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Abstract

Infection of the dental pulp will result in inflammation and eventually tissue necrosis which is treated conventionally by
pulpectomy and root canal treatment. Advances in regenerative medicine and tissue engineering along with the introduction
of new sources of stem cells have led to the possibility of pulp tissue regeneration. This systematic review analyzes animal
studies published since 2010 to determine the ability of stem cell therapy to regenerate the dentine-pulp complex (DPC)
and the success of clinical protocols. In vitro and human clinical studies are excluded and only the experimental studies on
animal models were included. Dental pulp stem cells constitute the most commonly used cell type. The majority of stem
cells are incorporated into various types of scaffold and implanted into root canals. Some of the studies combine growth
factors with stem cells in an attempt to improve the outcome. Studies of ectopic transplantation using small animal models
are simple and non-systematic evaluation techniques. Stem cell concentrations have not been so far reported; therefore, the
translational value of such animal studies remains questionable. Though all types of stem cells appear capable of regenerating
a dentine-pulp complex, still several factors have been considered in selecting the cell type. Co-administrative factors are
essential for inducing the systemic migration of stem cells, and their vascularization and differentiation into odontoblast-
like cells. Scaffolds provide a biodegradable structure able to control the release of growth factors. To identify problems
and reduce costs, novel strategies should be initially tested in subcutaneous or renal capsule implantation followed by root
canal models to confirm results.
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Table 4 Models that transplanted stem cells into the jawbone or extracted socket

Dose &
dosage

Animal
model

Reference Cell type

Route of administration Co-

TERM approach Time point Main results
admin-
istrative

factors

Gaoetal. Pig PDLSC 2x10°
(2016) cells

DPSC 2x10°
cells

Kodonas  Pig DPSC 3% 106
et al. cells

(2012) jawbone

Hung Rabbit ADSC DPSC 5x10°
et al. cells/ml

2011) socket

Allogeneic direct implan-
tation into socket

Autologous root fragment NA
transplantation into

Autologous transplanta-
tion into the extracted

Vitamin  PDLSC sheet+HA/ 24 weeks
C TCP/DPSCs

Generation
pfbio-root
with normal
pulp and
dentin-like
matrix and
natural bio-
mechanical
structure in
low rate.

6-10 weeks Formation of
continuous
polarized &
non-polar-
ized cell
along the
canal wall

Collagen
PLGA

BMP-2 Similar tooth
structure
by different
stem cells
close to a
normal

living tooth

Collagen gel 12 weeks

1-PDLSC periodontal ligament stem cell, 2-DPSC dental pulp stem cell. 3-HA hydroxyapatite, 4-TCP: tricalcium phosphate. 5-PLGA polylactic
co glycolic acid, 6-ADSC adipose-derived stem cell, 7-BMP bone morphogenic protein, TERM Tissue engineering and regenerative medicine

human clinical studies were excluded and only experimen-
tal studies on animal models were included in the present
review. Specific aspects of the studies including animal mod-
els, type of stem cells used for pulp regeneration and their
sources, concentration of the administered cells, route of
administration, co-administrative factors, tissue engineer-
ing approaches of the cell therapy, time point evaluation of
the regeneration process and the main result of each study
were reviewed and evaluated to allow comparisons. Overall,
1490 articles which were identified in our search included;
unrelated articles, in vitro cases, studies with bone regenera-
tion approaches; by excluding review articles; and finally, 60
studies that focused on the role of adult/postnatal stem cell
therapies for regeneration of the dentine-pulp complex in
animal models were included (Fig. 1).

Types of stem cells

All the stem cells used for dentine-pulp regeneration were
adult mesenchymal stem cells (MSCs); however, the source
of harvesting the MSCs varied in different studies. Dental
pulp stem cells (DPSCs) were the first dental stem cells to be
isolated and their odontogenic, neurogenic, and angiogenic
properties were reported in several studies (Dissanayaka

]
* @ Springer

et al. 2015; Kuang et al. 2016; Wang et al. 2013). These
cells were capable of being harvested during the early stages
of life and were stored for future use (Tran Hle and Doan
2015). The majority (52%) of the studies used DPSCs for
regeneration of dentine-pulp complexes (Tables 1, 2, 3, 4
and 5).

Among the 60 studies reviewed 36 cases used DPSCs
(Tables 2, 3, 4 and 5). Of the 8 studies that transplanted stem
cells into the renal capsule, 2 cases used DPSCs (Table 2).
In 39 studies of subcutaneous transplantation, 25 of them
used DPSCs (Table 3). Of the 10 studies with intracanal
transplantation, seven used DPSCs (Table 5). Of the 60
studies that were reviewed, 8 used SCAPs (Table 1, 2, 3,
4 and 5). In two studies the cells were transplanted into the
renal capsule (Table 2) and six of the studies transplanted
the cells subcutaneously (Table 3). No studies used SCAPs
transplanted into root canals (Table 5). In the evaluated stud-
ies, 2 studies attempted to regenerate PDL tissue by means
of PDLSCs, one transplanted subcutaneously and one trans-
planted into an extraction socket (Tables 3 and 4). In total 3
studies used SHEDs and all used a subcutaneous approach
(Table 3). Three studies used BMSC, 2 in the renal cap-
sule, 1 subcutaneously and the other was transplanted in
a root canal (Tables 2, 3 and 5). Only Chen et al. (2015¢)
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Fig.1 Search strategy

included articles = 53

transplanted UCMSC subcutaneously (Table 3). Of the 60
studies evaluated, 9 used autologous stem cells (Tables 2, 3,
4 and 5). None of the studies with a renal or subcutaneous
transplantation approach used autologous stem cells (Table 2
and 3). One subcutaneous transplantation case and one renal
capsule model used allograft stem cells and the rest (47 out
of 49 studies) used xenograft stem cells (Table 3).

Dental pulp stem cells

In all studies using DPSCs, they isolated the stem cells
from human healthy pulp tissue to be used in their animal
model, usually from orthodontically extracted teeth, for
instance third molars were often used (Chen et al. 2012).
Alongi et al. (2010) reported that inflamed pulp tissue
was an appropriate source for isolation of DPSCs. In their
study inflamed pulp-derived stem cells revealed a capacity
for regeneration of the dentine-pulp complex, albeit the
regeneration was weaker compared with the control group

* @ Springer

not related
article excluded

in vitro article

total articles identified
1490

review article
excluded

excluded

bone regeneration
articles excluded

Renal capsule=7

Subcutaneous=33

transplantation sites

Jaw bone and socket=3

intracanal=10

where the cells were derived from intact pulps (Alongi
et al. 2010). It has also been reported that stem cells from
an exposed pulp are more prone to differentiate into osteo-
blastic cells rather than dentinogenic cells (Wang et al.
2013).

Stem cells from apical papilla

As an element of a developing tooth, the stem cells of the
apical papilla (SCAP) have a greater stem capacity (Huang
et al. 2010; Wang et al. 2016). Stem cells of the apical papilla
are known for more rapid proliferation and mineralization,
better migration and telomerase activity than DPSCs (Huang
et al. 2010). Wang et al. (2016) reported deposition of more
uniform dentine-like tissue created by SCAPs than DPSCs
with greater similarities to natural dentine. Stem cells of
the apical papilla were commonly isolated from immature
third molars.
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Periodontal ligament stem cells

Periodontal ligament stem cells (PDLSCs) have been used
to create PDL (periodontal ligament) in studies attempt-
ing to regenerate a new bio-root (Gao et al. 2016). They
achieved a bio-root with a suitable PDL tissue using a
combination of DPSCs and hydroxyapatite, which were
wrapped by a sheet of PDLSCs. These newly generated
roots in miniature pigs, had similar qualities to natural
teeth in both mineral component and biomechanical prop-
erties but successful results were achieved in only one-fifth
of the samples while titanium implants were 100% suc-
cessful (Gao et al. 2016).

Stem cells from human exfoliated deciduous teeth

Stem cells from human exfoliated deciduous teeth (SHED)
are another type of stem cell, which are derived from
extracted deciduous teeth and are considered as a non-inva-
sive source of stem cells (Jeon et al. 2014). These stem cells
have an enhanced capacity for osteogenic regeneration and
higher proliferation rate compared with DPSCs (Wang et al.
2012).

Bone marrow derived mesenchymal stem cells

Bone marrow derived mesenchymal stem cells (BM-MSCs)
are another source that has been used extensively in regen-
erative procedures (Lei et al. 2013). Use of such cells with a
dentine matrix scaffold was associated with differentiation
of the stem cells into polarized odontoblast-like cells with
penetrating processes into dentinal tubules (Lei et al. 2013).
However, harvesting these cells from human sources is an
invasive procedure and its main clinical application is in
orthopedic research (Chen et al. 2015d). Meanwhile, Zhang
et al. (2015) suggested the use of endogenous BM-MSC for
regenerating lost tissue after observing its systemic homing
to the root canal, powered by application of stromal cell-
derived factor-1 (SDF-1), in a subcutaneously transplanted
tooth with a root canal.

Adipose-derived stem cells

Hung et al. (2011) used adipose-derived stem cells (ADSCs)
due to their large population in mammals and higher rate of
proliferation with similar results to DPSCs in tooth regen-
eration. While harvesting DPSCs is achieved primarily from
the healthy pulp of a tooth, use of ADSCs could be more
convenient. Murakami et al. (2015) reported that despite the
superiority of DPSCs, sufficient ADSCs and bone marrow

derived mesenchymal stem cells could be considered as an
alternative to DPSCs.

Umbilical cord mesenchymal stem cells

Umbilical cord mesenchymal stem cells (UCMSC) are avail-
able in large volumes without invasive harvesting procedures
and are stored in worldwide stem cell banks (Chen et al.
2015¢). They reported UCMSC capacity for differentiation
into odontoblast-like cells and deposition of hard tissue.
Notably, these cells are considered safe as they are protected
from viral infections by the placenta, which has a significant
clinical importance (Chen et al. 2015¢).

Sources of stem cell

Although using autologous stem cell grafts are a priority and
conforms to regulatory policies, there are limitations for har-
vesting autologous stem cells in elderly patients (Wei et al.
2013). This study reported a promising capacity for using
allograft stem cells for tooth regeneration in their studies on
miniature pigs for developing a bio-root.

Before administering stem cells for regeneration, they
need to be cultured to achieve the required quantity, espe-
cially when considering human derived stem cell due to their
limited numbers (Asatrian et al. 2015; Chen et al. 2012;
Dissanayaka et al. 2014). Traditionally, cell culturing is
undertaken with fetal bovine serum, which increases the risk
of transinfection and immunologic responses (Chen et al.
2012). Researchers have used human platelet lysate for cell
culturing during pulp tissue regeneration, implying that the
use of autologous medium is a possibility (Chen et al. 2012).
Besides increasing the quantity of the stem cells, cultur-
ing stem cells with different vehicles can induce them to
differentiate into specific target tissues. For instance, dexa-
methasone and ascorbic acid in culture media lead to greater
osteogenic differentiation (Wang et al. 2013). Tooth germ
cell-condition medium (TGC-CM) has been introduced
for its inductive properties in odontoblastic differentiation
(Huo et al. 2010), which can be prepared from three sources:
human, rat and porcine. Wang et al. (2011b) reported that
culturing DPSCs using porcine-derived TGC-CM resulted
in greater regular odontoblast-like cell layer formation
compared with human-derived TGC-CM. Huo et al. (2010)
prepared TGC-CM from rats in two stages, embryonic and
neonatal, and cultured dermal multipotent stem cells in these
two media. They observed that embryonic TGC-CM was
more bone inductive rather than odontoblastic (Huo et al.
2010). In mineralization-inductive media, supplementary
amounts of KH,PO, can make the stem cells more potent for
odontoblast or osteoblast differentiation (Wang et al. 2011a,
2013). Only these two studies have used this culture medium
in their subcutaneous transplantation models (Table 3).

a
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Animal models

Rodents were the most widely used animals (Tables 2,
3, 4 and 5), probably due to their genetic similarities to
humans. In addition, rodents are cheaper with a more rapid
rate of birth that makes them suitable for in vivo studies.
Among rodents, the mice and rat were the most popular
animal models used in large numbers probably because of
their low cost, which led to. Rabbit was another animal
that was used, but it was less popular and used less fre-
quently. Pigs and dogs were also used. Among the 60 stud-
ies evaluated, 44 studies used mice as the animal model.
All the 39 studies (100%) involving a subcutaneous trans-
plantation approach used mice (Table 3) whereas no study
involving intracanal transplantation used mice except one
study, which used rats (Table 5). From eight studies with
transplantation into the renal capsule, three used mice and
5 used rats, thus mice and rats were the animals of choice
for transplantation into the renal capsule (Table 2). Pig
and rabbit were used as animal models in 3 studies where
the transplantation was in the jawbone or the extraction
socket (Table 4). Among 10 intracanal transplantation
studies evaluated, all used dogs except for one (Kuang
et al. 2016) that used rats.

Route of administration

Most of the studies on tooth slices, containing a root canal
with overlying dentine as implantation of complete root
structures in rodents, are challenging. Slices were then
subcutaneously implanted in the dorsum of animals and
the cells were either seeded within a form of scaffold or
hydrogel in the centre of the slices corresponding to the
root canal (Alongi et al. 2010; Dissanayaka et al. 2014,
2015; Horibe et al. 2014; Huang et al. 2010; Ishizaka et al.
2013; Lei et al. 2014; Takeuchi et al. 2015; Tran Hle and
Doan 2015; Yan et al. 2014; Yang et al. 2015b; Zhang
et al. 2015). However, tooth slices had variable thickness,
which significantly affected the reliability of the studies.

The best environment that simulates the real situation
is a pulpectomized canal of a tooth in the alveolus of an
animal (Table 4) since this simulates better the human
situation. In this way, because all clinically relevant factors
are included, outcomes are more generalizable and con-
clusive. As stated, however, orthograde regenerative endo-
dontic procedures with stem cells have been performed in
few studies on larger animal models such as dogs. Of the
60 studies evaluated in the present review, 47 (78%) used
subcutaneous (65%) or a renal capsule (13%) implantation
model in a retrograde manner while 10 studies (22%) used
an orthograde model (true root canal model 17% and into
jaw bone or socket, 5%).

* @ Springer

Tissue engineering and regenerative medicine
approach (biomaterials)

Scaffolds have a major role during cell therapy. In fact, most
of the in vivo studies that administered stem cells for regen-
eration of the dentine-pulp complex used a type of scaffold
combined with stem cells. Beside delivery of stem cells,
carriers (scaffolds) also act as carriers for growth factors to
control their release (Wang et al. 2016; Yang et al. 2012).
Tissue scaffolds vary widely; based on their structure and
architecture, they may be fibrous or spongy with variable
pore size and porosity (Kuang et al. 2016). Based on the
material properties, scaffolds may be natural, synthetic or
hybrid with variable drug delivery, cell behavior, in vivo
behavior and biophysicochemical properties (Ajay Sharma
et al. 2015; Hilkens et al. 2014; Tran Hle and Doan 2015).

In designing suitable scaffolds for dentine-pulp regen-
eration they should mimic the native environment of the
dentine-pulp area to trigger stem cells to differentiate into
various cell lineages (Ajay Sharma et al. 2015; Chen et al.
2015a; Dissanayaka et al. 2014). In addition, an optimum
scaffold should be porous (Kuang et al. 2016). Thus, spongy
scaffolds may be the superior option since their greater
porosity allows stem cells to migrate, proliferate and attach
to the scaffold sheet as well as encourage the stem cells to
synthesize a homogenous matrix (Kuang et al. 2016). Thus,
such porous scaffold should have good porosity with large
diameter interconnecting pores (Nagaveni et al. 2015; Wang
et al. 2011a). Porous structures such as nanofibrous micro-
spheres also make fewer by products after degradation due
to their lower density compared with non-porous structures
such as solid microspheres (Li et al. 2016; Nagaveni et al.
2015; Wang et al. 2016). In addition, the scaffolds should
be biocompatible and biodegradable in vivo (Sharma et al.
2014). An incompatible scaffold would trigger inflamma-
tion over a long period of time and a non-biodegradable or
even slow biodegradable scaffold would retard new tissue
ingrowth and prevent uniform matrix formation (Chan and
Leong 2008).

A biomimetic scaffold for dentine-pulp regeneration
should be a biphasic structure with a suitable medullary
region for pulp regeneration and a cortical region suitable for
dentine regeneration. Since the pulp area is chiefly composed
of organic tissue the medullary element of such a biomimetic
scaffold should be fabricated from organic materials such as
gelatin, collagen, elastin, fibrin, etc. Because hydroxyapatite
forms the greater percentage of dentine (Goldberg 2011),
the outer cortical area of such a scaffold should be made-
up of inorganic materials such as hydroxyapatite and trical-
cium phosphate (Wang et al. 2013). To improve scaffold
drug delivery and mechanical properties, small amounts
of synthetic materials such as polylactic co glycolic acid
(PLGA), polylactic acid (PLA), polycaprolactone (PCL) and
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polyglycolic acid (PGA) may be incorporated into the med-
ullary and cortical regions of the desired scaffold as a basic
mesh (Zheng et al. 2011). In addition, due to the irregular
shape of pulp canals, injectable scaffolds with small particle
sizes are desirable (Nagaveni et al. 2015).

After evaluating the 60 studies in the present review, of
the 40 studies with transplantation into the renal capsule or
subcutaneously, 8 used treated dentine matrix (TDM) and
10 used calcium/phosphate-containing compounds such as
hydroxylapatite (HA) or tricalcium phosphate (TCP) as the
carrier for stem cells whereas no study transplanted TDM
into the renal capsule and only one study used calcium/
phosphate-containing compounds for renal capsule trans-
plantation (Tables 2 and 3). Among the 60 studies, 6 used
PLLA, four used PLGA, 15 used collagens, 2 used fibrin, 2
used fibroin and 1 used gel foam (Tables 2, 3, 4 and 5). Of 8
studies using renal capsule transplantation, 3 used absorb-
able gelatin sponge (AGS) and there was no use of AGS in
the other three approaches (Table 2). On the other hand, no
collagen was used in the renal capsule approach, whereas it
was popular in other approaches (Table 2). Only 2 studies
out of 60 used hydrogels and those were transplanted sub-
cutaneously (Table 3). Only 1 study used microtissue cells
without a carrier in subcutaneous transplantation (Table 3).
The transplantation was accompanied with a slice of root or
dentine in 3 studies with renal capsule transplantations and
1 study with subcutaneous transplantation (Tables 2 and 3).

Dose

Cell concentration is an important criterion when stem cell
therapy is designed for dentine-pulp regeneration. There was
a lack of significant strategy to estimate the dose of stem
cells appropriate for dentine-pulp regeneration complex
in these 60 studies. High doses of stem cells may have an
inhibitory effect on regeneration as the nutrient supply of the
pulp is restricted (Zheng et al. 2012). On the other hand, low
doses of stem cells lead to less tissue generation. Further,
scaffolds have a specific surface area for adhesion and their
structure determines the amount of nutrient supply; there-
fore, specification of the dose of stem cells is directly related
to scaffold design (Zheng et al. 2012). The manufacturer
usually reports the optimal number of cells in commercially
available scaffolds but in the in vivo research such numbers
are estimated from previous in vitro research (Zheng et al.
2012). Based on the studies that were reviewed the main
determining factor for the dose of stem cells seemed to be
the laboratory procedure of cell seeding onto the scaffolds
that varied widely in each study, thus drawing general rec-
ommendations is not possible. Overall, 41% of the evaluated
studies reported a range of 10°-107 stem cells (Tables 2, 3,
4 and 5).

Co-treatment factors

Healing promotive factors include a wide variety of growth
factors, drugs, bioactive materials, glycosaminoglycans and
other small molecules and peptide motifs that may be used
with stem cells and scaffolds to enhance the effectiveness
of the stem cell therapy on dentine-pulp regeneration and
scaffold biocompatibility and biodegradability. Growth
factors have a short half-life so should be encapsulated in
degradable materials to control their release (Li et al. 2016;
Nagaveni et al. 2015). Of the 60 studies evaluated, 23 used
no co-administrative factor in combination with stem cells
(Tables 2, 3, 4 and 5). Almost half of the studies using a
retrograde approach into renal capsule transplantation (63%)
and subcutaneous transplantation (38%) had assigned no
type of co-treatment factor (Tables 2 and 5), whereas in
orthograde (regeneration along the full length of the root).
approaches, among 13 studies, only 2 (15%) used nothing
(Tables 4 and 5). Generally, treated dentine matrix (TDM)
and its soluble proteins were the most popular co-treatment
factor. Of 39 studies with a subcutaneous transplantation
approach, seven (18%) used TDM (Table 3). In intraca-
nal studies, these were not popular (only one study) prob-
ably because of the existence of natural dentine at the site
(Table 5). Of 37 studies that applied co-treatment factors,
6 (16%) used BMPs, 6 used G-CSF (16%), 3 used SDF-1
(8.1%), three (8%) used bFGF, and 3 (8%) used VEGF
(Tables 2, 3, 4 and 5). These percentages are based on the
number of studies with the application of co-treatment fac-
tors. Due to the overlap of studies and combination use of
co-treatment, the percentages in the pie chart are different,
as these are based on the number of co-administrative fac-
tor types.

Other related factors

The impact of age on the capacity of stem cells is a critical
aspect of stem cell therapy. Iohara et al. (2014) reported
that there was little difference in the regenerative potential
of stem cells derived from old or young donors; however,
in vivo experiments on canine models reported a 60% reduc-
tion in the volume of the regenerated tissues. On the other
hand, while most stem cells are tooth-derived, studies on the
impact of tooth maturation on the differentiation capacity
of the stem cells has demonstrated that there is a reduced
odontogenic, but enhanced osteogenic differentiation capac-
ity the more mature the source (Lei et al. 2011). Finally,
laser therapy has biostimulating properties that can assist
proliferation of stem cells. Arany et al. (2014) investigated
photo-modulation approaches. They reported mineralization
and stimulation of stem cells due to the paracrine effect of
activated factors and the large area of radiation (Arany et al.
2014).
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The isolation approach for harvesting stem cells can affect
their differentiation. In the study of Jeon et al. (2014) on two
isolation approaches, an outgrowth method and enzymatic
disaggregation, outgrowth SHEDs were more likely to differ-
entiate into hard tissue forming cells while enzymatic disag-
gregated SHEDs were associated with more colony forming
cells, adipogenic differentiation and overall stemness (Jeon
etal. 2014).

Time points

Most of the studies evaluated dentine-pulp regeneration from
4 to 8 weeks after transplantation (Tables 2, 3, 4 and 5). Of
the 60 studies, 15 evaluated regeneration after 4 weeks and
16 evaluated regeneration after 8 weeks. Long-term evalua-
tion (more than 20 weeks) was rare and limited to 6 studies
(Tables 2, 3, 4 and 5). Those studies that used ectopic mod-
els of dentin-pulp complex evaluated the regeneration of the
dentin-pulp from 2 to 8 weeks with the most frequent time
point being after 8 weeks. Those studies that used true root
canal models evaluated the regeneration of the new dentin-
pulp complex from 2 to 26 weeks after surgery with the most
frequent time point being 2 weeks (four studies) or the range
of 2-4 weeks (Table 5). Apparently, some studies had multiple
time points for their evaluation (Tables 2, 3, 4 and 5).

Assessments

Before cell transplantation, immunocytochemistry, MTT
assay, SEM and flowcytometric analyzes are routinely per-
formed to characterize the transplanting stem cells. To evaluate
the regenerating dentine-pulp complex, histology and histo-
morphometry, immunohistochemistry, and radiology (CT,
micro-CT and plain radiography) are the gold standard meth-
ods. Histologic slides help to compare the amount of vascu-
larization with the ratio of vessel surface to the entire surface
of the slide (Zhang et al. 2015). Of 60 studies evaluated, all
used histologic assessments, 36 used immunohistochemistry, 6
used immunofluroscent, 3 used immunostaining, 3 used micro-
CT-scan, 4 used radiography, 4 used SEM and 1 study used
MRI to evaluate pulp tissue regeneration (Tables 2, 3,4 and 5).
Immunohistochemistry was much more popular in retrograde
studies as 31 from 40 studies with into renal capsule transplan-
tation and subcutaneous transplantation used this method for
their assessments (Tables 2 and 3). Radiography was not used
in any retrograde studies.

Discussion
To regenerate a necrotic pulp, just as with other tissues, three

main components are needed. Vital cells in the root canal
that can differentiate into the natural pulp cells, morphogenic
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factors to initiate and promote cell differentiation and a
matrix that mechanically support the cells and provide an
environment to sustain their vitality and proliferation (Gal-
ler et al. 2011).

In recent studies, various types of stem cells from various
sources in the body have been manipulated for dentine-pulp
regeneration (Tables 2, 3, 4 and 5). Dental pulp stem cells
are the cell of choice in most of the studies and their capac-
ity for regeneration of the dentine-pulp complex has been
demonstrated (Tables 1, 2, 3, 4 and 5). Despite a greater
tendency for regeneration of the dentine-pulp complex,
administration of SCAP and SHED was rare (all studies that
manipulated SCAP and SHED in Tabled 2, 3, 4 and 5 con-
firm this). Beside dental sources, stem cells from non-dental
source such as bone marrow derived mesenchymal stem cells
and adipose-derived stem cells were also able to regenerate
pulp tissue (Murakami et al. 2015). Generally, each type of
adult stem cell seems to be capable of dentine-pulp complex
regeneration so that the selected stem cell should be the most
feasible to use and the cheapest, especially when the main
obstacle in guided tissue regeneration is the cost.

Third molars or any to-be-extracted tooth for orthodontic
purposes, and not being extracted because of a microbial
infection, are good sources of stem cells. The human body
is a rich source of stem cells and they remain in their niches
or circulate systemically around the body. In the presence
of chemotactic gradients, these cells migrate to the site of
injury and participate in the regeneration process, as their
potential for migrating to the root canal has demonstrated
(Ruangsawasdi et al. 2016; Zhang et al. 2015). In addition,
transplanted stem cells may not remain effectively in the site
of injury, but migrate elsewhere or go through apoptosis.
Such events may be dependent on the type of stem cells, how
prone they are to apoptosis, and the structure of the scaffold,
which will impact upon the viability of the environment and
its influence on stem cells migration. The optimum number
of stem cells to be transplanted should be estimated experi-
mentally for each type of stem cell and specific scaffold.
However, systemic stem cells can take a role as a backup
source. Factors such as SDF-1, SCF and G-CSF help to sum-
mon stem cells, and BMSCs particularly are used to dem-
onstrate this in the root canal system (Ruangsawasdi et al.
2016; Takeuchi et al. 2015; Zhang et al. 2015).

Stem cells normally will not differentiate or if they
do, they can differentiate to any type of cell. Therefore,
their differentiation should be controlled by the means of
appropriate growth factors. Soluble proteins of the dentine
matrix provide a suitable environment for differentiation
of stem cells into odontoblast-like cells while these pro-
teins appear to control the natural differentiation of repara-
tive stem cells. In addition, their position in their locality
within dentine, peripheral to the pulp area could help the
creation of an odontoblast-like cell lining integrated into
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the dentine wall. Third molars or any to-be-extracted teeth
for orthodontic purposes are good source of autogenous
dentine matrix. Yet, these matrixes are supposed to be pre-
served until needed. Freezing makes long-term preserva-
tion of human dentine matrix possible as it maintains the
mechanical properties of the matrix (Chen et al. 2015b;
Jiao et al. 2014).

Regeneration of the dentine-pulp complex relies on suffi-
cient vascularization, which may be limited in the restricted
apical region of a canal. Administering growth factors such
as VEGF promotes vascularization, but it has a short half-
life, so its systemic administration is limited (Li et al. 2016).
Binding to heparin is a strategy to make VEGF bioavailable
for longer (Li et al. 2016). Apart from locally administering
such growth factors, treating stem cells under hypoxic con-
ditions induces cells to secret vascularizing agents (Kuang
et al. 2016). Presumably, when cells are in a deficient envi-
ronment, they would secret a complex of growth factors to
overcome the challenge. This type of cell can be used for
regeneration purposes and lowers the costs of using purified
growth factors.

The scaffolds should have the characteristics to aid in the
regeneration of specific tissues. It should have controlled
biodegradability to mechanically support the transplants,
but not compete spatially with the regenerated tissue. Such
controlled biodegradability will be created by a combina-
tion of long-term and short-term degradable materials. The
proper proportion of this combination should be evaluated
experimentally. The scaffold should be porous and spongy to
be able to carry sufficient stem cells and growth factors and
allow the stream of extracellular matrix and the formation of
new blood vessels. As a carrier of growth factors, it should
provide controlled release otherwise they will degrade rap-
idly and thus not take part in long-term regeneration. Bind-
ing to heparin can provide this slow release. Silk fibroin
scaffold have been used widely in regeneration of tissues
such as skin, bone, cartilage, etc., and its efficacy for pulp
regeneration has been studied in vivo (Yang et al. 2015a).
Treated dentine matrix, other than carrying dentinogenic
growth factors, is also applicable as a scaffold (Chen et al.
2015a; Yang et al. 2012). Animal model studies on regen-
eration of dentine-pulp complex are performed mainly by
transplantation of a complex of stem cell, growth factors and
scaffolds (C-SGS) into the pulpectomized root canal, which
is susceptible to various irritants such as bacteria, mastica-
tory forces, restricted nutritional supply ,etc. Therefore, for
final approval of novel treatment concepts, intracanal trans-
plantation is necessary. However, as proof of principles for
novel studies, C-SGS may be initially transplanted with or
without a slice of a tooth subcutaneously or into the renal
capsule to evaluate the potential of the novel complex for
true regeneration of the dentine-pulp complex regardless of
the side effects. This will help track the causes for potential

failures and reduce costs in cases where the novel C-SGS
proves to be inappropriate.

Conclusion

It is important to realize that endodontic treatment of teeth
with necrotic pulp using stem cells and suitable biomateri-
als results in pulp regeneration. However, feasibility of stem
cell transplantation to treatment sites along with its cost may
be obstacles for clinical use of such methods. Scaffolds and
biomaterials provide a meaningful approach to better incor-
porate stem cells and growth factors along with controlled
rate of regeneration. Therefore, we recommend future stud-
ies to focus on providing a clear guideline for suitable and
preferable properties of biomaterials to be used in regenera-
tive endodontics.
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