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Abstract: The development of computational logic that carries programmable and predictable features
is one of the key requirements for next-generation synthetic biological devices. Despite considerable
progress, the construction of synthetic biological arithmetic logic units presents numerous challenges.
In this paper, utilizing the unique advantages of RNA molecules in building complex logic circuits
in the cellular environment, we demonstrate the RNA-only bitwise logical operation of XOR gates
and basic arithmetic operations, including a half adder, a half subtractor, and a Feynman gate, in
Escherichia coli. Specifically, de-novo-designed riboregulators, known as toehold switches, were
concatenated to enhance the functionality of an OR gate, and a previously utilized antisense RNA
strategy was further optimized to construct orthogonal NIMPLY gates. These optimized synthetic
logic gates were able to be seamlessly integrated to achieve final arithmetic operations on small
molecule inputs in cells. Toehold-switch-based ribocomputing devices may provide a fundamental
basis for synthetic RNA-based arithmetic logic units or higher-order systems in cells.

Keywords: toehold switch; arithmetic operation; RNA–RNA interaction; molecular computing;
reversible computing

1. Introduction

Synthetic biology aims to create technologies for designing and building biological
systems with programmable and predictable dynamics [1]. Since the demonstration of
synthetic biological circuits in living cells over two decades ago [2,3], considerable progress
has been made towards more sophisticated artificial cellular functions, such as feedback
oscillation [4], combinatorial logic computation [5–7], and information storage [8,9]. In
principle, synthetic circuits can be constructed using any biological molecule as a backbone.
Natural and engineered protein regulators can provide the framework to implement logic
circuits and computing devices [10,11], including de-novo-designed components [12]. Still,
the construction of synthetic biological circuits presents numerous challenges, including
the lack of composability [13], limited modularity [14], unpredictable cross-reactivity [15],
cellular resource usage [16,17], and unexpected idiosyncratic behavior in real-world ap-
plications [18]. Therefore, novel approaches for synthetic biological circuits, including
the development of readily characterized, standardized, and modular components are re-
quired to overcome the innate difficulties in managing and programming cellular behavior
towards large, complex synthetic systems [19].

Nucleic-acid-based genetic devices have made remarkable progress in molecular com-
puting and may provide the required platform for scalable synthetic biological systems.
Complex logic circuits and advanced computing systems have been implemented using
toehold-mediated strand displacement, including a bistable circuit [20], a square-root cir-
cuit [21], neural networks for memory [22] and pattern recognition [23], and an arithmetic
logic unit [24]. Furthermore, these molecular computing systems are amenable to compu-
tational design and analysis [25,26]. While DNA strand-displacement circuits have been
demonstrated in live cells [27] and for live-cell imaging [28], DNA logic gates are generally
not suitable for in vivo applications due to the challenges in generating single-stranded
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DNAs [29] and maintaining stable gate configurations [30] in cells. In comparison, RNA
provides several advantageous characteristics for synthetic biological computing devices.
RNA strands can be easily programmed to interact in a designed fashion due to the single-
stranded nature of RNA. The co-transcriptional folding of RNA allows the formation of
stable secondary structures [31], suitable for natural and synthetic riboswitches [32]. Fur-
thermore, RNA signals can be easily modulated in a tunable manner [33] and can also
be amplified with several RNA and protein counterparts [34–38]. Therefore, RNA has
been exploited as a platform to engineer gene expression programs that operate robustly
in vivo [39–44].

Building on the success of synthetic RNA regulatory parts and inspired by natural
RNA regulators [45], several de-novo-designed RNA regulators have been utilized for
synthetic biological devices with a large library of well-characterized parts [40,41]. As an ex-
ample, toehold switches control gene expression in trans via well-established Watson-Crick
base pairing of switch and trigger RNA molecules (Figure 1a) [40]. Unlike conventional
riboregulators [39], the toehold switches remove nearly all the sequence constraints, exhibit
a wide dynamic range, and show excellent programmability with a large library of orthog-
onal parts. The versatility of toehold switches for synthetic genetic circuit construction is
exemplified by the recent developments in cellular logic computation [46], translational
repressing riboregulators [47], incoherent feed-forward loop circuits [48], synthetic tran-
scription terminators [49], the protein quality control system [50], modulators of riboswitch
circuits [51], and regulators of mammalian cells [52]. Beyond cellular circuits, the toehold
switches find use in other platforms, such as cell-free systems [53–57] and paper-based
diagnostic devices [58–60] for broader applications.

Figure 1. De-novo-designed toehold switch and toehold-switch-based NIMPLY gate. (a) Scheme
of toehold switch operation. The toehold switch has repressed the translation state through the
secondary structure sequestering the RBS and start codon. Linear-linear interaction between the
toehold switch and the trigger RNA exposes the RBS and start codon with the strand displacement
process; therefore, the translation of the downstream gene is resumed. (b) Scheme of NIMPLY gate
operation. Antisense RNA has extended overhang sequences at both ends and can inhibit the trigger
RNA through sequence displacement or complementary binding. Thus, the toehold switch is reverted
to the initial OFF state.

In particular, toehold switches may form the basis for constructing an arithmetic logic
unit (ALU) in vivo. A generalized toehold switch architecture, termed ribocomputing
devices, concatenated several toehold switch sensor domains and utilized the self-assembly
of RNA species to compute multi-input AND/OR/NOT operations [46]. The design
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flexibility of toehold switches, if effectively utilized, can lead to the streamlined design and
construction of a basic form of synthetic biological ALU. Previous work has demonstrated
basic ALUs, including a half adder and a half subtractor, in bacteria and mammalian
cells [5,61,62]. These binary calculators can perform bitwise calculations across two 1-bit
input signals and serve as building blocks for higher-level systems. A half adder takes
two bits of information and generates two output bits: one for the sum and one for the
carry. The sum bit can be calculated via an XOR gate, and the carry bit can be calculated
via an AND gate. Thus, it is straightforward to calculate the carry bit, as previously
shown, but a toehold-switch-based XOR gate needs to be engineered. Unlike previous
XOR gate implementation, for example, in vitro [63], in prokaryotes [61,62,64,65], and in
eukaryotes [66–68], a toehold-switch-based XOR gate is an RNA-only synthetic logic device.
Building on previous work in which an antisense RNA that titrates a cognate trigger RNA
molecule can be used for a NIMPLY gate operation (Figure 1b), a toehold-switch-based
XOR gate with a compact architecture can be obtained by concatenating two orthogonal
switches in an OR-gate fashion. A half subtractor can be analogously constructed with
an XOR gate and a NIMPLY gate. In addition, a Feynman gate, one of the reversible logic
gates that map input and output signals in a one-to-one manner [69], can be obtained using
an XOR gate and a BUFFER gate. In summary, we present the binary operation of an XOR
gate, cellular arithmetic operations with a half adder and a half subtractor, and a Feynman
gate in E. coli using a de-novo-designed toehold switch and antisense RNAs. Synthetic
RNA-based ALUs could lay the foundation for making sophisticated molecular devices
with neural-network-like capabilities for biomedical applications.

2. Results
2.1. XOR Gate
2.1.1. Design of XOR Gate with Toehold Switches

The NIMPLY gate often used in synthetic biology and genetic circuits [61,70] was
previously demonstrated using toehold switches [46]. A NIMPLY B is equivalent to A
AND (NOT B), and an XOR gate can be constructed using two NIMPLY gates connected
via an OR gate as follows: A XOR B = (A NIMPLY B) OR (B NIMPLY A). Thus, we sought
to first demonstrate two orthogonal NIMPLY gates. The mechanism for NIMPLY gates
is analogous to previous work where the switch RNA is activated by the trigger RNA
(A), and the antisense RNA (B) deactivates the trigger RNA via direct hybridization or
toehold-mediated strand displacement to separate the trigger RNA bound to the switch
RNA. The extended overhang sequences at both ends provide the thermodynamic driving
force to shift the equilibrium towards trigger and antisense RNA binding rather than trigger
and switch RNA binding.

To implement a NIMPLY gate in E. coli, the three circuit components—switch RNA,
trigger RNA, and antisense RNA—should be selected from the existing library with appro-
priate modifications (Figure 2a). We selected a pair of second-generation toehold switches
with large dynamic range and strong orthogonality. These two switches are connected with
a 9-nt linker sequence to create an OR gate, as previously demonstrated [46]. The overhang
sequences of both trigger RNAs and antisense RNAs were designed via the RNA secondary
structure prediction software NUPACK [71–75] (Table S1). Fifteen nucleotide overhangs
were attached to both ends of the trigger and antisense RNAs, and a single nucleotide
bulge was inserted between the overhang region and the switch binding domain to prevent
the formation of long double-stranded RNA that could be targeted for degradation by
RNase III [76,77]. The design candidates were analyzed for ensemble defect [78], overhang
accessibility, and crosstalk in silico to select the best designs to be tested in experiments.
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Figure 2. Design of combined NIMPLY gates and optimization strategies. (a) Scheme of combined
NIMPLY gates composed of two orthogonal NIMPLY gates connected by a 9-nt linker. Trigger
and antisense RNAs control the translation states of NIMPLY gates. (b) Performance of initial
design for combined NIMPLY gates. T1 and T2 denote trigger RNAs that activate NIMPLY gates
1 and 2, respectively, and A1 and A2 denote antisense RNAs that annihilate trigger RNAs 1 and
2, respectively. (c,d) Effect of the location of extended overhangs on trigger and antisense RNAs.
TR and AR indicate trigger RNA and antisense RNA, respectively. Absence of trigger (TR = 0)
indicates that only the NIMPLY gate RNA is present. (e) Effect of the presence of bulge on antisense
RNA. TR and AR indicate trigger RNA and antisense RNA, respectively. Full match means that no
bulge was introduced in the antisense RNA design. (f) Flow cytometry GFP fluorescence histograms
for the NIMPLY complex with full-match antisense RNAs. T1, T2, A1, and A2 indicate trigger
and antisense RNAs for switches 1 and 2 as above, and d represents a decoy RNA that does not
interact with the switch RNA. T7 RNA polymerase was induced by 1 mM IPTG in E. coli BL21 DE3
strain. GFP fluorescence was measured on the flow cytometry (error bars indicate ± SD from three
biological replicates). Cellular autofluorescence was subtracted in all cases. Autofluorescence level
was measured from cells not bearing a GFP-expressing plasmid.

The NIMPLY gates were tested in E. coli BL21 DE3 strain with the switch, trigger, and
antisense RNAs expressed from separate low, medium, and high copy plasmids, respec-
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tively. The RNA components were under the control of a T7 promoter, and genomically
encoded T7 RNA polymerase was induced by Isopropyl β-d-1-thiogalactopyranoside
(IPTG). GFP was used to characterize the switch output performance via flow cytometry.
First, the OR gate functionality was verified in the absence of antisense RNAs, where the
GFP fluorescence was increased at least 100-fold in the presence of either trigger RNAs
(Figure S1). Next, the switch, trigger, and antisense RNAs were expressed together in
cells to evaluate the function of the NIMPLY gates. The design with the least expected
intramolecular and intermolecular structures showed the best performance among the
candidates (Figure 2b). The performance was evaluated by dividing the ON state, with
a cognate trigger RNA and a non-cognate antisense RNA, by the repressed state, with
cognate trigger and antisense RNA pairs. Consequently, we observed increases of 11.2-fold
and 43.3-fold for T1-A1 and T2-A2, respectively. Other design candidates with expected
secondary structures within trigger RNAs showed relatively poor functionality (Figure S2).
Since the design variants on previous NIMPLY gate designs [46] were not extensively
characterized, we aimed to further explore and optimize the design choices to enhance the
functionality of the NIMPLY gates and hence the performance of the synthetic XOR gate.

2.1.2. Optimization Strategies for Toehold-Switch-Based XOR Gate

For the design variants of the trigger and antisense RNAs within the NIMPLY gate,
we mainly adjusted the location of the extended overhangs and the presence of bulge. First,
we investigated whether the location of the overhang could affect the functionality of the
trigger or antisense RNAs. The GFP fluorescence output for trigger RNA 2 with overhangs
showed a stronger reduction than the trigger RNA 2 without the overhang sequences
(Figure S3). We hypothesized that the close proximity of RBS within switch 2 and the 5′

overhang of trigger RNA 2 affect the access of RBS through steric hindrance. Therefore,
trigger RNA variants with only a 5′ overhang or a 3′ overhang were constructed, and the
impact of the overhang location on the switch performance was investigated. Trigger RNAs
with only a 5′ extended overhang showed weak repression by antisense RNA for switch
1 and weak activation for switch 2, indicating that the 5′ extended overhang could reduce
performance. On the other hand, trigger RNAs with only a 3′ extended overhang showed
improved performance for both switches compared to the trigger RNAs with both 5′ and
3′ overhang domains (Figure 2c). The antisense RNAs were similarly modified to test the
impact of overhang domains: antisense RNAs with only a 5’ overhang showed improved
fold repression, while antisense RNAs with only a 3’ overhang showed weak repression
comparable to the antisense RNAs without the extended overhangs (Figure 2d).

Other design candidates were analyzed for the impact of overhang locations on the
trigger and antisense RNAs, and a similar trend was observed (Figure S4). Although
the 5′ extended overhang can be considered disposable, simply removing the existing 5′

overhang caused crosstalk in some cases because it was not considered during the design
phase (Figure S5). Fortunately, the apparent crosstalk was negligible when the 3’ overhang
trigger RNAs were paired with antisense RNAs with both overhang sequences (Figure S6).
Additionally, an expanded hairpin loop of the switch RNA was explored to help reduce
the potential steric hindrance of trigger RNA on the RBS. The increased hairpin size in
switch RNA increased the ON level expression but also generally increased the OFF-state
leakage (Figure S7). Together, we observed the impact of extended overhang locations on
both trigger and antisense RNAs and trade-offs in the switch RNA hairpin loop size on the
performance of NIMPLY gates.

To further enhance the functionality of the NIMPLY gates, we investigated the effect
of bulges within the trigger–antisense RNA complex on the repression efficiency. The
antisense RNA presumably works in one of two ways: (1) dissociating the trigger from the
switch or (2) capturing the trigger freely floating in the cytoplasm [46]. Single nucleotide
bulges located between the overhang and switch binding domain can act as an energy
barrier to the strand displacement pathway that removes the trigger from the switch [79,80];
in that case, the direct hybridization mechanism would be predominant. In order to increase
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the repression efficiency of antisense RNA, an antisense RNA with extended overhangs
but without bulges was designed and tested. The repression efficiency was enhanced
nearly 10-fold on trigger 1 (Figure 2e), and the combined NIMPLY gates with optimization
exhibited 48.5-fold and 65.6-fold improvements, respectively (Figure 2f). Therefore, we
successfully constructed two orthogonal NIMPLY gates with large dynamic ranges using
optimization strategies on switch, trigger, and antisense RNA designs. These may serve as
useful strategies for other toehold-switch-based logic circuit designs and potentially for
other RNA regulatory devices as well.

2.2. In Vivo Characterization of XOR Gate

Encouraged by the optimized NIMPLY gates, we then aimed to construct an XOR gate
with two chemical inducers as inputs: IPTG and anhydrotetracycline (aTc). An XOR gate
provides a true output with an odd number of true inputs (Figure 3a). In the case of the
chemically inducible XOR gate that we aimed to construct, the GFP output should be high
when either IPTG or aTc is present, but not both. To achieve this, Lac and Tet operators were
strategically placed downstream of T7 promoters that drive the expression of trigger and
antisense RNAs, such that the trigger RNA of one NIMPLY gate and the antisense RNA of
the other NIMPLY gate are simultaneously induced by the same chemical inducer for both
inducers (Figure 3b). Specifically, an IPTG induction promotes the expression of trigger
RNA 1 and antisense RNA 2, such that the output GFP expression is high. The process
works similarly for aTc induction. However, the simultaneous treatment of both inducers
results in the expression of both trigger RNAs as well as both antisense RNAs, such that the
GFP expression is inefficient. While the Lac and Tet operator sequences are also expressed
upon the expression of the trigger and antisense RNAs, the expected secondary structure
changes on the core signaling parts of the trigger and antisense RNAs were not noticeable
(Figure S8).

At the molecular level, the optimized NIMPLY gates previously characterized were
used along with the overhang deletion and bulge deletion strategies. The switch RNA
that combines two orthogonal switches in an OR-gate fashion is expressed from a low
copy plasmid. To facilitate strong repression by the antisense RNAs, both the trigger
RNAs were expressed from a medium copy plasmid, and both the antisense RNAs were
expressed from a high copy plasmid. The performance of the XOR gate was evaluated in
E. coli BL21 AI strain, where genomically encoded T7 RNA polymerase was induced by
arabinose. A number of basic molecular interactions were verified for the XOR gate: the
crosstalk between the switch and antisense RNAs was negligible (Figure S9); both trigger
RNAs, despite the attached additional operator sequences, could turn on the switch RNAs
(Figure S10); the antisense RNAs could annihilate the cognate trigger RNA activities, as
expected, with little crosstalk (Figure S11). When all the components were put together
and the chemical inducers were used, the XOR gate functioned as expected, with a high
ON state for either IPTG or aTc input but with a low OFF state for no inducer or both
inducer cases (Figure 3c). An XOR gate using trigger RNAs with both 5′ and 3′ overhangs
was also shown to be functional, albeit with a reduced ON state for trigger 2 (Figure S12).
Furthermore, the GFP output pattern changed sharply as the concentration of inducers
was adjusted, indicating that the XOR gate showed a switch-link function suitable for
digital circuits (Figure 3d). When incorporated within larger logic circuits, this digital logic
ensures an all-or-none response to a variety of inputs and provides a robust output signal
regardless of input perturbations [81], thus conveying information with less noise and high
accuracy for decision-making processes [82,83].
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Figure 3. Toehold-switch-based XOR gate. (a) Schematics of XOR gate configuration. IPTG and
aTc were used as input signals A and B for the XOR gate, and the output signal was visualized
through GFP fluorescence. The truth table of the XOR gate indicated the ON and OFF states of the
XOR gate depending on the combination of inducer molecules. (b) Genetic blueprint of trigger and
antisense cassettes and schematics of the XOR gate. Lac operator was placed upstream of T1 and
A2, and Tet operator was placed in front of T2 and A1. The optimized extended overhangs were
used. (c) Performance of toehold-switch-based XOR gate. T7 RNA polymerase was induced with the
pretreatment of 1% (w/w) arabinose in E. coli BL21 AI strain. XOR gate components were induced
by 0.5 mM IPTG and 100 ng/mL aTc. GFP fluorescence was measured via flow cytometry. Cellular
autofluorescence was subtracted in all cases. Autofluorescence level was measured from cells not
bearing a GFP-expressing plasmid. Statistical analysis was performed to compare each state of the
XOR gate. (Two-tailed Student’s t-test; **** p < 0.0001; Error bars indicate ± SD from three biological
replicates) (d) Heat map plot of XOR gate output. The color scale was ranged between the minimum
and maximum values of the XOR gate output. IPTG and aTc were treated in gradient concentration
as described in the table. Each point of the heat map indicates the median value of three replicates.

2.2.1. Cellular Arithmetic Operation of a Half Adder and a Half Subtractor

Building on the RNA devices that were modularized and rigorously characterized
earlier, the logical complexity of synthetic RNA circuits can be further increased. As a test
case, we focused on basic binary calculators: the half adder and the half subtractor. A half
adder takes two input bits and generates two output bits that require an XOR gate for
SUM output and an AND gate for CARRY output (Figure 4a). A half subtractor can be
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analogously constructed, where an XOR gate computes the DIFFERENCE output and a
NIMPLY gate computes the BORROW output. Fortunately, a high-performance AND gate
was available from the toehold switch library, and another orthogonal NIMPLY gate was
constructed with available toehold switches after NUPACK analysis. The functionality of
the AND gate and the NIMPLY gate were verified in isolation (Figure S13). Then, these
new genetic elements were incorporated into expression cassettes in the same plasmid
backbones as before. The XOR gate with GFP output was used to compute the SUM and
DIFFERENCE output bits, and the newly introduced AND gate and NIMPLY gate with
mCherry output were used to compute the CARRY and BORROW output bits in the half
adder and half subtractor, respectively (Figure 4b). To investigate the performance of the
binary calculators at the single-cell level, we characterized the system by flow cytometry.
For all input combinations, the half adder and half subtractor showed correct ON and OFF
states with statistically significant differences (Figures 4c and S14). Nevertheless, as the
genetic complexity and the number of heterologous expression cassettes increased, a con-
comitant decrease in circuit performance was observed when compared to the single XOR
gate. Therefore, we checked all combinations of RNA–RNA interactions with NUPACK
4.0.0.25 and confirmed that on-target MFE structures were maintained, albeit with some
unintended crosstalk interactions (Table S2). Further improvements in circuit elements, as
well as contexts such as promoter arrangements and spacer sequences, may allow for the
successful implementation of even more complex circuits such as a full adder.

Figure 4. Binary operation of half adder and half subtractor. (a) Schematic of half adder and half
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subtractor configurations. IPTG and aTc were used as input signals, and the output signals were
visualized through GFP and mCherry fluorescence. GFP was assigned to the XOR gate output, and
mCherry was assigned to AND or NIMPLY gate output. The truth table of the binary calculators
indicated the ON and OFF states of each binary calculator depending on the combination of inducer
molecules. Diff. denotes the Difference bit of the half subtractor. (b) Schematic of toehold-switch-
based half adder and half subtractor. Trigger and antisense RNAs under the same inducer control are
shown in boxes. (c) Flow cytometry GFP and mCherry fluorescence histograms for the half adder
and the half subtractor. The presence of IPTG and aTc was displayed within each panel in brackets.
T7 RNA polymerase was induced with the pretreatment of 1% (w/w) arabinose in E. coli BL21 AI
strain. RNAs of the half adder and the half subtractor were induced by 1 mM IPTG and 200 ng/mL
aTc. Statistical analysis was performed for comparing each state of the binary calculators. (Two-tailed
Student’s t-test; ** p < 0.01; *** p < 0.001; **** p < 0.0001).

2.2.2. Cellular Reversible Logic Operation of Feynman Gate

Reversible computing, a nonconventional form of computing with one-to-one map-
ping of inputs and outputs, may be useful for biomolecular diagnostic and sensing applica-
tions. One of the reversible computing devices, a Feynman gate, can also be constructed
using a method similar to other binary calculators, using an XOR gate and a BUFFER gate.
Due to the unique output patterns, it is also called as a controlled NOT gate when the
output signal (Q) changes from BUFFER gate to NOT gate in response to the input signal
(Figure 5a). At the molecular level, we executed the same set of sequences as those for
the half subtractor, except that a trigger 3 without extended overhangs was used. The
RNA-based Feynman gate possessed both a functional switching ability and the capacity
for information storage (Figure 5b and Figure S15). The circuit acted as a BUFFER gate
for input B in the absence of input A, whereas the circuit functioned as a NOT gate for
input B in the presence of input A. Furthermore, information about the input combinations
was preserved in the Feynman gate because of the one-to-one manner of input to output
mapping. Overall, we demonstrated that toehold-switch-based ribocomputing designs
may prove useful for reversible computing in cells.

Figure 5. Demonstration of toehold-switch-based Feynman gate. (a) Schematic of the Feynman
gate. Truth table of the Feynman gate indicated the ON and OFF states for each of the binary
calculators depending on the combination of inducer molecules. Transition denotes the functional
transition of a Buffer gate to a NOT gate. IPTG and aTc were used as input signals. Trigger and
antisense RNAs under the same inducer control are shown in boxes. (b) Performance of Feynman
gate. T7 RNA polymerase was induced with the pretreatment of 1% (w/w) arabinose in E. coli BL21 AI
strain. RNAs of Feynman gate were induced by 1 mM IPTG and 200 ng/mL aTc. GFP and mCherry
fluorescence were measured on flow cytometry. Cellular autofluorescence was subtracted in all
cases. Autofluorescence level was measured from cells not bearing a GFP- or mCherry-expressing
plasmid. Statistical analysis was performed for comparing each state of the Feynman gate. (Two-tailed
Student’s t-test; *** p < 0.001; **** p < 0.0001; Error bars indicate ± SD from three biological replicates).
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3. Discussion

In this study, we present the binary operation of XOR gates, cellular arithmetic opera-
tion including a half adder and a half subtractor, and a Feynman gate in single-cell E. coli
using de-novo-designed toehold switches and antisense RNAs. A systematic approach
was taken where the basic building block, a NIMPLY gate, was optimized and then sub-
sequently used for an XOR gate, which in turn could be used for basic ALUs. While the
NIMPLY gate design was previously demonstrated [46], it was simply used as a proxy for a
NOT gate, and further optimization of its performance was limited. Hence, we investigated
several design candidates using a number of parameters, including the ensemble defect, the
overhang domain accessibility, and the cross-reactivity in silico. The design candidates with
accessible overhang domains generally showed better performance (Figures 2b and S2).
Crucially, several optimization strategies can improve the performance of NIMPLY gate
designs. A thorough analysis of the impact of extended overhang sequences revealed that
a 3′ extended overhang on the trigger RNA and a 5′ extended overhang on the antisense
RNA improved performance compared to having overhangs on the other location or on
both sides. We reasoned that the negative effect of a 5′ extended overhang on the trigger
RNA might be due to the potential interference on the ribosome binding to the RBS of the
switch. One piece of evidence in support of this hypothesis is that the trigger with a 5′

extended overhang showed improved functionality for toehold switches with increased
loop length. Although the mechanistic reasoning on the impact of overhang locations on
the antisense RNA is unclear, there still may be physical interference during the initiation
stage of trigger and antisense RNA interactions. Recognizing that the single nucleotide
bulges located between the overhang and switch binding domains can act as an energy
barrier to strand displacement [79,80], we tested the antisense RNA with no bulges and
observed improved repression efficiency. These optimization strategies laid the foundation
for constructing more complex systems building on the NIMPLY gate designs.

Notably, the antisense RNA designs can be extended to other related synthetic RNA
regulators. As an example, a recently reported 3-way junction (3WJ) repressor [47] can
be analogously regulated using the antisense RNA design for trigger RNAs (Figure S16).
The output characteristics can be considered as an implementation of an IMPLY gate
(Figure S17). If applied to the previously reported NOR gate constructed using the 3WJ
repressor, an XNOR gate could be constructed similar to the toehold-switch-based XOR gate
reported here (Figure S17). Recognizing that NAND gate outputs are distinct from those of
XOR gates in the no input case, a NAND gate can be constructed from the current XOR
gate by changing the inducible promoters of the trigger RNAs to constitutive promoters
(Figure S17). Another important class of de-novo-designed RNA regulator, the small
transcription activating RNA (STAR) [41,42], was also subject to antisense RNA-based
regulation (Figure S18). Both the T181- and AD1-based STAR designs were successfully
regulated using antisense RNA that targets the toehold-binding domain and several bases
within the stem-binding domain of the STAR trigger RNAs. Together, these findings
indicate that the antisense RNA regulators can be adapted in a straightforward manner to
other synthetic RNA regulators and can potentially be used to scale up the complexity of
synthetic RNA-based regulatory circuits.

The successful demonstration of a synthetic XOR gate can be seen as a benchmark for
systematic synthetic gene circuit construction. Previously, several lines of work demon-
strated RNA-based XOR gates, including sRNA [62], miRNA [67], and gRNA [68] that
encompass bacterial cells as well as mammalian cell lines. Still, the repression mechanism
within the XOR gates relied on protein regulators such as phage-encoded λ repressor
protein (CI) [62]. Thus, our demonstration of an RNA-only XOR gate provided a distinct
design approach for synthetic XOR gates with performance comparable to the previous
work in bacterial cells [62]. More importantly, these RNA-only logic gates can be seamlessly
combined for basic ALUs, a half adder and a half subtractor, with performance rivaling pre-
vious work [61,62]. Despite thorough in silico analysis and screening for optimized system
composition, the performance of basic ALUs showed fold changes less than those of indi-
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vidual gates. There are a number of potential pitfalls in the circuit construction, including
the leaky expression of promoters, the unexpected interaction between components, and
the cellular burden on synthetic RNA expression. Fortunately, these shortcomings can be
mitigated with alternative tightly controlled promoters, such as AraBAD or rhaBAD [84–86]
or novel synthetic promoters [87], and by the division of load to different cell populations
with multicellular networks [88–90].

Herein, we provided a framework for constructing several synthetic RNA-only ba-
sic ALUs with de-novo-designed toehold switches at the single-cell level. This design
paradigm offers excellent programmability with simple structural specifications rather than
sequence constraints. First, the concatenation of switch RNAs can effectively reduce the en-
coding space of genetic programs and, therefore, enable the operation of complex systems
in E. coli. Second, the ALUs can be designed with almost no sequence constraints with in
silico screening and optimization. Third, a large library of orthogonal toehold switches
provides the required parts for building complex systems. Lastly, the system inherits the
general advantages of RNA-based operations, including a fast response time, reduced
resource usage, and multiplexing [46,91,92]. Recent developments on degradation-tunable
RNAs in combination with toehold switches may provide further design flexibility [93].
Notably, a variety of ALU circuits using DNA strand displacement reactions [24] show-
cases the power of nucleic-acid-based molecular computations. Still, the demonstrations
of ALUs in living cells are limited in complexity and scope. The toehold-switch-based
ribocomputing circuits could open a new avenue to exploring the rich design space of
synthetic RNA-based ALUs, building up to higher-order systems such as a full adder and a
full subtractor, ultimately leading to neural-network-like functions in cells.

4. Materials and Methods
4.1. E. coli Strains and Plasmid Construction

The following E. coli strains were used in this study: BL21 DE3 (Invitrogen; F−

ompT hsdSB (rB
− mB

−) gal dcm), BL21 AI (Invitrogen; F− ompT hsdSB (rB
− mB

−) gal
dcm araB::T7RNAP-tetA), and DH5α (Invitrogen; endA1 recA1 gyrA96 thi-1 glnV44 relA1
hsdR17(rK

− mK
+) λ−).

The backbones for the plasmids used in this research were taken from the commercial
vectors pET15b, pCDFDuet, pCOLADuet, and pACYCDuet (EMD Millipore). The switch
RNA of the NIMPLY complex was constructed using ACTS Type II N3 and ACTS Type
II N7 from previous research [46] and was constructed in pACYCDuet. All the trigger
RNAs and trigger cassettes were constructed in pCDFDuet. All the antisense RNAs and
antisense cassettes were constructed in pET15b. The switch RNAs of the AND gate and the
NIMPLY gate were constructed in pCOLADuet. All constructs were cloned via blunt end
ligation [94], Gibson Assembly [95], circular polymerase extension cloning (CPEC) [96],
and/or round-the-horn site-directed mutagenesis [97]. The plasmid architecture and
specific part sequences are listed in Tables S3–S11. Plasmids were constructed in E. coli
DH5α and purified using the EZ-PureTM plasmid Prep Kit. Ver. 2 (Enzynomics). Plasmid
sequences were confirmed by DNA sequencing after every cloning step. Plasmids were
transformed through chemical transformation [98].

4.2. Cell Culture and Induction Condition

For in vivo experiments, E. coli BL21 DE3 and AI strains were used; they contain chro-
mosomally integrated T7 RNA polymerase under the control of IPTG-inducible lacUV5
promoter and arabinose-inducible PBAD promoter, respectively. For the in vivo charac-
terization of the NIMPLY complex in Figure 2, chemically transformed E. coli BL21 DE3
cells were cultured on LB agar plates (1.5% agar) with appropriate antibiotics: pACYC-
Duet (25 µg/mL Chloramphenicol), pCDFDuet (50 µg/mL Spectinomycin), and pET15b
(100 µg/mL Ampicillin). Single colonies were grown overnight (~16 h) in 96-well plates
with shaking at 800 rpm, 37 ◦C. Overnight cultures were diluted 1/100-fold into fresh
media and returned to shaking (800 rpm, 37 ◦C). After 80 min, cell cultures were induced
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with 1 mM IPTG (Promega) and returned to the shaker (800 rpm, 37 ◦C) until fluorescence
measurement after 3 h 30 min. For the experiments on the toehold-switch-based XOR gates,
a half adder, a half subtractor, and a Feynman gate, chemically transformed E. coli BL21 AI
cells were cultured on LB agar plates (BD biosciences; 1.5% agar) with appropriate antibi-
otics. All antibiotics were purchased from Gold biotechnology: pACYCDuet (25 µg/mL
Chloramphenicol), pCOLADuet (50 µg/mL Kanamycin), pCDFDuet (50 µg/mL Specti-
nomycin), and pET15b (100 µg/mL Ampicillin). Single colonies were grown overnight
(~16 h) in 96-well plates with shaking at 800 rpm, 37 ◦C. Overnight cultures were diluted
1/100-fold into fresh media and returned to shaking (800 rpm, 37 ◦C). After 80 min, cell
cultures were induced with 1% (w/w) arabinose (Gold biotechnology) to produce T7 RNA
polymerase for 1 h with shaking (800 rpm, 37 ◦C). Then the cell cultures were induced with
0.5 mM IPTG, 100 ng/mL aTc (Takara) for the XOR gates and 1 mM IPTG, 200 ng/mL aTc
for a half adder, a half subtractor, and a Feynman gate, and returned to the shaker (800 rpm,
37 ◦C) until fluorescence measurement after 3 h 30 min.

4.3. Microplate Reader Analysis

For the experiment on the XOR gate with a gradient concentration of chemical inducers
(Figure 3d), 200 µL of cell cultures were added per well on a 96-well Black Plate 33,396 (SPL)
after 1 mM IPTG induction. GFP fluorescence (excitation: 479 nm, emission: 520 nm),
mCherry fluorescence (excitation: 587 nm, emission: 610 nm), and OD600 were measured
in a Synergy H1 microplate reader (Biotek) running Gen5 3.08 software. GFP and mCherry
fluorescence levels were normalized as follows: the fluorescence of LB blank was subtracted
for background normalization, and a measured fluorescence value was divided by its
OD600. The number of biological replicates was three for in vivo experiments.

4.4. Fluorescence Measurements Using Flow Cytometry

GFP fluorescence was measured using flow cytometry (CytoFLEX S, Beckman Coul-
ter, Brea, CA, USA) after fixation. The cell pellet was resuspended with 2% (w/v) para-
formaldehyde solution (Sigma Aldrich) and fixed for 15 min at room temperature. After
fixation, samples were washed twice using 1X phosphate-buffered saline (PBS; Enzynomics).
Fixed cells were diluted by a factor of ~5 into 1X PBS. Cells were detected using a forward
scatter (FSC) trigger, and at least 100,000 events were recorded for each measurement. Cell
population was gated according to the FSC and side scatter (SSC) distributions as described
previously [40]. To evaluate the circuit output, the fluorescence of GFPmut3b-ASV was
measured on a FITC channel, excited with a 488-nm and detected with a 525/40-nm band-
pass filter. The fluorescence of mCherry was measured on ECD/mCherry channel, excited
with a 561-nm and detected with a 610/20-nm bandpass filter. GFP and mCherry fluores-
cence histograms yielded unimodal population distributions, and the geometric mean was
employed for the average fluorescence across the approximately log-normal fluorescence
distribution from three biological replicates. The fold repression of GFP and mCherry
were then calculated by taking the average fluorescence from the cognate RNA-expressing
case and dividing it by the fluorescence from the antisense RNA-expressing case. Cellular
autofluorescence was subtracted in all cases.

5. Conclusions

Expanding the pool of programmable and predictable logic gates is one of the im-
portant goals of synthetic biology. Here, we aimed to demonstrate several RNA-only
logic gates using toehold switches and antisense RNAs. RNA-only XOR gates, serving as
the basic building blocks of arithmetic logic circuits, were constructed using orthogonal
NIMPLY gates. Subsequently, the optimized synthetic logic gates were incorporated into
arithmetic operations and reversible logic gates via a bottom-up approach in single-cell
E. coli. In conclusion, toehold-switch-based ribocomputing devices can provide a platform
for synthetic RNA-based higher-order circuits in cells.
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