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Abstract

The current genomics era is bringing an unprecedented growth in the amount of gene expression data, only comparable to

the exponential growth of sequences in databases during the last decades. This data allow the design of secondary analyses

that take advantage of this information to create new knowledge. One of these feasible analyses is the evaluation of the

expression level for a gene through a series of different conditions or cell types. Based on this idea, we have developed

Automatic and Serial Analysis of CO-expression, which performs expression profiles for a given gene along hundreds of

heterogeneous and normalized transcriptomics experiments and discover other genes that show either a similar or an

inverse behavior. It might help to discover co-regulated genes, and common transcriptional regulators in any biological

model. The present severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is an opportunity to test this

novel approach due to the wealth of data that are being generated, which could be used for validating results. Thus, we have

identified 35 host factors in the literature putatively involved in the infectious cycle of SARS-CoV viruses and searched for

genes tightly co-expressed with them. We have found 1899 co-expressed genes whose assigned functions are strongly

related to viral cycles. Moreover, this set of genes heavily overlaps with those identified by former laboratory
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high-throughput screenings (with P-value near 0). Our results reveal a series of common regulators, involved in immune and

inflammatory responses that might be key virus targets to induce the coordinated expression of SARS-CoV-2 host factors.
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Introduction

Genes are team players that rarely act in solitude but require

the cooperation of others to carry out their physiological func-

tions. Groups of genes are usually expressed together when

necessary, under the conduction of regulatory proteins, con-

forming the so-called regulatory networks. In higher organisms,

augmented complexity requires an increase in the number of

biological functions. This is mainly achieved by expanding reg-

ulatory relationships rather than the number of participating

genes [1, 2]. The combinatorial or regulatory activity of proteins

on structural genes seem to account for the genetic plasticity

required for development, organ functional diversity, responses

to environmental changes and other emergent properties of

multicellularity [3, 4]. One gene might play different roles in

different regulatory contexts, but it will always be accompa-

nied by other genes involved in that function. We hypothesize

that, even under this complex scenario, this regulatory linkage

among proteins sharing biological functions and pathways can

be brought to light by carefully analyzing co-expression profiles

from functional genomics and transcriptomic experiments.

The genomics era is generating awealth of information about

gene expression in many different biological processes and

experimental approaches.Although designed to address specific

questions, genomic expression data (as those from microarrays

or RNA-Seq experiments) can provide a huge amount of informa-

tion regarding regulatory relationships, usable to address differ-

ent unrelated problems. One of the main obstacles encountered

when analyzing data from different experimental sources is

standardization. Lately, curated databases have been deployed to

gather and normalize genomics experimental data. Expression

Atlas is one of them [5]. As of July 2020, it holds normalized data

from 1403 human transcriptomics experiments. These data con-

tain valuable information on regulatory relationships that can

be exploited to gain insights into any human biological system.

With all this in mind, we have devised a bioinformatics

method based on an algorithm called Automatic and Serial

Analysis of CO-expression (ASACO) that analyses information of

multiple human transcriptomics experiments from Expression

Atlas to predict novel regulators and functional partners of a

given function. To challenge this algorithm, we have addressed

the analysis of several known human proteins that are impor-

tant to severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) infection cycle and predicted new possible partners and

regulators of these functions. The rationale behind this choice

is the amount of experimental high-throughput genomic data,

which is being produced because of the interest generated by

the coronavirus disease 2019 (COVID-19) pandemics, provid-

ing an excellent opportunity to benchmark our in silico output.

Moreover, we must also value the possibility of generating new

knowledge on SARS-CoV-2 infection process. The virus infection

cycle rests on the host’s physiological functions to take place,

requiring the sequestration or co-option ofmultiple host factors.

In the first place, it is clearly stated the general inhibition activity

exerted by SARS viruses on host’s messenger RNA (mRNAs)

translation [6, 7], but also other aspects of the host physiology

are used or modified by the virus [8, 9]. The infection cycle

heavily relies on tight interactions with the host endomembrane

organelles, hijacking several host pathways [8, 10–15].

Understanding the basis of interactions of these pathways is

crucial to fight infection. Translatomics and proteomics analysis

of the response to viral infection have recently revealed cellular

functions possibly involved in the infection process [16]. In the

same way, interactomics using viral proteins as baits to find

human proteins physically interacting with them, have also

revealed possible new therapeutic targets [17]. Even more com-

plex network analysis combining protein–protein interactions

and transcriptomics pointed to new potential targets as well

[18]. It is also noteworthy a study made on SARS-CoV knocking

down kinases by sRNAi treatment. This study highlighted cellu-

lar kinases that are important to SARS-CoV virus infection and

possibly crucial for SARS-CoV-2 as well [19]. Notably, not only

the cellular but also the systemic response to the virus infection

is important, and it seems to play a relevant role in SARS-CoV-

2 infection as in many other viral cycles. Evidence is arising

suggesting that SARS viruses are able to exploit the organism’s

innate immune response on its own benefit, co-opting some

components of the response, as stress granules and processing

bodies [20–22], and recruiting as host factors those genes co-

expressed with the innate immune response [23–25]. This evi-

dence stresses the necessity of research to a broader systemic

landscape to explain, for instance, SARS-CoV-2 influence on the

inflammatory response [26–28].

To help identifying functional companions in regulatory net-

works for a given gene we have refined our algorithm to search

for genes co-expressed with that initial gene along many unre-

lated transcriptomic experiments.We have applied this analysis

to 35 human genes experimentally shown to play a role in SARS-

CoV and/or SARS-CoV-2 infections. Here, we present the results

of this test, compare with those from several experimental high-

throughput genomic analysis and suggest some new functions

possibly involved in SARS-CoV-2 biology.

Materials and methods

Seed collecting

To collect human genes involved in the infection cycle of SARS-

CoV-2 and SARS-CoV, we searched in PubMed database for arti-

cles until 29 March 2020 using the name of both viruses. Articles

demonstrating host factors involved in specific steps of the

infectionweremanually reviewed, and the viral activity and type

of function was collected. Finally, both the gene name and the

UniProtKB entry identifier were obtained for everyone.We called

these genes as seeds.

Expression data collecting

We used the seed gene name in the Expression Atlas database to

download human experimentswhere the seedwas differentially

expressed. This database provides 1352 standardized human

transcriptomics experiments with a total of 3744 comparisons of

different biological conditions coming frompublished results [5].

Then, we used a program written in Python language to get
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the expression matrices from all the considered experiments,

including both microarray and RNA-sequencing data experi-

ments. These matrices contain the logarithm in base 2 of the

fold-change value (log2FC) for each genewithin the experiments.

We took the log2FC fromall the geneswith this value higher than

1 or lower than −1, and P-value lower than 0.05, in at least one of

the collected experiments, and created a matrix of log2FC with

the genes and the experiments. Finally, the Pearson correlation

coefficient was independently calculated with the expression

profile, for all the experiments, between the seed and each of

the other genes.

ASACO algorithm

The ASACO algorithm involves a methodology to select genes

that share similar behavior in terms of expression with the seed.

The algorithm is based on fold change signs, as it is described as

follows. The procedure begins with the matrix of fold change

values extracted from the experiments of the Expression

Atlas database in which the seed appears with a fold-change

value.

First, we only consider experiments where the absolute value

of fold change for the seed is equal or higher than 1, in order to

consider only experiments with significant expression changes.

Let be Sj with 1 ≤ j ≤ m the fold change of the seed for the

experiment j and m is the number of experiments after the

above-mentioned removal. Therefore, |Sj| ≥ 1,∀j : 1 ≤ j ≤ m.

The remaining genes that appear at least once in any of

the experiments are considered to select co-expressed genes

with the seed. Let be G the matrix of fold changes of those

genes. Therefore, let be Gijthe fold change of the gene i in the

experiment j, with 1 ≤ i ≤ n and 1 ≤ j ≤ m, being n the number of

genes.

The following metrics were defined for each gene Gi. First,

Pi is the proportion of fold changes of the gene Gi that have

the same sign than the seed in the same experiments. Pi is

defined as it is shown in Equation 1. It is assumed that the

function sign() returns 1 if the sign of its operand is positive, and

−1 otherwise.

Moreover, it is also assumed that the relational operators,

such as the equality (=), return a Boolean numeric value

(0 or 1). For example, if the sign of Sj·Gij is−1, then the expression

sign(Sj·Gij) = −1 is evaluated as 1, otherwise it will be evaluated

as 0.

Pi =
1

m
·

m
∑

j=1

(

sign
(

Sj·Gij

)

= 1
)

(1)

In second place, Ni is defined as the proportion of fold

changes of the gene Gi that have distinct sign than the seed in

the same experiments.Ni is defined as it is shown in Equation 2.

Ni =
1

m
·

m
∑

j=1

(

sign
(

Sj·Gij

)

= −1
)

(2)

Then, Zi is the proportion of experiments in which the gene

Gi does not have any fold change annotated in the database. Zi

is defined as it is shown in Equation 3.

Zi =
1

m
·

m
∑

j=1

(

Gij = ∅

)

(3)

As metrics were defined, Pi + Ni + Zi = 1 for 1 ≤ i ≤ n.

Then, a p-value P(Pi) was computed for each Pi from the sample

distribution of Pi. Similarly, a p-value P(Ni) was computed for

each Ni from the distribution of Ni.

The P-value of Pi, P(Pi), is the probability that there are

values greater than or equal to Pi in the distribution of P,

given the sample obtained from the experiment database.

Analogously the P-value of Ni, P(Ni), is the probability that

there are values greater than or equal to Ni in the distribution

of N.

The p-values of Pi and Ni (1 ≤ i ≤ n) were computed by using

the empirical cumulative distribution function, as it is defined

in Equation 4 for Pi (analogously for Ni).

P (Pi) = 1 −
1

n
·

n
∑

j = 1

i 6= j

(

Pj ≤ Pi
)

(4)

Finally, selected genes were divided into two groups: a) those

that are directly correlated in terms of the sign of their fold

changes, and b) those that are inversely correlated.

The first group is defined as D = {Gk} for each k such

that P(Pk) ≤ .01 and 1 ≤ k ≤ |D|, where |D|is the number

of selected directly correlated genes. Analogously, the second

group of selected genes is defined as I = {Gk} for each k such

that P(Nk) ≤ .01 and 1 ≤ k ≤ |I|, where |I|is the number of selected

inversely correlated genes.

In this way, selected directly correlated genes are those of

which fold-change signs are mostly the same than the seed

in the same experiments, since their value of P is significantly

high and, therefore, the probability of finding genes with a

higher value of P is very low (≤ .01). Analogously, selected

inversely correlated genes are those of which fold change have

mostly the opposite sign than the seed in the same experi-

ments, since their value of N is significantly high and, therefore,

the probability of finding genes with a higher value of N is

very low.

The ASACO algorithm is written in R language and available

at https://github.com/UPOBioinfo/asaco

Functional annotation and pathway analysis

Functional annotation for both seeds and co-expressed genes

were obtained from Biomart [29]. The functional enrichment

were made with KEGG Pathway [30], and Reactome [31], using

the R libraries biomaRt, clusterProfiler and ReactomePA, and a

P-value cutoff of 0.05.

To find pathwayswith a significant averaged correlationwith

the seeds, all human genes were grouped by the Reactome

pathway where they belong. A Wilcoxon test was calculated by

each pathway and the P-value was adjusted by the FDR method.

Finally, only the pathways with p-value equal or lower than

1e-05, and a median correlation higher than the third quartile

of the distribution of all the analyzed genes were considered as

significant pathways.

To discover transcription factors into the gene datasets, the

gene ontology term ‘DNA-binding transcription factor activity’,

together with those of ‘regulation of DNA-binding transcrip-

tion factor activity’ were searched (GO:0003700, GO:0051090,

GO:0051091, GO:0043433).

https://github.com/UPOBioinfo/asaco


4 Pérez-Pulido et al.

Table 1. Gene targets that are expected to be essential for the infectious cycle of SARS-CoV-2. Human genes used for the ASACO analysis. Their
probable activity and the type of function observed in the tested virus are indicated

Gene name UniProt Entry Viral activity Type of function Virus Reference

ABL2 P42684 Entry Proviral SARS-CoV (Coleman et al., 2016)

ACE2 Q9BYF1 Entry Proviral SARS-CoV-2 (Zhou et al., 2020)

BSG P35613 Entry Proviral SARS-CoV (Wang et al., 2020)

CTSL P07711 Entry Proviral SARS-CoV-2 (Ou et al., 2020)

FURIN P09958 Entry Proviral SARS-CoV-2 (Coutard et al., 2020)

NRP1 O14786 Entry Proviral SARS-CoV-2 (Daly et al., 2020)

PIKFYVE Q9Y2I7 Entry Proviral SARS-CoV-2 (Ou et al., 2020)

TMPRSS2 O15393 Entry Proviral SARS-CoV-2 (Hoffmann et al., 2020)

TPCN2 Q8NHX9 Entry Proviral SARS-CoV-2 (Ou et al., 2020)

CDK6 Q00534 Replication Antiviral SARS-CoV (de Wilde et al., 2015)

DDX1 Q92499 Replication Proviral SARS-CoV (Wu et al., 2014)

DDX5 P17844 Replication Proviral SARS-CoV (Chen et al., 2009b)

EIF2AK2 P19525 Replication,Translation Antiviral SARS-CoV (de Wilde et al., 2015)

EZR P15311 Replication Antiviral SARS-CoV (Millet et al., 2012)

GSK3A P49840 Replication Proviral SARS-CoV (Wu et al., 2009)

GSK3B P49841 Replication Proviral SARS-CoV (Wu et al., 2009)

HNRNPA1 P09651 Replication,Transcription Proviral SARS-CoV (Luo et al., 2005)

IMPDH1 P20839 Replication Proviral SARS-CoV (Saijo et al., 2005)

IMPDH2 P12268 Replication Proviral SARS-CoV (Saijo et al., 2005)

PPIA P62937 Replication Proviral SARS-CoV (Pfefferle et al., 2011)

PPIB P23284 Replication Proviral SARS-CoV (Pfefferle et al., 2011)

PPIG Q13427 Replication Proviral SARS-CoV (Pfefferle et al., 2011)

PPIH O43447 Replication Proviral SARS-CoV (Pfefferle et al., 2011)

TOP3B O95985 Replication Proviral SARS-CoV-2 (Prasanth et al., 2020)

ZCRB1 Q8TBF4 Replication Proviral SARS-CoV (Tan et al., 2012)

BST2 Q10588 Vesicle fusion Antiviral SARS-CoV (Taylor et al., 2015)

COPB2 P35606 Vesicle fusion Proviral SARS-CoV (de Wilde et al., 2015)

COPB1 P53618 Vesicle fusion Proviral SARS-CoV (de Wilde et al., 2015)

GBF1 Q92538 Vesicle fusion Proviral SARS-CoV (de Wilde et al., 2015)

IFITM1 P13164 Vesicle fusion Antiviral SARS-CoV (Huang et al., 2011)

IFITM2 Q01629 Vesicle fusion Antiviral SARS-CoV (Huang et al., 2011)

IFITM3 Q01628 Vesicle fusion Antiviral SARS-CoV (Huang et al., 2011)

OSBP P22059 Vesicle fusion Proviral SARS-CoV (Amini-Bavil-Olyaee et al., 2013)

PRKCI P41743 Vesicle fusion Proviral SARS-CoV (de Wilde et al., 2015)

VAPA Q9P0L0 Vesicle fusion Proviral SARS-CoV (Amini-Bavil-Olyaee et al., 2013)

Comparison with high-throughput experiments

Supplementary files with proteins from the published interac-

tome of SARS-CoV-2 were downloaded [17], as well as proteins

differentially expressed in a published translatome and pro-

teome (P-value<0.05 when comparing infection versus control

at any time post-infection) [16].All gene identifiersweremapped

to UniProt accession numbers. Then, co-expressed proteins from

ASACO were independently compared to every dataset. To cal-

culate the number of expected matches we take 21 489 as the

number of total proteins in the human proteome, based on the

Biomart gene type ‘protein_coding’. To calculate the p-value of

the number of found matches, a hypergeometric test was used

(dhyper function in R).

Genes regulated by interferon and genes related to
stress granules

To check if a gene was induced or repressed by interferon,

its expression was evaluated using the Interferome database

v2.01 [32]. Only experiments where a gene had a fold change

higher than 2 were considered. When a gene appeared differ-

ently expressed in more than one experiment, the average value

was calculated.

Genes related to stress granules were extracted from the

MSGP database (Mammalian Stress Granules Proteome), that

store a total of 464 proteins [33]. Available gene names were

mapped to UniProt accession numbers.

Results

Genes involved in well-known pathways from host
factors show a positive correlation to these factors over
hundreds of experiments

A set of human genes are known to be involved in the infectious

cycle of SARS-CoV and SARS-CoV-2. We searched the literature

and found 35 protein-coding genes that participate in different

stages of their infection (Table 1). Then, we classified those host

factors by the viral activity where they are involved (entry, repli-

cation or vesicle fusion), and created two subgroups according

to their type of function (proviral or antiviral). Proteins encoded

by these genes show common cellular functions (Figure 1). The

three most populated groups of genes encode for: five repli-

cation proteins involved in metabolism of RNA, mainly mRNA

splicing (DDX1, DDX5, HNRNP1, PPIH and ZCRB1), three proteins

of vesicle fusion involved in endoplasmic reticulum to Golgi

apparatus trafficking (COPB1,COPB2 andGBF1), and a large num-

ber of proteins involved in immune system, mainly interferon
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Figure 1. Reactome pathways shared between three or more seeds. Seeds are highlighted by its type of activity (proviral or antiviral), and its function in the infection

(entry, replication or vesicle fusion). Seeds with none shared pathways are not showed (PPIG, TOP3B and TMPRSS2).

and cytokine signaling. This latter group includes five antiviral

proteins (EIF2AK2, BST2, IFITM1, IFITM2 and IFITM3), together

with the replication proteins IMPDH1, IMPDH2 and PPIA, and

the vesicle protein VAPA. Furthermore, around the proteins of

this group appear several proteins relevant for the virus entry

into the host cell such as the proteases FURIN and cathepsin L1

(CTSL), as well as BSG and PIKFYVE. In fact, CTSL that improves

the efficiency of the viral entry, is known to be involved in both

adaptive and innate immune system [34].

All these proteins are part of autochthonous cell processes

where they interact with others. Those proteins involved in

the same biological processes frequently share expression pro-

files, which suggests they are co-regulated, often even show-

ing common regulators. To study the expression relationships

between the previous host factors and their co-expressed genes,

we obtained transcriptomics experiments where they appear to

be differentially expressed (Figure 2). Starting from these host

factors, that we named as seeds from now on, 1381 different

experiments were analyzed, 116 of them related to conditions

involving viruses different from SARS-CoV-2. Then, the correla-

tion value between the expression profile of these seeds versus

all the other human genes through the different experiments

was calculated.

It is expected that genes participating in the same biological

process than the seed show a high correlation with it. Thus,

we separated the correlation values for all the genes versus a

given seed by the pathway they belong, and those pathways

with a high average correlation value were analyzed. As a result,

the most significant obtained pathways were usually those

corresponding to the ones already annotated for the corre-

sponding seed (Figure 3a), which would support the previous

assumption that genes participating in the biological process

where the seed is involved show a positive correlation with the

seed. In addition, the most significant pathways found when

analyzing all the seeds are once again discriminating those

involved in replication (mainly metabolism of RNA, and cell

cycle) from those related to vesicle fusion, including the main

five antiviral genes (Figure 3b). Remarkably, seeds involved in cell

entry appeared linked to these groups of genes. TPCN2 and BSG

are linked to the group of replication seeds by the mitochondrial

translation pathway, while NRP1 and CTSL appear linked to

the group of antiviral genes, once again by both interferon

and cytokine signaling pathways (Figure 3b). These two groups

would highlight the two important cell interactions with the

virus: functions essential for its infectious cycle such as mRNA

splicing, and the cytokine antiviral response.

Genes with expression profiles similar to the seed
ones present common pathways as well as others
related to viral infections

To assess the agreement of functions from the best correlated

genes to the ones of seeds, the expression profile of each seed

was constructed using the available transcriptomic conditions.

Genes with a similar expression profile (co-expressed genes)

as well as genes with an inverse profile (inversely expressed

genes) were obtained (Figure 4). The total number of found

co-expressed genes was 2567, although several of them were

common to different seeds. Thus, the number of different co-

expressed genes was 1899, while the number of the inversely

expressed ones was 1578 (Supplementary Figure S1, Table S1).
Co-expressed genes present common functions again related

to those of the seeds (Figure 5). Pathways related to cytokine

response such as interleukin or interferon signaling appear

enriched to the expected antiviral genes IFITM1, IFITM2, IFITM3,

EIF2AK2 and BST2, but also to the entry gene CTSL, and the

replication genes PPIB and DDX1. In fact, the protease CTSL

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa419#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa419#supplementary-data
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Figure 2. Workflow followed by ASACO. Transcriptomics experiments where seeds are differently expressed are searched in the Expression Atlas database. Different

experiments can be found for a given seed, along with its fold change value (log2FC). Then, experiments are downloaded and the complete expression matrix by

experiment is obtained. In this matrix, other genes can be differentially expressed and their log2FC are also extracted. The log2FC values are used to create expression

profiles for each gene. When the expression profiles have a positive correlation with that of the seed, their corresponding genes are expected to be co-regulated and

functionally related to the seed (gene 2, gene 5 and gene 7), and when the expression profiles have a negative correlation with that of the seed (gene 4, gene 6 and gene

8), they are expected to have an inverse behavior in terms of expression.

presented several interleukins as co-expressed genes, such

as Interleukin-1 beta (IL1B), and the X-C-C motif chemokines

2 and 3 (CXCL2, CXCL3). Other shared pathways are those

related to the cell cycle. Five genes show enrichment in cell

cycle checkpoints (DDX1, PPIB, PPIH, PRKCI and ZCRB1). The cell

cycle disarrangement is an action that many viruses perform

in the infected cells, where they induce a cell cycle arrest.

For example, the coronavirus avian infectious bronchitis virus

activates the cell ATR signaling, which contributes to S-phase

arrest and is required for efficient virus replication and progeny

production [35]. Genes of vesicle fusion such as COPB1, COPB2,

OSBP, together with PPIB, are enriched in the expected processes

of trafficking between the endoplasmic reticulum and the Golgi

apparatus, glycosylation or the unfolded protein response. Other

highlighted pathway is related to the nuclear export protein

(NEP/NS2) of Influenza A virus that helps the transport of

viral ribonucleoprotein complexes from the nucleus [36], and

it is enriched from the correlators of DDX1, PPIB and PPIH.

Other unexpected pathways were those relating DDX1, IMPDH2,

PPIH and ZCRB1 to mitochondrial translation. Noteworthy, this

latter pathway appeared previously related to PPIB, as well

as the entry genes BSG and TPCN2, in the previous analysis

of pathway average correlations (Figure 3b). Finally, the most

remarkable common pathway in the inversely expressed genes

was interferon-alpha/beta pathway, which appeared for both

HNRNPA1 and PPIH genes. These genes are involved in mRNA

splicing, that is one of the essential host functions for the virus,

so it is expected that the cell response try to silence them, and

because of this we expect that their negative correlators were

related to cytokine response.

The best seeds’ correlators overlap with results
of high-throughput experiments on SARS-CoV-2

To evaluate the list of co-expressed genes obtained, we

compared them against genes identified in high-throughput

laboratory experiments performed upon viral infection or in

the presence of viral proteins. A recent work has completed the

interactome of viral versus human proteins, and they found

332 human proteins interacting with viral proteins that are

candidates to be involved in the viral infectious cycle [17]. In

addition, other experimental group has published both the

translatome and proteome in human cells infected by the virus

[16], and they describe proteins that differentially change during

the infection. In the latter case, we only considered for compari-

son proteins differentially expressed at any time post-infection.

Only one seed used in the present work, IMPDH2, appears

in the interactome dataset, as well as nine in the differential

proteome. So, on the assumption that both proteomics and inter-

actomics constitute an experimental approach of the cellular

response to the viral infection, the co-expressed genes proposed

by ASACO were compared to the discovered genes in these
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Figure 3. Significative pathways found by ASACO. A) Distribution of correlation values of genes belonging to the most significant pathways (maximum 10) for six of

the seeds. Pathways already annotated for the seed are highlighted in red color. The number of the genes that the pathway has annotated is shown in brackets. The

solid line marks correlation 0, and the dashed line marks the median of the correlation for all the genes. B) Significative pathways shared between three or more seeds.

Seeds are highlighted by its type of activity (proviral or antiviral), and its function in the infection (entry, replication or vesicle fusion). Seeds with none shared pathways

are not showed (ABL2, ACE2, COPB1, DDX5, EZR, FURIN, GBF1, GSK3A, GSK3B, IMPDH1, OSBP, PIKFYVE, TMPRSS2 and VAPA). Pathways already annotated for any seed

are highlighted in red color.
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Figure 4. Expression profile of all seeds together with their positive and negative correlated genes. The black colored line represents the expression profile for the

target gene through the different experiments (X axis), which are ordered from its higher to lower log2FC. Correlated genes are labeled in green (co-expressed genes),

or red (inversely expressed genes), together with its deviation (Q1 an Q3 quartiles). Note that the number of ticks on the X axis is relative to the number of experiments

for that seed.

experiments. The expected coincidence between the ASACO and

the experimental results based on the size of the datasets was

initially low. In contrast, around 20% of the positively correlated

genes proposed by our approach appear in any of those experi-

mental datasets, with 19 genes shared by the three approaches

(14 positive and 5 negative correlators) (Figure 6a). This suggests

that proposed co-expressed genes are similar to those obtained

in infection experiments. However, 1539 of our proposed genes

did not appear as results in these experimental analyses. To

assess whether these new genes could perform virus related

functions their associated pathways were analyzed. In fact, a

good number of genes are involved in processes related to the

infectious cycle of other viruses such as Influenza A, Epstein–

Barr, HIV, Hepatitis B and C and Measles (Figure 6b). Another

functions found were systems for DNA repair, which are also

used by viruses such as the Epstein–Barr [37]. Furthermore, it is

noteworthy the enrichment in RNA metabolism and cell cycle

checkpoints (Figure 6c), which we have previously mentioned as

important for the efficient viral replication [35]. Finally, there

are functions well-known for SARS-CoV viruses related with the

immune system response and involving the interferon/inter-

leukin signaling [26].

Other correlation coefficients, different to the one presented

here, are commonly used to discover co-expressed genes. One

of the most used bioinformatics tools for this kind of analysis is

WGCNA, that uses the Pearson coefficient, but also allows to use

both the Spearman and the Biweight midcorrelation coefficient

[38]. We calculated the correlations for the 35 seed using the

three alternative coefficients, and all of these are able to find

a similar number of positive correlators, with the latter one

finding a bit more genes that match with the high-throughput

experiments (Supplementary Figure S2; Table 2). However, nega-

tive correlators are seldom found by any coefficient except for

ASACO.

These results suggest that co-expressed genes found by our

approach can offer an accurate landscape of the cellular path-

ways and proteins affected by the virus when the infection is

progressing, even though it is based on heterogeneous exper-

iments from many different conditions that do not include

coronavirus infections.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa419#supplementary-data
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Figure 5. Functional enrichment of the positively (A) and negatively (B) correlated genes for all the seeds. Reactome pathways were used, with those already annotated

for a seed highlighted in red color. Pathways related with interferon or interleukin signaling are highlighted with a darker line. The color of the seed name is related to

their viral function (entry=orange, replication=blue, vesicle = green). Seeds without any enriched pathway are not shown.

Transcription factors co-expressed with seeds
are regulated by interferon and could induce
the expression of genes involved in cell entry

The coincidence in the assigned pathways for seeds and their

correlators suggests that SARS-CoV-2 host factors may belong to

common regulatory networks, possibly sharing transcriptional

regulators.Moreover, these regulators could be co-regulatedwith

seeds as well. To test this hypothesis, transcription factors were

identified from the correlators. So, 116 transcription factors,

or putative upstream regulators, were found among the co-

expressed genes, and 155 in the inversely expressed genes.

Among them, 23 co-expressed regulators were common to two

or more seeds (Figure 7a). They form an interrelated network

with the main antiviral genes (EIF2AK2, BST2, IFITM1, IFITM2

and IFITM3), but some of them also appeared co-expressed with

proviral genes involved in vesicle fusion such as COPB1, COPB2

and VAPA, replication, as DDX5, and entry, suggesting common

regulatory features. Related to viral entry, the transcription

factor NUPR1, a stress-response protein induced by the Hepatitis

B virus [39], is co-expressed with the protease TMPRSS2.

Moreover, the factor ZNF267, which is an antiviral zinc finger

protein [40], is co-expressed with the kinase ABL2. Finally,

TRIM14, which is a member of a family of E3 ubiquitin ligases

linked to themitochondria that plays an important role in innate

defense against viruses facilitating the interferon response

[41], is co-expressed with both the receptor ACE2 and the

lysosomal channel TPCN2. Remarkably, all the regulators

connecting the antiviral seeds with several proviral activities,

including the cell entry, are genes induced by interferon. How-

ever, other transcription factors mainly connecting replication

genes are contrarily repressed by interferon. For example,

YEATS4 is co-expressed with DDX1, IMPDH2, and ZCRB1, that

were co-expressed with genes involved in mitochondrial

translation.Other remarkable co-expressed gene isCEBPZ,which

belongs to a family of CCAAT/enhancer-binding proteins, some

of them related to immune and inflammatory response [42].

CEBPZ is a gene co-expressed with the replication seeds DDX1

and PPIG, but also inversely expressed with the protease FURIN.

Other correlators from this protein family are CEBPD, which is

a co-expressed gene of IFITM3, but inversely expressed with

COPB2, and CEBPB that is a co-expressed gene of the protease

CTSL.

Conversely, regulators inversely expressed with seeds are

mainly interferon repressed genes (Figure 7b). Among these

genes, three zinc-finger proteins that act as antivirals against

Herpex simplex virus 1 stand out in this dataset [43]: ZNF91

inversely expressed with CTSL, IFITM2, IFITM3 and VAPA, that

is not induced or repressed by interferon, is a transcription

factor specifically required to repress SINE-VNTR-Alu (SVA)

retrotransposons [44]; the transcription factor ZNF550, which

is repressed by interferon and appeared inversely correlated

with the entry genes FURIN and BSG; and ZNF768, that appeared

as inversely expressed to the genes involved in vesicle fusion

COPB1 and OSBP. Two others inversely expressed genes were the

transcriptional repressorsYBX3 andCREBRF,which are repressed

by interferon and link the entry genes ACE2 and TPCN2. Y-box-

binding protein 3 (YBX3) restricts Influenza A virus by impairing

viral ribonucleoprotein complexes [45], and also controls amino

acid levels by regulating solute carrier amino acid transporter

mRNA abundance, a pathway that is related with inversely

expressed genes of HPRNPA1 (Figure 5b).

To further analyze the interferon signaling related with the

seeds, the response to interferon was independently evaluated

for each seed, together with their co-expressed and inversely

expressed genes. As expected, the main interferon induced

genes, the antivirals IFITM1–3, BST2 and EIF2AK2, presented

an important activation together with its co-expressed genes,

and a repression of their inversely expressed genes (Figure 7c).

Unexpectedly, proviral genes involved in entry, ACE2, ABL2

and CTSL, together with the replication gene PPIB, present a

similar interferon response, suggesting an undesired effect of

interferon promoting SARS-CoV-2 infection. On the other hand,

the seeds HNRNPA1, COPB2 and VAPA present a reversed profile.
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Figure 6. Overlapping between co-expressed proteins found by ASACO and other proteins related with the SARS-CoV-2 infection from high-throughput experiments.

A) Co-expressed genes found by ASACO are shown inside the blue box. The interactome obtained by Gordon et al. [17] is displayed in the green box, the translatome

and the proteome by Bojkova et al. [16] are shown in the pink and the yellow boxes, respectively. The total number of proteins in each dataset is shown inside the boxes

as well as the number of overlapping proteins (n), the number of coincidences expected by chance (e), and the P-value calculated with the hypergeometric distribution

(p). Results for positively (green color), and negatively (red color) correlated genes are separated. The table represents the number of proteins found by ASACO for each

seed, together with those that overlap with any other dataset in brackets and separated by the correlation sign. Darker background color indicates that this seed is

found in one of the high-throughput experiments. The total number of proteins is indicated below together with the total number of shared proteins and the number

of positively correlated proteins exclusively found by ASACO. Outside the blue box, the number of proteins shared by the four datasets is shown. B) KEGG pathway

enrichment for genes exclusively found by ASACO. C) Reactome pathway enrichment for genes exclusively found by ASACO.

Specifically, HNRNPA1 is a gene involved in mRNA splicing,

which ismoved toward the stress granules during viral infection.

These structures include ribonucleprotein complexes together

with the cell translation machinery, and it is proposedly used

by the virus to perform its replication [46]. These cytosolic

particles seem to be targeted by the viral nucleocapsid protein

(N). The N protein interact with 15 human proteins [17], and 3

of them were found as co-expressed genes of COPB1 and COPB2

(FAM98A), EIF2AK2 (MOV10), andHNRNPA1 and IMPDH2 (PABPC4).

These three proteins have been associated to the stress granules,

together with DDX1, EIF2AK2 and HNRNPA1, which reinforce the

relation of the N viral protein with this stress structures [47–49].

In fact, the antiviral seed EIF2AK2 has been seen as the kinase

activated by double-stranded RNA of viruses that activate the
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Figure 7. Transcription factor network from co-expressed genes, and relation with interferon and stress granules.A) Positively expressed transcription factors common

to, at least, two seeds. Seeds are highlighted by its type of activity (proviral or antiviral), and its function in the infection (entry, replication, or vesicle fusion). Transcription

factor induced by interferon are highlighted in red color and those repressed by interferon in blue color. B) The same as A) but for the negatively expressed transcription

factors. C) Average interferon induced fold change of seeds, together with the value for both positively and negatively expressed genes. D) Number of genes related to

stress granules in both positively and negatively expressed genes for each seed. The first column of the heatmap shows if the seed is related or not to stress granules.

formation of the stress granules [50]. Currently, 464 proteins are

known to form part of this liquid–liquid structures, and the seed

co-expressed genes include 131 of them (41 were expected by

chance; 4.6e-35) (Figure 7d), 21 from the interactome (7 expected;

7.7e-06), and 100 from the proteome (24 expected, 4.6e-35),which

support the importance of these structures in the SARS-CoV-2,

aswell as the fact that the virus could use them for its replication

and mRNA translation.

Discussion

Currently, databases sharing gene expression data are expo-

nentially growing due to the universalization of transcriptomics

techniques [51]. A secondary analysis of these data allows to

reconstruct gene networks based on co-expressed genes using

the so-called reverse engineering [52, 53]. We have developed

a new in silico method called ASACO based on standardized

gene expression data analysis. Starting from an initial seed

gene, it finds the closest neighbors in terms of transcriptional

regulation. Compared to other previous procedures, it has the

advantage of evaluating thousands of experiments whose out-

comes are normalized, allowing co-expression analysis for dif-

ferent heterogeneous genes over hundreds of experimental con-

ditions [54, 55]. The ASACO algorithm search for co-expressed

genes using a novel strategy that prioritizes genes with fold-

change signs similar to the seed expression profile (see Mate-

rial and Methods for more details). Usual metrics to measure
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Table 2.Number of genes found when using different correlation metrics, and matching with genes found in the interactome, translatome and
proteome. The threshold P-value was customized in every metrics to obtain a comparable number of co-expressed genes. Biweight =Biweight
midcorrelation

Number of genes found by the metrics Matching with omics experiments

Correlation ASACO Pearson Spearman Biweight ASACO Pearson Spearman Biweight

Positive 1899 1895 1989 1989 360 339 362 369

Negative 1578 14 51 50 166 1 5 5

correlation between expression profiles are Pearson and Spear-

man coefficients, or more robust indices such as the biweight

midcorrelation used by the suite WGCNA [38]. But these are

based on linear correlations, where it is not penalized when a

gene has an inverse behavior compared to the seed or an outlier

appears in either one or a few experiments. This is overtaken

by ASACO, since it gives a higher weight to genes with the same

behavior than the seed (overexpression or underexpression), and

this strategy has shown a better result when the final aim is

to discover negative regulators (Table 2). Contrary to positive

correlators, negative ones can be useful to identify relevant ther-

apeutic targetswhose inhibition could activate antiviral genes or

induce the expression of disease modifiers.

We have used this strategy on a selection of 35 cellular

genes reportedly involved in SARS-CoV and/or SARS-CoV-2

infection, identifying their closest co-expressed genes. Even

though the experiments employed to find them are not focused

on coronaviruses infection, the functional enrichment of

the co-expressed genes identify many of the already known

pathways for these seeds (Figure 3). Furthermore, both seeds and

correlators fairlymatchmost of the cellular pathways relevant to

the infection cycle (Figure 5).Moreover, these co-regulated genes

show a high coincidence with the ones identified in recent high-

throughput studies on cell responses to SARS-CoV-2 infection

(Figure 6a).Thismatch can be interpreted as a cross-validation of

both, experimental and in silico approaches, providing relevance

to our identified functions and supporting the idea that

co-regulation, as we identify it, can be a hallmark of co-function.

These results complement experimental data, since they show

regulatory genes with subtle expression changes during the

infection,which could constitute new candidates for therapeutic

targets. Probably, not all the correlated genes will be involved

in the viral infection, since the seeds can perform different

unrelated activities in the cell. However, both the coincidence

with infection studies and the functional relation with viral

pathways would be useful in this case to propose the most

valuable targets.

When viruses enter the host, one of the first systems that

respond to the infection is the interferon signaling pathway that

induces the expression of interferon stimulated genes (ISG). Five

of the seeds used in this study, considered as antiviral genes, are

ISGs. EIF2AK2 inhibits viral replication via the integrated stress

response, and blocks the cellular and viral translation through

the phosphorylation of EIF2α [56]. BST2 blocks the release of

viruses by directly tethering nascent virions to the membranes

of infected cells [57]. Finally, the transmembrane proteins

IFITM1-3 inhibit the entry of enveloped virus by preventing

vesicle fusion, even though they also could facilitates the

infection of other viruses [58]. As expected, genes positively

correlated with these antiviral genes consistently belong to

interferon and interleukins response pathways (Figure 5a), and

our co-expression analysis links them to regulators as STAT1,

STAT3 or TRIM21 (Figure 7ac). Surprisingly, several proviral seeds,

remarkably those involved in virus entry (ACE2, TPCN2, ABL2

and TMPRSS2), are found to be linked to these antiviral genes by

means of common co-expressed transcriptional regulators. The

main viral receptor, ACE2, has already been found as induced by

interferon, and this fact has been interpreted as ‘evidence that

coronaviruses, as well as other viruses, have evolved to leverage

features of the human IFN pathway’ [25]. This could be true

for other entry genes. TRIM14 is one of the regulators found in

common toACE2,TPCN2 and four out of five antivirals (excluding

IFITM2). This regulator is known to interact with MAVS at the

outer mitochondria membrane and attenuates the antiviral

response by the type I interferon response [59]. Since TRIM14 is

co-expressed with ACE2, it could be responsible of, or related to,

the receptor’s positive response to interferon. Interestingly, not

onlyACE2 seems to be induced by interferon, but also its positive

correlators, as well as those of ABL2 (which could be induced by

the ISG ZNF267 according to our results), and the cathepsin L

protease, CTSL. All of these are genes involved in the viral entry,

and the latter activates the membrane fusion function of the

spike viral protein S of SARS-CoV [60], and could substitute to the

TMPRSS2 protease in cell types different to lung cells [61]. CTSL

co-expressed genes are not only interferon but also interleukin

induced genes, and three cytokines are co-expressed with it

(IL1B, CXCL2 and CXCL3). In addition, it shares with IFITM2,

IFITM3 and the vesicle gene VAPA links to the transcriptional

repressor ZNF91. All of this points to both ZNF91 and TRIM14 as

putative regulators responsible for the presumptive interferon

and interleukin dependent induction of entry proviral genes and

pinpoints them as useful pharmacological targets to interfere

with the viral infection. In fact, the cellular response to SARS-

CoV-2 has been shown to be lightly induced by interferon,

but strongly by chemokines [62]. Furthermore, CTSL appeared

also linked to the co-expressed transcription factor CBPB that

regulates the expression of genes involved in immune and

inflammatory responses [42]. This transcription factor can form

heterodimers with CEBPD, which is also a co-expressed gene

of IFITM3, but inversely expressed gene of the vesicle protein

COPB2. It suggests that the interleukin response could repress

proviral genes such as COPB2, but undesirably induce CTSL.

Contrarily, genes required for viral replication such as PPIG,

DDX1, ZCRB1, IMPDH2,GSK3A and GSK3B, are bound to interferon

repressed transcriptional regulators such as RFX7 and YEATS4,

which could negatively affect the infection in the presence of

interferon.

One essential cellular pathway needed by the virus is

the mRNA splicing. In this function, HNRNPA1 is a key gene

[63]. Interferon triggers EIF2AK2-dependent HNRNPA1 protein

translocation to stress granules resulting in mRNA translation

inhibition. Until now, 464 different human proteins have been

identified to participate in this liquid–liquid cytosolic structures

[33]. Remarkably, proteins from stress granules show a broad

convergence with our host factors co-expressed genes (131 out

of 464), as well as those from the high-throughput experiments.
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Thus, 46 proteins out of 332 from the viral interactome are

also components of stress granules. From these 46 proteins,

9 interact with the N nucleocapsid protein that seems the viral

protein most related to these structures [64]. Furthermore, 20

of these proteins interact with the viral polymerase complex

(nsp12, nsp7 and nsp8), and with the helicase nsp13 that in

turn seems to interact with our seed DDX5 in SARS-CoV [65].

Since virus infection leads to the hijacking of the translation

machinery into the stress granules, this is a beneficial place for

the translation of viral mRNA molecules, where viruses such

as the respiratory syncytial virus take advantage of this [66].

Thus, the general emergence of interferon and cytokine related

genes [25, 62], as well as stress granules-related genes [46,64],

revealed by this and other studies strongly suggests that SARS-

CoV-2 could also use the interferon-induced stress granules

as replication factory, which points to this structure as a new

target for the development of therapeutic approaches to treat

COVID-19.

Conclusions

We here presented ASACO, an algorithm with the capacity to

generate key functional knowledge on specific genes based on

their co-expressed genes. We have tested this algorithm with

host factors involved in the SARS-CoV-2 infection, by means of

the analysis of co-expression data extracted from public tran-

scriptomics databases. Although further experiments using in

vitro and in vivo approaches will be required to further confirm

the results obtained here, our results have allowed the discovery

of relevant gene networks and cell pathways, and pointed to a

series of transcription regulators as potential targets useful in

the fighting against SARS-CoV-2. The consistency of our results

with those obtained by other experimental approaches repre-

sent a proof of concept of the utility of this algorithm, which

could be used for the study in other pathologies where there is

still a need for discovering new functional knowledge, such as

molecularly uncharacterized rare diseases and other microbial

infections.

Key Points

• ASACO identifies regulatory associations of genes

using public transcriptomics data.
• ASACO highlights new cell functions likely involved in

the infection of coronavirus.
• Comparison with high-throughput screenings vali-

dates candidates proposed by ASACO.
• Genes co-expressed with host’s genes used by SARS-

CoV-2 are related to stress granules.

Supplementary Data

Supplementary data are available online at Briefings in

Bioinformatics.
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