.0)
1.47 /
.16

53.9 (1.5)
2.57 / .06
†

52.2 (1.5)
1.44 /
.22

V2 52.3 (1.0)
2.19 /
.12

52.9 (1.6)
1.75 /
.13

53.0 (1.8)
1.56 /
.16

52.0 (2.0)
.97 /
.29

52.6 (2.4)
1.08 /
.25

V3 50.2 (1.7)
.09 /
.57

47.4 (1.5)
−1.70
/ .95

48.4 (1.9)
−.81
/ .78

47.9 (1.3)
−1.53
/ .92

48.1 (1.6)
−1.16
/ .87

V4 50.2 (2.1)
.072 /
.57

50.4 (1.9)
.21 /
.53

49.1 (1.8)
−.48
/ .78

48.8 (1.7)
−.69
/ .92

47.8 (1.8)
−1.20
/ .87
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ROI Top100 Top200 Top300 Top400 Top500

V1–V4 49.7 (1.8)
−.18
/ .57

52.6 (1.4)
1.78 /
.13

52.3 (1.6)
1.38 /
.16

54.3 (2.0)
2.10 / .07
†

53.3 (1.8)
1.73 /
.22

LOT 49.9 (1.7)
−.05
/ .69

50.6 (1.5)
.40 /
.35

53.2 (1.6)
1.99 /
.14

50.4 (1.9)
.20 /
.56

49.8 (2.3)
−.07
/ .59

VOT 50.4 (1.9)
.21 /
.69

50.6 (1.3)
.41 /
.35

49.0 (1.8)
−.50
/ .69

48.6 (2.3)
−.58
/ .71

49.4 (2.2)
−.24
/ .59

Posterior Color 51.8 (1.7)
1.00 /
.67

52.3 (1.6)
1.39 /
.35

51.1 (1.8)
.59 /
.43

51.0 (1.7)
.54 /
.56

49.5 (2.0)
−.23
/ .59

Central Color 47.9 (1.4)
−.14
/ .91

51.5 (1.7)
.84 /
.35

50.8 (1.6)
.47 /
.43

50.6 (1.4)
.43 /
.56

49.7 (1.7)
−.18
/ .59

Double Conjunction Decoding

V1 50.4 (1.3)
.31 /
.48

52.3 (1.7)
1.34 /
.17

52.9 (1.8)
1.55 /
.37

51.6 (2.0)
.79 /
.43

51.0 (2.0)
.50 /
.43

V2 50.7 (1.6)
.42 /
.48

52.6 (1.3)
1.86 /
.17

51.4 (1.9)
.74 /
.39

51.4 (2.0)
.66 /
.43

50.7 (1.7)
.41 /
.43

V3 51.0 (1.9)
.48 /
.48

49.2 (1.9)
−.41
/ .65

51.7 (1.7)
.94 /
.39

49.8 (1.4)
−.11
/ .59

51.0 (2.3)
.41 /
.43

V4 49.2 (1.6)
−.49
/ .68

49.4 (1.9)
−.33
/ .63

48.2 (2.4)
−.70
/ .75

49.4 (2.3)
−.24
/ .59

48.1 (2.5)
−.73
/ .76

V1–V4 51.7 (1.8)
.88 /
.48

51.9 (1.4)
1.3 /
.17

50.0 (1.8)
0.0 /
.63

51.8 (1.8)
.97 /
.43

51.6 (1.6)
.99 /
.43

LOT 49.4 (1.7)
−.37
/ .64

49.9 (2.0)
−.04
/ .52

48.8 (1.7)
−.67
/ .74

51.1 (1.9)
.58 /
.49

50.4 (2.2)
.17 /
.55

VOT 50.7 (1.9)
.36 /
.53

53.4 (3.0)
1.11 /
.29

49.7 (2.6)
−.12
/ .74

49.5 (2.0)
−.23
/ .59

49.8 (1.7)
−.13
/ .55

Posterior Color 50.8 (3.0)
.26 /
.53

50.7 (2.6)
.27 /
.52

51.3 (3.3)
.37 /
.74

51.2 (3.3)
.35 /
.49

50.6 (3.1)
.20 /
.55

Central Color 53.8 (1.6)
2.30 / .08
†

51.8 (1.3)
1.31 /
.29

49.5 (1.4)
−.33
/ .74

51.0 (1.3)
.75 /
.49

50.8 (1.3)
.60 /
.55

†
p < .10,

*
p <0.05,

**
p <0.01, and

***
p <0.001.
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