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Automated spheroid generation, 
drug application and efficacy 
screening using a deep learning 
classification: a feasibility study
Leo Benning1,4, Andreas peintner2,4, Günter finkenzeller1 & Lukas peintner 3*

The last two decades saw the establishment of three-dimensional (3D) cell cultures as an 
acknowledged tool to investigate cell behaviour in a tissue-like environment. Cells growing in 
spheroids differentiate and develop different characteristics in comparison to their two-dimensionally 
grown counterparts and are hence seen to exhibit a more in vivo-like phenotype. However, 
generating, treating and analysing spheroids in high quantities remains labour intensive and therefore 
limits its applicability in drugs and compound research. Here we present a fully automated pipetting 
robot that is able to (a) seed hanging drops from single cell suspensions, (b) treat the spheroids 
formed in these hanging drops with drugs and (c) analyse the viability of the spheroids by an image-
based deep learning based convolutional neuronal network (CNN). The model is trained to classify 
between ‘unaffected’, ‘mildly affected’ and ‘affected’ spheroids after drug exposure. All corresponding 
spheroids are initially analysed by viability flow cytometry analysis to build a labelled training set 
for the CNN to subsequently reduce the number of misclassifications. Hence, this approach allows 
to efficiently examine the efficacy of drug combinatorics or new compounds in 3D cell culture. 
Additionally, it may provide a valuable instrument to screen for new and individualized systemic 
therapeutic strategies in second and third line treatment of solid malignancies using patient derived 
primary cells.

Abbreviations
CNN  Convolutional neural network
DOD  Drop on demand
ECM  Extracellular matrix
GAN  Generative adversarial network
2D  Standard two-dimensional cell culture
3D  Three-dimensionally grown spheroids in cell culture

Systemic therapies, i.e. chemotherapies and targeted-therapies, constitute one of the major pillars of modern 
cancer therapies and are of particular importance for the treatment of advanced and metastasized diseases. Today, 
the vast majority of all cancer patients dies due to metastases and their associated  complications1. Despite the 
availability of evidence-based sequential or parallel therapeutic regimens for the most of all known cancer enti-
ties, physicians and patients alike regularly face the challenge of evolving resistance mechanisms that demand 
a robust fallback level. Once patients experience a disease progression under the respective first line treatment, 
they need to be administered a promising second or third line regimen. As guidelines tend to present treatments 
beyond the first or second line as equal options within the respective group, individual or institutional experi-
ences drive the decision, if the enrolment in a suitable clinical trial is not an option. The search for a solution of 
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this issue has contributed to pave the way for the field of personalized medicine over the past years, which focuses 
on the individual characteristics of a patient’s disease and custom tailors the best treatment option, respectively. 
The paramount interest in this field has just recently been underscored by the NIH’s Cancer Moonshot Blue 
Ribbon Panel that particularly emphasized the need for novel technologies to facilitate comprehensive cancer 
research with so-called human-derived next-generation cancer  models2. The work presented in this article aims 
to contribute precisely to this proposed goal.

Major progress in the field of personalized medicine in cancer therapies was achieved through a better and 
more profound understanding of cancer itself: solid tumours are no longer seen as a collection of homogeneous 
malignant cells, but are rather considered a micro-evolutionary system that undergoes a constant transforma-
tion in response to endogenous and exogenous  stimuli3,4. Several so-called lead mutations have been known for 
many years and are, in some cases, already important predictive indicators for a specific treatment. Nonetheless, 
these mutations only initiate the genomic dysregulation of malignant cells and are typically followed by further 
mutations. These so-called follow mutations contribute further to the genetic instability and diversity of a tumor-
ous mass and eventually lead to the evolvement of numerous, genetically heterogeneous sub-entities5. Under a 
standard therapy, some of these sub-entities either develop mechanisms of resistance towards the applied agents 
or persevere better when nutrients and oxygen are at scarce—and hence gain dominance. Numerous approaches 
have been undertaken to approximate tumour response by  modelling6–8. However, predictions about which sub-
entities can persevere and the mechanisms they apply are, up to date, hard to make and can therefore not yet 
be taken into consideration when choosing the right regimen for an advanced cancer  disease9,10. Just recently, 
Tuveson and Clevers presented a comprehensive review on cancer modelling by the means of organoid tech-
nologies and emphasized a number of key characteristics of three dimensionally grown cell cultures, namely 
the more accurate representation of interpatient variations, the ability to employ complex patient-derived cell 
sources and their capacity to report drug responses more reliably than conventional flat dish culture  systems11.

In line with their promotion of sophisticated organoid models and a versatile usability thereof, several promis-
ing attempts on the generation of high-throughput screening assays for organoid cultures have been published. 
Yet, only few managed to integrate automation, size and spatial control, high numbers of replicates and a suitable 
interface for follow-up investigations so far. For example, Amann et al. demonstrated the generation of complex 
mono- or co-cultures. However, due to the complex generation mechanism discussed below, only low numbers 
of replicates were thoroughly examined by flow cytometry or  microscopy12. Similar limitations apply to the 
work of Anastasov et al., who generated organoids similarly and focused on the detection of radiation resistant 
organoids and the effects of a simultaneous  chemotherapy13. Other groups recognize scaffold-free 3D cultures as 
most suitable for mimicking in vivo phenotypes, but fall short of evaluating the tumour  evolution14. Finally, some 
groups demonstrate a true high-throughput approach, but lack size and shape control to generate homogeneous 
organoids for follow-up  investigations15. Although the results of this promising research as well as its limitations 
are clear indicators for the high complexity in this field, none of the approaches above incorporated a genuine 
computer-based readout for their experiments. From our perspective, this allows, with a reasonable effort, to 
reduce the complexity of a molecular or histochemical readout with comparable results.

Previous research in our group proposes an up-scale printing device that, in a next step, allows the simula-
tion of the aforementioned micro-evolutionary process by generating a high number of homogenous cancer cell 
organoids from a tissue sample: organoids are generated by a printing platform employing a drop-on-demand 
(DOD) print head and are cultivated via the hanging-droplet  method16. As using an automated drop-on-demand 
printing procedure increased the efficiency of spheroid production significantly, we now aim to apply evolution-
ary pressure, i.e. a specific cytostatic agent, a decrease in nutrients or pO2, to the spheroids and detect specific 
reactions of the individual spheroids. However, biochemical analysis remains labour intensive, as standard bio-
chemical analysis methods demand a large quantity of source material. For instance, several hundred spheroids 
need to be pooled in order to yield a sufficient protein concentration to perform Western blot or qPCR analysis. 
Working on this problem, it became evident that spheroids undergo characteristic morphological changes when 
they are stressed, e.g. by cytotoxic agents. Images of individual spheroids can hence be analysed and classified 
by deep learning  models17. Convolutional Neuronal Networks (CNN), if trained accordingly, allow to classify 
images in an efficient manner and are therefore predestined to assist—and eventually replace—costly and com-
plex biochemical analysis. First introduced by LeCun and  Bengio18, the application of CNN has enjoyed a rise of 
reputation in the past few years. In comparison to other neural networks, a CNN takes advantage of the spatial 
localisation inherent in images and hence identifies and extracts features.

The precise detection of morphologically aberrant spheroids and their subsequent analysis regarding cell 
viability and increase in cell death after exposure to cytotoxic agents by deep learning are at the focus of this 
paper. The project aims to provide a methodological feasibility study and therefore employs established and well 
characterized cell lines.

Material and methods
Cells and cell culture. All experiments were performed using immortalized adherent cell lines. HCT116, 
HEp2, HEK293T or mIMCD3 cells were maintained in standard cell culture vessels in DMEM medium sup-
plemented with 10% FCS and 1% Pen/Strep at 37 °C in a 5%  CO2 atmosphere. To maintain exponential growth, 
cells were split once they reached confluence, typically after 3 days. In order to grow the cells in spheroids, cells 
were washed with PBS, trypsinised with Trypsin/EDTA for 5–10 min and after all cells lost contact to the culture 
vessel, the reaction was stopped with the addition of an excess of DMEM. Cells were counted using a Neubauer 
counting chamber and diluted to a density of 1 × 106 cells per ml.
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Automated spheroid production. The DOD printing platform was developed on the basis of a com-
puterized numerical control (CNC) milling machine (Sainsmart, Lexana, Kansas, USA), supplemented with an 
additive printer control chip (Anycubic, Frankfurt, Germany). The nozzle (200 µm size) was mounted to the 
x–y–z arm and connected to an infusion pump operated by a stepper motor, adjustable to the desired volumes 
after gravimetrical calibration. The nozzle aims at an inverted cell culture plate lid of 10 or 15 cm diameter that 
is placed 7 mm below the nozzle. A CCD camera (KKmoon, Shenzhen, China) is mounted next to the nozzle 
on the x–y–z arm. At 20 mm operation distance the camera captures images of individual spheroids and saves 
it to a database (Fig. 1a).

Setup and process of spheroid production. Trypsinised floating cells at a concentration of 1 × 106 cells 
per ml were loaded into the printing device. Droplets in the size of 30 µl were printed onto the inverted lid of a 
15 cm cell culture plate in an array of 10 × 10 droplets. After seeding, the plate was carefully removed from the 
seeding device and quickly inverted. To avoid evaporation, the bottom of the 10 cm cell culture plate was filled 
with 10 ml PBS and the droplets bearing lid was put on the bottom plate. The spheroids were allowed to form in 
the droplets for 24 h in an incubator at 37 °C and 5%  CO2. After 24 h the lid containing the spheroids was again 
loaded onto the seeding machine and 5 µl liquid containing 7 × concentrated drugs were applied into the drop-
lets to yield a final 1 × concentration of drugs in the droplet containing the spheroid (35 µl final volume). Drugs 
used were Etoposide (ETO, final concentration: 20 and 100 mM) and Staurosporine (STS, final concentration: 2 
and 20 µM). The lid bearing the droplets was again inverted and incubated for 24 h. To analyse the effect of the 
drugs on the spheroids, droplets were either scanned by the AI-connected camera or analysed by flow cytometry.

Flow cytometry analysis. After imaging the spheroids, the lid containing the droplets was inverted, rinsed 
with 20 ml of PBS and all the spheroids were collected in a 50 ml tube. After centrifugation (5 min, 400 g), sphe-
roids were trypsinised to obtain a single cell solution. After 5 min, DMEM + 10%FCS was added and cells were 
sedimented again. The pellet was resuspended in Annexin-V binding Buffer (10 mM Hepes, 140 mM NaCl, 
2.5 mM  CaCl2 in  ddH2O) containing Annexin-V-APC (1:500). Cells were measured using a LSRII flow cytom-
eter (Beckton Dickinson).

Statistical analysis. Statistical analysis was performed where appropriate. Statistical significance was 
assessed by a two-way ANOVA and a Bonferroni post-test.

Deep learning. The implementation is based on the python neural networks library  Keras19. This library 
offers an ImageDataGenerator class that allows to generate batches of images with data augmentation. The fol-
lowing parameters for real-time data augmentation are used: rotation_range, rescale, shear_range, zoom_range, 
horizontal_flip. Designing the model, we focused on using a small convolutional network with few layers and a 
small amount of filters (neurons) per layer. The number of filters corresponds to the number of feature maps. A 
high dropout factor will regularize the model by randomly selecting neurons and ignore them during the train-
ing. This results in various independent representations and the model will incorporate these into its learning 
process to avoid  overfitting20. Specifically, we trained a convolutional network with 4 convolutional layers. Each 
layer has a rectified linear unit (ReLU) activation function, which projects negative weights to zero, and is fol-
lowed by max-pooling layers with a pool size of 2 × 2. Pooling is needed to eliminate redundant information and 
speed up training in addition to ReLU and dropout. After the fourth pooling layer, activations were flattened and 
two subsequent layers with 128 and 3 features were fully connected. The model ends with a softmax activation 
to produce a probability distribution over given classes. The categorical model summary can be seen in Table 1 
and has overall 6,913,091 trainable parameters.

The complete source code is uploaded to GitHub and can be accessed upon reasonable request.

Results
We aimed to develop a tool that allows the generation of spheroids in high quantities and in a constant qual-
ity with regard to spatial control and size distribution. Furthermore, it needed to be able to treat the generated 
spheroids with preselected drugs and should be able to capture each individual spheroid in a hanging drop with 
a CCD camera. The resulting tool consists of an x–y–z platform that holds a peristaltic pump, which applies 
defined amounts of liquid containing trypsinised epithelial cells in a defined pattern on the lid of a cell culture 
plate (Fig. 1a). The droplet sizes generated by the infusion pump remained constant with only very small stand-
ard deviations (Supplementary Fig. 1). After applying the cells in a specific grid-pattern, the cell culture plate is 
carefully inverted and incubated for 24 h in a standard cell culture incubator. Next, the plate is inverted again 
and placed into the printing device. Once the pre-formed pattern is automatically identified, therapeutics in 
different concentrations are infused into the existing droplets via DOD printing, as outlined above. After a 24-h 
incubation period, the effect of the drugs is assessed by a CCD camera that identifies the individual spheroids and 
compares the condition of each separate spheroid to a database of previously diagnosed, i.e. labelled, spheroids.

Tumour spheroids form spontaneously in hanging drops. As shown in various previous studies, 
cells from diverse sources will form spheroids spontaneously when grown in an environment where cells can 
only attach to each other, as it happens in hanging  drops21,22. However, depending on the cell line or differentia-
tion status, cells can aggregate and form a ball shaped single spheroid (Fig. 1b, mIMCD3 and HCT116), or form 
several interconnected small spheroids on the bottom of the droplet (Fig. 1b, HKT293T and HEp2).
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Figure 1.  Spheroids form spontaneously in hanging drops. (A) Schematic representation of the spheroid 
seeding tool used throughout this work. Spheroids in hanging drops or cytotoxic drugs are seeded onto an 
inverted cell culture plate at various volumes using a peristaltic pump and a high precision x–y–z robot arm. A 
CCD camera monitors the spheroid quality and saves the images to a database. (1) Reservoir for cell suspension, 
(2) Peristaltic pump, (3) Nozzle for DOD droplet generation, (4) Droplet of homogenous shape and volume, (5) 
CCD camera, (6) Database, (7) Detection of shape and conformational alterations. (B) Representative images 
of spheroids of mIMCD3, HCT116, HEK293T or HEp2 cell lines forming spontaneously in 30 µl medium 
droplets containing 1 × 106 cells/ml of trypsinised cells after 24 h. Size marker = 50 µm. (C) The volume of the 
spheroids consisting of mIMCD3 cells increases logarithmically depending on the droplet size/cell number. The 
volume was calculated measuring pixels of the captured images and is therefore set to arbitrary units [a.u.]. Cell 
concentration = 1 × 106 cells/ml. Shown are means (horizontal line) ± s.d., n > 20. (D) Cell viability of mIMCD3 
cells inside the spheroid after 48 h of incubation in spheroids of 30, 40 and 50 µl of volume. Cell viability was 
assessed by flow cytometry using Annexin-V counterstain. Cell concentration = 1 × 106 cells/ml. Shown are 
individual survival rates (dots), means (horizontal line) ± s.d., n = 3. (E) Evaporation time of hanging drops 
(DMEM containing 10% FCS and 1% Pen/Strep) in a non-humid environment. Droplet sizes larger than 30 µl 
plateau at 8,500 s = 140 min. Shown are individual times (dots), means (horizontal line) ± s.d., n > 10. (F) The 
formation of hanging drops depends on an inversion of the carrier plate that holds the droplets. The larger the 
droplets are, the higher the probability that the droplets spontaneously trickle away during this process. Shown 
are percentages of spontaneously lost droplets on a plate bearing 80 droplets in three different experiments 
(dots), means (horizontal line) ± s.d., n = 3.
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The volume of the spheroids grows logarithmically in relation to a linear increase in the cell number contribut-
ing to the spheroid (Fig. 1c, mIMCD3 cells). The formation of a spheroid rapidly establishes a supply gradient that 
exposes the inner cell mass to a gradually increasing scarcity in nutrients and oxygen. However, the increase in 
cell number included into the spheroid does not lead to an increase in spontaneous apoptosis after 48 h in culture, 
averaging around 80% living cells in spheroids larger than 60.000 cells (Fig. 1d). Nonetheless, too small droplets 
bear the risk of rapid evaporation of the medium before the spheroids can be placed in the incubator (Fig. 1e) and 
too large droplets, containing more than 35 µl (or 35.000 cells), cannot be inverted securely without the danger 
of the droplets of flowing uncontrollably on the carrier material and losing its pre-formed grid-pattern (Fig. 1f).

Based on this finding we chose a concentration of 1 × 106 cells/ml as an optimal medium-to-cell ratio when 
growing spheroids in further experiments. Droplet sizes of 30 µl proved to be the ideal volume to form spheroids 
since handling and efficacy demonstrated to be optimal in this setting (Fig. 1c, e, f and Supplementary Fig. 1).

Spheroids react to drug exposure. Cells in hanging drops start to form spheroids within minutes after 
seeding. After 24 h under suitable incubation conditions, the spheroids of mIMCD3 or HCT116 cells condense 
to a stable cell mass (Fig. 1b). These matured spheroids can then be treated with cytotoxic agents. Directly apply-
ing the agent into the liquid of the hanging drop enables a penetration of the agent into the spheroid and exposes 
the cells to its biological effect. Depending on the sensitivity of the cells towards the cytotoxic agent, cells exhibit 
clear signs of cytotoxicity in a time and dose dependent manner: apoptotic cells within the spheroid disturb the 
cohesion of the cells and cause a shift from high contrast edges towards an irregular appearance. This finding 
was particularly prominent in mIMCD3 spheroids after 24 h of incubation (Fig. 2a), but was also seen in other 
spheroid-forming epithelial cell lines. The association of the altered morphology and the viability of the sphe-
roids was evaluated via flow cytometry (Fig. 2b). Applying the pan kinase inhibitor Staurosporin to the spheroids 
induces massive cell death within the spheroid after 24 h of incubation (Fig. 2c). The topoisomerase inhibitor 
Etoposide, however, only induces mild cell death in spheroids, even despite high concentrations (Fig. 2d), prob-
ably because cells in spheroids do not actively enter the cell cycle anymore and therefore are not specifically sen-
sitive to DNA  damage23. The same cells grown in standard 2D cell culture conditions still show high sensitivity 
towards Etoposide exposure (Supplementary Fig. 2).

Neural networks are able to discriminate between drug sensitive and non-sensitive sphe-
roids. The analysis of spheroid sensitivity towards cytotoxic agents, as presented in Fig. 2, is very cost and 
work intensive and a pool of > 100 equally treated spheroids had to be measured by flow cytometry to yield rea-
sonable cell numbers. To circumvent this detriment, we trained a deep learning model to estimate the sensitivity 
of spheroids toward a given drug. All spheroids that were analysed in Fig. 2 were individually micrographed 
before disassembling the spheroids for flow cytometry analysis. After determining the viability of the spheroids 
by flow cytometry, the corresponding images were grouped into three categories: ‘unaffected’ (> 80% viability), 
‘mildly affected’ (40–60% viability) and ‘affected’ spheroids (< 40% viability). This set of categorised images was 
then used to train a deep learning model based on an AlexNet CNN architecture (Fig. 3a). For our model dif-
ferent CNN architectures (DenseNet, VGG,  ResNet24–26) were tested, but did not delivered satisfactory results. 
AlexNet performed best, marked a starting point for our architecture and resulted in the described  model27. 400 
images per category were generated for the training and test phase, leading to a total of 1,200 images. To evaluate 
the model five-fold cross validation was used. We split our data into 80% training and 20% test set first. Regard-

Table 1.  Categorical model summary.

Layer (type) Output shape Parameter #

conv2d_1 (Conv2D) (None, 398, 318, 32) 320

activation_1 (Activation) (None, 398, 318, 32) 0

max_pooling2d_1 (MaxPooling2D) (None, 199, 159, 32) 0

conv2d_2 (Conv2D) (None, 197, 157, 64) 18,496

activation_2 (Activation) (None, 197, 157, 64) 0

max_pooling2d_2 (MaxPooling2D) (None, 98, 78, 64) 0

conv2d_3 (Conv2D) (None, 96, 76, 64) 36,928

activation_3 (Activation) (None, 96, 76, 64) 0

max_pooling2d_3 (MaxPooling2D) (None, 48, 38, 64) 0

conv2d_4 (Conv2D) (None, 46, 36, 128) 73,856

activation_4 (Activation) (None, 46, 36, 128) 0

max_pooling2d_4 (MaxPooling2D) (None, 23, 18, 128) 0

flatten_1 (Flatten) (None, 52,992) 0

dense_1 (Dense) (None, 128) 6,783,104

activation_4 (Activation) (None, 128) 0

dropout_1 (Dropout) (None, 128) 0

dense_2 (Dense) (None, 3) 387

activation_5 (Activation) (None, 3) 0
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ing to fivefold cross validation, this training set was then used to create 5 splits of training and validation sets. 
Averaged training accuracy and validation accuracy over all folds are presented in Fig. 3b. After 50 epochs, our 
model reached in average a training accuracy of 0.89 and a validation accuracy of 0.92 (Fig. 3b). The best per-
forming model was then used on the separate test set and predicted all three categories with a precision of about 
0.9 (Fig. 3c), where 1.0 could be considered as the perfect result with 100% correct classifications. Relevant desig-
nations were identified by the recall measure and yielded values for all three categories higher than 0.9 (Fig. 3d), 
which further proves the efficacy of the model. A harmonic mean between precision and recall results into the 
F1-score (Fig. 3e) and further supports the findings above: for all three categories the mean of the F1-score is 
around 0.9. However, the standard deviation seems to increase for spheroids classified as ‘affected’. The cross 
validation demonstrates that the CNN is able to discriminate visual images between untreated spheroids and 
spheroids that are exposed to chemical compounds that induce cell death.

Discussion
The last two decades brought the insight, that many cells show entirely different physiological behaviours when 
they grow in a 3D culture  environment28,29. This effect may constitute one of the reasons, why so many prom-
ising new drug candidates fail in the clinical  application30. To tackle this issue, testing new compounds on 

Figure 2.  Spheroid integrity is affected by the addition of cytotoxic drugs. (A) Representative images of 
spheroids consisting of mIMCD3 cells that are either labelled ‘unaffected’ (left image, > 80% living cells), ‘mildly 
affected’ (middle image, 40–60% viability) or ‘affected’ (right image, < 40% viability. Size marker = 50 µm. (B) 
Corresponding flow cytometry analysis to images presented in (A). Cell viability was assessed by flow cytometry 
using Annexin-V counterstain. (C) Viability of spheroids consisting of mIMCD3 cells exposed for 24 h to 
the pan kinase inhibitor Staurosporine in the indicated concentrations. N = 4–9, p < 0.001 for nt against both 
treated conditions. (D) Viability of spheroids consisting of mIMCD3 cells exposed for 24 h to the topoisomerase 
inhibitor Etoposide in the indicated concentrations. N = 7–9, p < 0.001 for nt against both treated conditions.
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three dimensionally grown spheroids or organoids is more and more turning into the new standard of drug 
 research30,31. However, efficient production and handling is a major issue of spheroid research and numbers 
for statistical analysis remain notoriously  low32. Several commercial applications offer tailored kits that aim to 

Figure 3.  Neural Networks are able to discriminate between drug sensitive and non-sensitive spheroids. (A) 
Graphical representation of the convolutional neural network (CNN). Images are convoluted with kernel 
matrices in order to reduce complexity but to keep the image information. Fully connected layers are then used 
to annotate an input image to a given classification. (B) Averaged training accuracy (‘acc_avg’, blue line) and 
validation accuracy (‘val_acc_avg’, orange line) of the CNN in a five-fold cross validation for 50 epochs. (C) 
The level of precision of the image classification by the CNN as calculated by a five-fold cross validation for the 
three individual categories “unaffected”, “mildly affected” and “affected. Numerical values are the means. (D) 
The level of recall of the image classification by the CNN as calculated by a five-fold cross validation for the 
three individual categories “unaffected”, “mildly affected” and “affected. Numerical values are the means. (E) The 
F1-score as a function from precision (C) and recall (D) for the three individual categories of spheroid viability: 
F1 = 2 × (precision × recall)/(precision + recall). Numerical values are the means.
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address this issue, but fail to fully overcome the current limitations, as discussed in the introductory paragraph. 
Particularly, the reliance on multi-component commercial kits that require a repeated transfer of cells and 
 spheroids12, the limited variation of the experimental setup and a low spatial control of spontaneously aggre-
gated spheroids are of major concern. Furthermore, we consider the frequent use of Matrigel as a structural 
supplement as  noteworthy15, since it is derived from the murine Engelbreth-Holm-Swarm Sarkoma. Although 
it provides a widely accepted and particularly in vivo-like model for extracellular matrix (ECM), it has ever since 
lacked a precise classification of its components and  characteristics33,34. It therefore accounts for a high level of 
heterogeneity in any model for 3D cell culture. We are well aware that heterogeneity is a crucial characteristic of 
any tumour ECM—which is not yet sufficiently reflected by our model -, but consider this as a particular chal-
lenge for deep learning based classifications that needs to be addressed by further research. Here, we focus on a 
new approach on generating, treating and analysing spheroids with the perspective of providing supplementary 
information for patient specific therapy decisions. The design of an automated x–y–z pipetting device allows 
(a) efficient mass production of hanging drops on the lids of 15 cm cell culture dishes, (b) efficient treatment of 
hanging drops with drugs and (c) rapid analysis of spheroid viability by an image-based deep learning algorithm. 
While the automated seeding of spheroids did not yield significant time savings compared to manual spheroid 
production, the precise application of drugs into the existing hanging drops was much faster and more accurate 
than the manual approach. Generating vast quantities of spheroids and treating them with drugs for further 
biochemical analysis becomes hence much more time and resource efficient.

Feeding the CCD-generated close caption images to a deep learning model enabled a classification of the 
spheroids. Treatment of spheroids with cytotoxic agents activates cell stress responses and ultimately the cells 
in the spheroid enter apoptosis. Up to date, the gold standard methods to measure cell death are usually either 
protein based or single cell based, but these methods demand a high number of cells that cannot be provided by 
a single spheroid. We therefore used the flow cytometry based Annexin V staining on phosphatidylserine as a 
criterion  standard35 on a pool of 80 identically treated spheroids. Before the biochemical analysis was performed, 
all 80 spheroids were imaged and later tagged according to the survival rate measured by flow cytometry. These 
photos and the respective tags were then employed to train the deep learning model based on a CNN, as it has 
been presented for other diagnostic issues with comparable  results36,37. We are aware that our set of labelled 
images is relatively small in comparison to other datasets used to train neural networks. We hence aim to further 
underline the capacity of our model with independent training and validation sets. Yet, for the here presented 
proof of concept, we consider a cross validation a suitable and reasonable approach to demonstrate the feasibil-
ity of our setup. Furthermore, the limited number of images and the requirement of our setup to work robustly 
on these data sets represents the general setting we expect for the envisaged clinical application of the presented 
approach. It is, nonetheless, noteworthy that small datasets consequently lead to the problem of overfitting. An 
overfitted model is not able to generalize, i.e. yielding a high accuracy at classification with the data used in 
the training period, but with a significantly lower accuracy when new test data is used. To avoid overfitting, we 
employed measures that can help to improve a model, like data augmentation or the entropic capacity of a model. 
Entropic capacity represents the amount of information a model will store. The less features a model can store, the 
more it will focus on the most significant features. To address these issues, we designed a model with few layers 
and filters. Furthermore, images were manipulated via data augmentation. However, as outlined above, we aim 
to increase the number of labelled images used for training to improve the overall generalization capabilities of 
our model. Additionally, the application of more complex neural networks designs, like the competition-winning 
architecture  ResNet24 or  VGG25, would be facilitated through more available training data. Besides increasing 
the learning data set, we also aim to use a pretrained model, which already has learned features that are relevant 
for our specific classification problem of spheroids or organoids. Another promising approach would be the 
use of a generative adversarial network (GAN). This system consists of two networks that challenge each other. 
The generative network (generator) generates image candidates and tries to trick the discriminative network 
(discriminator), which aims to differ between real and generated  images38. Hence, our model could serve as an 
initial discriminator in a GAN and is at the focus of a future project.

Although methodologically different, we consider our project as a complement to the previous work of other 
groups, which have achieved significant progress in the field of high throughput 3D culture screening. Particu-
larly, we aim to discuss the compatibility of the different approaches to define further fields of study. Celli et al. 
presented an interesting work flow for the evaluation of 3D tumour models, but relied on pre-defined parameters 
for their quantitative  readout39. From our experience, the incorporation of calcein and ethidium bromide as well 
as trypan blue is difficult to establish on 3D cultures, since all agents tend to distribute unevenly. This phenom-
enon has already been described  before40 and is even more relevant when Matrigel-embedded heterogeneous 3D 
cultures are employed, as this group reports. Although the latter aspect mimics an in vivo situation better than 
homogeneously distributed 3D cultures, as highlighted above, it complicates the characterization of the organoids 
on the basis of a deep learning classification enormously. Furthermore, our setup is by now not able to detect 
fluorescent signals and can hence not apply a respective algorithm to detect the distribution of fluorescent  dyes39. 
For future works, we will evaluate the validity of fluorescent markers in 3D cultures, but tend to incorporate 
metabolic sensors for a more specific analysis. Another promising approach has been presented by Zanoni et al., 
who put a particular focus on the spherical configuration and volume of the 3D cultures. However, our findings 
do not support their proposed theory that more irregularly shaped spheroids yield a higher viability than spheri-
cal  ones41. Yet, we consider larger 3D cultures with diameters of 800–900 µm a suitable option to increase the 
in vivo similarity of our approach, but failed to generate spheroids of this size by the hanging droplet method, 
as outlined above. Again, our experience is that trypan blue exclusion is not a reliable parameter for 3D cultures 
and, although thoroughly investigated by this group, bioluminescence based assays neither seem to penetrate 
complex large 3D culture systems sufficiently. Other groups propose intracellular stains, i.e. calcein AM and eth-
idium bromide or familiar substances, as a suitable qualitative marker, but do not extend their use to quantitative 
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 comparisons42,43. In general, we question that simple morphological parameters, i.e. diameter, perimeter, volume, 
surface area and sphericity are suited as individual markers for 3D culture screening, as proposed by various 
 groups44–46. However, an integrated deep learning approach, as presented in this article, allows the incorporation 
of these and many more parameters into the classification process. A very sophisticated approach towards the 
screening of 3D cultures was presented by Bulin et al., which included a stromal component into the setup. In 
order to mimic in vivo-like circumstances, we consider this an essential step and aim to incorporate stromal cells 
into our screening approach in future works, as our homogeneous 3D cultures without a suitable ECM do not 
yet mimic an in vivo environment to a sufficient degree. However, although complex, we consider the presented 
multi-step workflow as error-prone, since (a) conventional fluorescent stains are once again used as a quantitative 
readout and (b) the analysis is essentially based on two pre-defined  parameters47. Nonetheless, we understand 
the presented platform as a robust tool for the screening of complex and structurally heterogeneous 3D cultures 
and see an opportunity to increase the versatility of our deep learning classification to more complex organoids.

The promise of personalized medicine rests on the tailored treatment of a patient with a therapeutic regime 
that demands efficient determination of drug-disease-interaction for each individual patient. Our approach 
promises an easy to operate all-in-one tool that combines the strength of two innovative concepts—in vivo-
like 3D cell culture and a deep learning environment, to enable personalized medicine in clinical applications 
(Fig. 4). By establishing a reliable automated screening approach for spheroids and their respective responses to 
the administered therapeutic agents or environmental parameters, we aim to detect mutation tendencies within 
the primary tissue samples that, as a long term goal, could support the decision making process for specific and 
personalized treatment regimens.
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