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ABSTRACT

Genome-wide association studies have generated
over thousands of susceptibility loci for many human
complex traits, and yet for most of these associations
the true causal variants remain unknown. Tissue/cell
type-specific prediction and prioritization of non-
coding regulatory variants will facilitate the identifi-
cation of causal variants and underlying pathogenic
mechanisms for particular complex diseases and
traits. By leveraging recent large-scale functional
genomics/epigenomics data, we develop an intu-
itive web server, GWAS4D (http://mulinlab.tmu.edu.
cn/gwas4d or http://mulinlab.org/gwas4d), that sys-
tematically evaluates GWAS signals and identifies
context-specific regulatory variants. The updated
web server includes six major features: (i) updates
the regulatory variant prioritization method with our
new algorithm; (ii) incorporates 127 tissue/cell type-
specific epigenomes data; (iii) integrates motifs of
1480 transcriptional regulators from 13 public re-
sources; (iv) uniformly processes Hi-C data and gen-
erates significant interactions at 5 kb resolution
across 60 tissues/cell types; (v) adds comprehen-
sive non-coding variant functional annotations; (vi)
equips a highly interactive visualization function for
SNP-target interaction. Using a GWAS fine-mapped
set for 161 coronary artery disease risk loci, we

demonstrate that GWAS4D is able to efficiently prior-
itize disease-causal regulatory variants.

INTRODUCTION

Since the majority of genome-wide association study
(GWAS) risk loci are located in the non-coding genomic re-
gion, identifying and interpreting how genetic variants in
these loci regulate gene expression and then being able to
explain disease susceptibility continues to be a challenge
(1–4). An increasing number of studies have shown that as-
sociated variants for a particular trait/disease are signifi-
cantly enriched in certain regulatory signals of the relevant
tissues/cell types (5,6). Therefore, integrating GWAS sig-
nals with coordinated genomic/epigenomic profiles in spe-
cific tissue/cell type provides a promising direction to fine-
map the causal regulatory variant (7–10). In addition, con-
necting regulatory variants to their gene targets under a dy-
namic cellular environment is experimentally expensive, and
computational methods are needed for more accurate pre-
dictions (11). However, recent international functional ge-
nomic projects, such as ENCODE and the 4D Nucleome
project, continuously generate genome-wide chromosome
conformation capture data, including Hi-C and ChIA-PET,
on widespread tissues/cell types across human organs and
development stages, which provides profound opportunities
to study the effect of regulatory variants at spatiotemporal
levels (12–15).

Previously, we developed the web server GWAS3D to
detect human regulatory variants by the integrative analy-
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sis of genome-wide associations, chromosome interactions
and histone modifications (16). This server has been suc-
cessfully applied for functional fine-mapping and annota-
tion of regulatory variants (17,18). Compared with other
widely used tools such as HaploReg (19) and RegulomeDB
(20), our web server quantitatively prioritizes all associ-
ated SNPs in the linkage disequilibrium (LD) proxy and
provides comprehensive functional annotations to interpret
variant regulatory effects. During the past few years, several
tools and resources have been developed to annotate regula-
tory variants (21–25). However, online tools that can incor-
porate tissue/cell-type-specific genomic/epigenomic infor-
mation toward prioritizing disease-causal regulatory vari-
ants are still lacking. In this work, by integrating the lat-
est multidimensional functional genomic resources and our
recent regulatory variant prioritization method, cepip (26),
we updated our previous web server to systematically ana-
lyze GWAS signals and to identify context-specific regula-
tory variants. The GWAS4D web server is freely available at
http://mulinlab.tmu.edu.cn/gwas4d or http://mulinlab.org/
gwas4d.

METHODS AND PIPELINE

GWAS4D has been improved substantially in its
current form by incorporating uniformly processed
genomic/epigenomic data, integrated transcription regula-
tor motif data, and comprehensive functional annotations,
as well as our recent prioritization method for regulatory
variants. We illustrate the web server data and pipeline in
the following sections.

Data collection and processing

Genetics data. Genetic variant and allele information were
retrieved from dbSNP150 (27) and 1000 Genomes Project
phase 1 release (28). LD was computed by MACH using
genotype information from 11 HapMap phases I + II +
III subpopulations and four 1000 Genomes Project super
populations (AFR, AMR, ASN and EUR) (29,30). GEN-
CODE v27 annotation was used to map genetic variants to
gene loci (31).

Tissue/cell-type-specific epigenome data. Consoli-
dated epigenomes from 127 human tissue/cell lines
were downloaded from the web portal of the NIH
Roadmap Epigenomics project (32), which includes
narrow peaks from eight histone modifications ChIP-
seq (H3K27ac, H3K27me3, H3K36me3, H3K4me1,
H3K4me2, H3K4me3, H3K79me2 and H3K9me3) and
DNase-seq. For tissue/cell lines with missing epigenomes,
imputed narrow peaks were used.

Tissue/cell-type-specific Hi-C data. Genome-wide in situ
or dilution Hi-C raw reads for diverse human tissue/cell
lines were collected and downloaded from ENCODE, 4DN,
GEO and published literature. To ensure relatively adequate
read coverage for chromatin interaction identification at 5
Kb resolution, we required that each biological sample li-
brary should contain at least 150M sequenced reads. For the
same tissue/cell line with multiple Hi-C libraries from dif-
ferent biological replicates or labs, we only kept the largest

sequencing library. Using these criteria, GWAS4D now in-
corporates 60 Hi-C libraries from 14 human primary tissues
and 46 human cell lines (see Supplementary Table S1 for de-
tailed information of the used Hi-C libraries). We uniformly
processed these Hi-C data according to the HiC-Pro (33)
standard analysis pipeline and considered significant chro-
matin interaction at 5 Kb resolution using HOMER (34)
(see Supplementary Table S1 for the number of significant
interactions of each Hi-C library).

Transcriptional regulator motif data. Position frequency
matrices of known and inferred transcription regulator mo-
tifs were curated and merged from 13 datasets (Supplemen-
tary Table S2). Since a regulator may contain redundant
or highly similar motifs, it is necessary to reduce the mo-
tif volume and select the representative ones. For each tran-
scription regulator, we first used MACRO-APE (35) to cal-
culate the pairwise similarity among collected motifs. We
then clustered these motifs using the Calinski-Harabasz in-
dex (36) in the R fpc-package by dynamically setting the op-
timal number of clusters (no more than three clusters). We
picked up the one representative motif with the largest in-
formation content in each cluster. Finally, GWAS4D com-
piles 3105 motifs for 1480 transcription regulators, provid-
ing an integrated compendium for evaluating variant effects
on DNA–protein interactions.

Regulatory variant annotation data. Basic genomic fea-
tures of genetic variants were retrieved through CADD
base-wise annotations (37) and SNVrap (38). Variant al-
lele frequency information was downloaded from gnomAD
(39). GWAS4D also integrates multiple functional predic-
tion scores of non-coding variants for all the possible single
nucleotide variants from 10 algorithms (Supplementary Ta-
ble S2). Nonsynonymous mutation deleterious/pathogenic
scores were received from the dbNSFP (40). Base-wise
evolutionary scores were integrated from GADD and
SiPhy (41). In addition, GWAS4D annotates variants us-
ing tissue/cell-type-specific regulatory signals, including
open chromatin and histone modification data from the
Roadmap Epigenomics project, transcription factor bind-
ing data from the CistromeDB (42), and CAGE associ-
ated transcript signals from the FANTOM CAT (43). Fi-
nally, trait/disease-association data were downloaded from
GWASdb (44), GWAS Catalog (45), ClinVar (46), COS-
MIC (47) and GTEx (48) (see Supplementary Table S2 for
detailed information of the annotations used).

GWAS statistical fine-mapping data. To validate the us-
ability of the GWAS4D web server, we used a fine-mapped
credible set of 161 coronary artery disease (CAD) risk loci
from a recent GWAS meta-analysis (49). SNPs that over-
lapped with protein coding regions and splicing sites were
filtered out according to VEP annotation (50). Using the re-
maining non-coding fine-mapped SNPs, we first evaluated
whether the GWAS4D predictions differed when selecting
CAD matched and unmatched cell types. We then divided
the SNPs into four subsets using PAINTOR posterior prob-
abilities in the whole credible set (confidence >95%, confi-
dence between 50% and 95%, confidence between 10% and
50% and confidence <10%) (51). We investigated whether
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the GWAS4D prediction scores in the high confidence sub-
set are larger than those in the low confidence subset. Fi-
nally, we inspected the ability of GWAS4D to disentan-
gle true disease-causal regulatory variants from a risk lo-
cus containing SNPs with similar posterior probabilities of
causality.

Context-specific prioritization of regulatory variants from
GWAS signals

GWAS4D analyzes and prioritizes human regulatory vari-
ants after GWAS statistical mapping. GWAS4D uti-
lizes multiple tissue/cell-type-specific functional evidence
sources to fine-map potentially disease-causal regulatory
variants. The overall workflow of GWAS4D is shown in Fig-
ure 1.

SNP filtering and LD expansion. GWAS4D accepts mul-
tiple variant description formats including VCF-like, db-
SNP ID and coordinate-only. Variants not using the VCF-
like format will be automatically lifted to dbSNP150 and
assigned respective reference/1st alternative alleles using
SNPTracker (52). The web server will discard the variants
not mapped onto dbSNP150 or 1000 Genomes Project un-
less the VCF-like format is used. The GWAS P-value is
optimal but could be used to filter out less significant sig-
nals. For each leading SNP, GWAS4D can retrieve all linked
SNPs in the corresponding LD proxy by a user-defined pop-
ulation and r-squared (r2) cutoff. However, this LD expan-
sion can be disabled when input variants are a statistically
fine-mapped GWAS credible set.

Prediction of tissue/cell-type-specific regulatory probability.
To predict the regulatory probability of a genetic variant in
a particular tissue/cell type, we used our recently developed
context-dependent epigenomic weighting method, cepip
(26). Given a defined tissue/cell type, GWAS4D utilizes
cepip to score each SNP after filtering and LD expansion
steps. In general, GWAS4D will report three probabilities:
(i) ‘composite P’ shows the likelihood of the variant to be
functional in gene regulation by our context-free ensemble
method (53); (ii) ‘cell P’ represents the condition-dependent
regulatory potential in the current tissue/cell type; (iii)
‘combined P’ is the final regulatory probability that jointly
considers both context-free and context-dependent models.
For a GWAS trait with unknown causal tissue/cell type,
GWAS4D estimates the most relevant tissue/cell type by
comparing the normalized mean ‘cell P’ of input GWAS sig-
nals across 127 reference tissue/cell types (26).

Prediction of the regulatory effect on TF binding.
GWAS4D substantially extends the search pool of
transcription regulator motifs and is able to scan as
many as 3105 motifs for 1480 regulators. Using the same
motif scanning and scoring strategy as in the GWAS3D,
GWAS4D evaluates the difference of the transcription
regulator binding affinity caused by different alleles from
the investigated variant. The statistical significance of
the variant effect was measured by a permutated null
distribution of binding affinity differences.

Prioritization and annotation of scored SNPs. Given the
number (N) of independent regulatory signals in each r2-
defined LD proxy of GWAS leading variant, GWAS4D pri-
oritizes all the scored variants and recommends the top
N variants according to the ‘combined P’ in the corre-
sponding LD proxy. GWAS4D also investigates whether
the ‘cell P’ of the regulatory variant is top ranked across
all 127 epigenome datasets to define the likely tissue/cell-
type specificity. In addition, GWAS4D reports the top pos-
sible transcription regulators altered by the variant effect
as well as their relevant motifs. To comprehensively exploit
the variant regulatory effect, GWAS4D provides a batch of
annotations and functional evidence, including variant ge-
nomic features, variant allele frequency, non-coding vari-
ant functional prediction scores, conservation scores, chro-
matin states, transcription factor binding events, expression
quantitative trait loci (eQTLs) as well as many trait/disease
associations. These annotations were indexed and randomly
accessed by Tabix (54).

Linking a regulatory variant to its target loci. After the
SNP prioritization step, GWAS4D maps the variant locus
to genes using GENCODE annotations and records the
chromosome ideogram if the variant locates in the inter-
genic region. GWAS4D also utilizes significant 5 kb Hi-C
interactions of selected tissue/cell types to link the regu-
latory variant to its target loci. Considering SNP-located
5 kb bin as a virtual 4C viewpoint, the top 20 significant
chromatin interactions in the same chromosome were plot-
ted using CHiCP (55). Additionally, GWAS will display the
peak signals of active or repressive chromatin marks within
the viewpoint and target bins using Roadmap Epigenomics
annotation tracks of the selected tissue/cell type.

WEB SERVER DESCRIPTION

Usage and interface

The GWAS4D web server accepts any of the four follow-
ing GWAS variants input formats: VCF-like, coordinate-
only, dbSNP ID and PLINK-like. Since the last three for-
mats do not contain allele information, GWAS4D will sup-
ply respective alleles using reference/first alternative alle-
les in dbSNP 150 and 1000 Genomes Project and will dis-
card variants that cannot map to these two datasets. There-
fore, the VCF-like format is the suggested input format.
Both plain text and uploaded file of GWAS variants are
well supported, and the P-value is an optional input field
and is used to filter less significant variants. To search cor-
related SNPs in the LD proxy of a leading variant, users
can define a reference LD dataset and corresponding r2

cutoff on either the 1000 Genomes or HapMap popula-
tions. In the case where input variants are statistically fine-
mapped GWAS signals, users could skip the LD expan-
sion function by checking ‘No LD Expansion’. By default,
GWAS4D assumes that there is only one independent reg-
ulatory SNP in each LD proxy of leading variant and out-
puts the top scored SNP according to its ‘combined P’ value,
but users can adjust the number of top prioritized vari-
ants in each LD proxy. To perform context-specific prior-
itization, users can select the epigenomes of a tissue/cell
type from 127 reference tissue/cell types or upload narrow
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Figure 1. The workflow of GWAS4D (see the description of prioritization pipeline for details).

peaks of chromatin marks for a particular tissue/cell type.
GWAS4D will automatically match an empirically relevant
Hi-C dataset upon the selection of the reference tissue/cell
type, but users are suggested to manually confirm or up-
load matched tissue/cell type-specific Hi-C interactions for
better interpretation of target regions of regulatory SNP. In
addition, GWAS4D allows one to estimate the likely rele-
vant tissue/cell type if the user cannot assign a GWAS trait-
associated tissue/cell type. Finally, users are able to cus-
tomize the list of transcription regulators for motif scanning
and to define the significance cutoff of the variant effect on
the transcription regulator binding. GWAS4D allows three
types of job retrieving methods, including encrypted link,
job menu and email notification.

The GWAS4D platform displays the results in a highly in-
teractive and user-friendly interface. Once the submitted job
is finished, the URL is redirected to the result page (Figure
2). The left panel of the result page shows a table with the
final results of prioritization, in which the regulatory SNPs
are ordered according to the ‘combined P’ scores (Figure
2A). This searchable table also summarizes the genomics
position of the variant, allele information and the relation-
ship with the leading GWAS SNP. Importantly, to highlight
the regulatory effect of each prioritized SNP, color marks
were used in the last column of the prioritization table. For
example, the SNP with the most significant transcription
regulatory binding affinity change will be marked by an or-
ange stamp, and the SNP fetching tissue/cell-type-specific
‘cell P’ under the current condition will be marked by a blue
stamp, and the SNP located in the significant chromatin in-
teraction region will be marked by a green stamp. By hov-
ering over each regulatory SNP, users can inspect more in-
formation about the predicted regulatory scores. In addi-
tion to the detailed description of the SNP regulatory effect,
GWAS4D also introduces an interactive circular plot using
CHiCP to display the top most significant 5 kb chromatin
interactions by assigning virtual 4C viewpoint to the SNP-

contained locus. Chromatin marks within the connected 5
kb bins can also be showed when users click on each inter-
action arc (Figure 2B). The whole prioritization table can
be downloaded with a tabular file. The right panel of the re-
sults page provides functional evidence and annotations of
the regulatory variant in several categories (Figure 2C). The
‘Variant Information’ tab reports the variant’s genomic at-
tributes and allele frequency in the world-wide human pop-
ulation; the ‘Functional Evidence’ tab shows information
of the SNP-altered transcription regulator binding affinity
change, as well as several regulatory signals in the variant
locus, such as transcriptional factor ChIP-seq peaks from
CistromeDB and CAGE cluster signal from FANTOM
CAT; the ‘Functional Prediction’ tab lists base-wise non-
coding/coding functional prediction scores and conserva-
tion scores from multiple algorithms; the ‘Trait/disease As-
sociation’ tab presents trait/disease-associated records from
GTEx, GWASdb, ClinVar and COSMIC; the ‘External
Link’ tab links the SNP to several commonly used non-
coding variant annotation resources including HaploReg
(19), RegulomeDB (20), rSNPBase (21) and 3DSNP (23).
Users can download all of the functional predictions and
annotation information for each prioritized variant by sim-
ply clicking the download icon in the variant prioritization
table.

Web server design

The GWAS4D web server was built on a Perl-based web
framework, ‘Catalyst’. The annotation information was in-
dexed and retrieved by MySQL and Tabix. The Oracle Grid
Engine was used as the job management system for task
submission, and JQuery and related JavaScript UI com-
ponents were used to construct the interactive web pages.
GWAS4D now supports no >10 000 significant input vari-
ants under the ‘without LD extension’ mode and 2500 sig-
nificant input variants under the ‘LD extension’ mode. Usu-
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Figure 2. The result pages of the GWAS4D web server. (A) final prioritization table of GWAS4D; (B) virtual 4C circular plot for the top most significant
Hi-C interactions between the variant locus and the target regions; (C) functional annotation tabs for prioritized SNPs.

ally, GWAS4D can finish conventional GWAS jobs in ap-
proximately 10 minutes (Supplementary Table S3).

Evaluation

The overall performance of the applied method for regu-
latory variant prioritization has been benchmarked in our
previous publications (26,53). Here, we used a GWAS fine-
mapped credible set at 161 CAD risk loci as an exam-
ple to demonstrate one of the applications and the effec-
tiveness of our GWAS4D web server. We first executed
the GWAS4D with the ‘no LD expansion’ mode on 1699
non-coding CAD-associated SNPs using HUVEC, HepG2
and GM12878 epigenomes. We observed that the HUVEC-
based ‘combined P’ scores were significantly higher than
HepG2, GM12878-based ‘combined P’ scores for these
credible SNPs (P-value = 5.2E–5 and 1.2E–10, respec-
tively, Mann–Whitney U test), indicating that selecting rele-
vant tissue/cell types that match GWAS traits/diseases may
improve the detection of causal regulatory variants (Sup-
plementary Figure S1A). By partitioning the fine-mapped
SNPs into four separate subsets, we also showed that SNPs
in the >95% confidence subset obtained larger ‘combined
P’ scores than those in the low confidence subsets (P-value
= 0.039 by comparing >95% confidence subset with <10%
confidence subset, Mann–Whitney U test) (Supplementary
Figure S1B). This result suggests that GWAS4D could ac-
curately prioritize disease-causal regulatory variants. In ad-
dition, we further exploited whether GWAS4D can dis-

tinguish true causal SNPs from a difficult credible set in
which highly linked SNPs achieve a similar posterior prob-
ability of causality. We selected a credible set containing
five SNPs with a posterior probability approximately 0.2 at
the SMAD3 locus on chromosome 15. GWAS4D evaluated
these five SNPs using the HUVEC cell type and prioritized
them according to their ‘combined P’ scores (Supplemen-
tary Table S4). The top ranked SNP, rs17293632, did not
obtain the highest posterior probability in the previous fine-
mapping, but it overlaps with many active regulatory signals
(DNA hypersensitive site, H3K27ac, H3K4me1, H3K4me2
and H3K4me3), eQTL and conservative regions. The HU-
VEC Hi-C data shows that the SNP locus interacts with
the SMAD3 alternative promoter region at 5 kb resolution
(Supplementary Figure S2A). GWAS4D also identifies that
this variant could possibly disrupt the binding of AP-1 tran-
scription factor JunB (Supplementary Figure S2B). Taken
together, these results are largely consistent with two recent
studies regarding functional validations of rs17293632 at
the SMAD3 locus that confers CAD risk (56,57).

Few web servers that can incorporate tissue/cell-type-
specific genomic/epigenomic information toward priori-
tizing and annotating disease-causal regulatory variants.
Compared with the available features among several new
or commonly used online resources, including HaploReg
(19), RegulomeDB (20), rSNPBase (21), 3DSNP (23) and
PINES (https://doi.org/10.1101/083642) and FUMA (25),
we found that our GWAS4D provides the most compre-
hensive information and functions in the identification of
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tissue/cell type-specific regulatory variants (Supplementary
Table S5).

CONCLUSION

Recent large-scale functional genomic/epigenomic stud-
ies have significantly expanded DNA regulatory codes in
diverse human tissue/cell types. Connecting such effects
with trait/disease associations to fine-map causal regula-
tory variants and their target genes is important in the post-
GWAS era. By equipping our latest regulatory variant pri-
oritization algorithm, comprehensive and up-to-date func-
tional genomics resources, as well as an interactive user in-
terface, GWAS4D systematically investigates the regulatory
effect of GWAS SNPs in a tissue/cell-type-specific man-
ner. Using relevant genomic/epigenomic data that matches
GWAS traits/diseases, GWAS4D is able to enumerate and
prioritize the likely functional SNPs in the LD proxy of
each GWAS signal or re-evaluate the causal probability of
regulatory variants based only on statistically fine-mapped
GWAS SNPs. Additionally, GWAS4D incorporates our
uniformly processed Hi-C chromatin interaction data at 5
kb resolution for 60 human primary tissue/cell lines, which
provides a unique compendium to connect the genetic loci
of diseases with their regulated targets. We expect GWAS4D
to greatly aid researchers in investigating the genetic mech-
anisms of disease and to create more significant impacts in
the era of human non-coding genomics.
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