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Abstract: Marine-derived peptide powders have suffered from adulteration via the substitution
of lower-price peptides or the addition of adulterants in the market. This study aims to establish
an effective approach for the discrimination and detection of adulterants for four representative
categories of marine-derived peptide powders, namely, oyster peptides, sea cucumber peptides,
Antarctic krill peptides, and fish skin peptides, based on amino acid profiling alongside chemometric
analysis. The principal component analysis and orthogonal partial least squares discriminant analysis
results indicate that four categories of marine-derived peptides could be distinctly classified into
four clusters and aggregated with the respective raw materials. Taurine, glycine, lysine, and protein
contents were the major discriminants. A reliable classification model was constructed and validated
by the prediction dataset, mixture sample dataset, and unclassified sample dataset with accuracy
values of 100%, 100%, and 100%, respectively.

Keywords: marine-derived peptides; amino acid; chemometric analysis; classification; adulter-
ation detection

1. Introduction

Marine-derived peptide powders are generally manufactured from marine organisms
through protease enzymatic hydrolysis [1,2]. Such peptide powders, mainly containing
polypeptides, oligopeptides, and amino acids, are derived from protein degradation and
belong to a single complex protein hydrolysate product [2,3]. It is generally accepted
that peptides are usually easier to absorb than intact proteins due to the lower molecular
weight of peptides [3]. Moreover, marine-derived peptides have demonstrated various
biological activities, such as antioxidant, anti-inflammatory, anti-fatigue, anti-hypertensive,
and anti-obesity activities [4–6]. Consequently, marine-derived peptides are attracting
more and more attention and have been widely applied in the food, pharmaceutical, and
cosmetic industries [1,7].

Echinodermata, Mollusca, Arthropoda, and Chordata, representing typical species of
edible marine animals, have been widely used to produce marine-derived peptide powders.
Especially, four categories of marine-derived peptides, namely, sea cucumber peptides,
oyster peptides, Antarctic krill peptides, and fish skin peptides, occupy considerable
shares in the marine-derived peptide market. The biological activity claims and prices of
marine-derived peptide powders differ largely from each other depending on the material
categories. In addition, a large variety of animals, plants, and microorganisms from
both marine and non-marine origins are involved in the manufacturing of commercial
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peptide powder products, such as bull backstrap peptides, soybean peptides, and yeast
peptides. Since marine-derived peptides generally appear as white or yellow powders,
they are often virtually indistinguishable in terms of appearance and this makes them
susceptible to adulteration and fraud. There are many possible types of adulteration
during the manufacturing process of peptide powder products. The common practice of
adulteration includes a simple reduction of purity by an excessive use of food ingredients
presented in the preparation process, such as maltodextrin. Similar to other powder
products, marine-derived peptide powders have also become the target of adulteration
with the deliberate addition of inexpensive constituents, such as gelatin. In addition, a
more sophisticated form of adulteration is the substitution of similar peptides which are
hydrolyzed by other cheaper materials. It is imperative and meaningful to develop a
methodology to discriminate different types of marine-derived peptide powders for the
purpose of adulteration detection.

Many analytical techniques have been employed for food fraud and adulteration,
including molecular, chromatographic, spectroscopic, mass spectrometric, and electrochem-
ical approaches [8–10]. DNA-based techniques are among the most effective methods for
the verification of fish and seafood authenticity and the detection of adulteration [8,11,12].
Moreover, proteomic, metabolomic, and lipidomic approaches have recently been exam-
ined as potential methods to detect the adulteration of different fish species and other
aquatic products [12]. Current research of marine-derived protein hydrolysates has mainly
been focused on functional properties, preparation processes, applications, and storage
technologies [1,7,13–15]; however, there have been few published studies regarding the
adulteration detection of marine-derived peptide powders with the substitution of similar
peptides from other materials.

Proteins and peptides are comprised of different types of amino acids, indicating that
amino acid composition is one of the most important characteristics for marine-derived
peptide powders. Many studies have shown that amino acid profiles are selected as
potential fingerprints for adulteration detection or classification of different types of food,
most often by means of multivariate statistical analysis. For example, chemometric analyses
of amino acid profiles have exhibited good classification for most fruit types and this has
been further applied in the detection of fruit juice adulterations [16–19]. Vegetable oils
and honey samples could be correctly classified according to their botanical origins or
geographic regions based on amino acid profiles with chemometric approaches [20–24].
Amino acid profiles have also been proven to be potential markers for the origin assessment
of Serra da Estrela cheese and authenticity identification of plastron-derived functional
foods [25,26]. Here, the objective of this study is to determine characteristic amino acids
profiles for four categories of marine-derived peptide powders, namely, sea cucumber
peptides, oyster peptides, Antarctic krill peptides, and fish skin peptides, and investigate
the feasibility of employing amino acid profiles alongside chemometric analysis for the
detection of adulteration. Multivariate statistical analysis, including principal component
analysis (PCA), orthogonal partial least square discriminant analysis (OPLS-DA), and soft
independent modelling of class analogy (SIMCA), namely PCA-Class, are employed for
the establishment and verification of classification models.

2. Materials and Methods
2.1. Sample Collection and Preparation
2.1.1. Raw Marine Material Preparation

For the raw marine material, 4 categories of marine raw materials were purchased from
reliable local suppliers, including 12 oyster meat samples from 4 geographical regions in
China, 6 fish skin samples from 2 species, 12 sea cucumber samples, covering 5 species and
6 processing techniques, and 12 Antarctic krill samples involving 4 processing techniques.
These 42 raw marine material samples were coded according to the given category and
detailed sample information is listed in Supplementary Table S1. Antarctic krill meal
samples were used for analysis without pre-treatment, and the remaining raw material
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samples were frozen in liquid nitrogen and then ground into powder. All the raw material
samples were stored at −20 ◦C for further analysis.

2.1.2. Marine-Derived Peptide Powder Preparation

A total number of 66 marine-derived peptide powder samples, including 18 oyster
peptides (OP), 16 sea cucumber peptides (SCP), 18 Antarctic krill peptides (AKP), and 14
fish skin peptides (FSP) were collected. These marine-derived peptide powder samples
were mostly purchased from reputable and qualified companies in Chinese markets. Due to
the limit amounts of reliable suppliers, five OP and eight SCP samples were self-prepared
through enzymatic hydrolysis in our laboratory. All peptide powder samples were stored
in a desiccator at room temperature and used for analysis directly without pre-treatment.

2.1.3. In Silico Marine-Derived Peptide Mixture Preparation

The marine-derived peptide powders mentioned above were randomly selected to
prepare the following seven sets of mixture peptide samples, including four sets of binary
mixture samples (M1, SCP:OP = 1:1; M2, AKP:OP = 1:1; M3, SCP:AKP = 1:1; M4, SCP:FSP
= 1:1), two sets of ternary samples (M5, SCP:OP:AKP = 1:1:1; M6, FSP:OP:AKP = 1:1:1),
and one set of quaternary samples (M7, SCP:OP:AKP:FSP = 1:1:1:1). Each set contained
four mixture samples and the amino acid composition data of 28 mixture samples were
obtained by in silico calculation according to the amino acid composition of respective
samples obtained in Section 2.1.2. The amino acid data of the 28 in silico mixture samples
were used for further analysis.

2.1.4. Unclassified Peptide Powder Preparation

Nine peptide powders from other categories of marine and non-marine origins, in-
volving abalone peptides, octopus peptides, crocodile peptides, cuttlefish peptides, bull
backstrap peptides, and donkey hide gelatin peptides, were self-prepared and assembled
into an unclassified dataset for application of the classification models.

2.2. Moisture and Protein Content Determination

Moisture content was determined by drying in the oven at 105 ◦C until a constant
weight was obtained according to the standard AOAC method [27]. The crude protein con-
tent was determined using an automatic Kjeldahl nitrogen analyzer (KjeltecTM8400, FOSS
Quality Assurance Co., Ltd., Copenhagen, Denmark) according to the AOAC method [27].
The conversion factor of 6.25 was used to calculate the crude protein contents for all the
samples. The crude protein content was expressed on a percentage of dry weight basis.

2.3. Amino Acid Profile Analysis

Amino acid compositions were analyzed by an automatic amino acid analyzer (L-
8900, Hitachi Global Co., Ltd., Tokyo, Japan) following the method described by Cao
et al. with some small modifications [28]. Briefly, samples were hydrolyzed with 6 M HCl
containing 0.5% 2-mercaptoethanol at 110 ◦C for 22 h. Following hydrolysis, the sample
was evaporated with nitrogen blowing at 50 ◦C to remove HCl. The residual was dissolved
in 0.02 M HCl and then passed through a 0.22-µm membrane filter before injection into the
amino acid analyzer. The content of each amino acid was expressed as g/100 g dry protein.

2.4. Statistical Analysis

Experimental data were subjected to one-way analysis of variance (ANOVA) by
the SPSS 17.0 software package (SPSS Inc., Chicago, IL, USA). Duncan’s test was used
to determine significant differences between samples (p < 0.05). Chemometric analysis
was performed to discriminate peptide samples in different categories using the SIMCA
software package (Sartorius, Malmö, Sweden). Variable importance in projection (VIP)
analysis was used to find the most influential variables for classification [29]. A PCA-Class
was used to construct the classification model for each marine-derived peptide sample
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category. The collected data of 108 samples, including raw materials and marine derived
peptides, were randomly split into a training dataset and a prediction dataset in a ratio of
2:1, respectively. The prediction dataset consisted of 36 samples from these 4 categories,
including raw materials (n = 12) and their derived peptides (n = 24), while the remaining 72
samples were used to build the training dataset. The Mahalanobis distance (DModX PS+)
was used to detect outliers in the four PCA-Class submodels. The sample in which the
Mahalanobis distance was larger than Dcrit (95% confidence interval) of certain submodel
was considered an outlier [30]. Accuracy was used to determine the PCA-Class model’s
classification performance, which was defined as the proportion of correctly classified
samples to total samples.

3. Results and Discussion
3.1. Classification of Four Categories of Raw Marine Materials

Table 1 lists the amino acid compositions and average crude protein contents of the
four marine material categories, including the oyster, Antarctic krill, sea cucumber, and
fish skin samples. The oyster samples contained significantly lower protein contents in
comparison to other three categories of samples (p < 0.05), while the fish skin samples
contained significantly higher protein contents than the other three categories of samples
(p < 0.05). From the perspective of amino acid composition, the four categories of raw
materials contained abundant amounts of GLU, which represented the amino acid with
the highest content both in the oyster and Antarctic krill groups. The oyster group was
detected with a high level of TAU, while TAU was present in very small amounts in the
other three categories. The amino acid with the highest content in the sea cucumber and
fish skin groups was GLY. The sea cucumber and fish skin samples also contained a higher
level of PRO than the oyster and Antarctic krill samples.

Table 1. Crude protein contents and hydrolyzed amino acid compositions of the four raw marine
material categories.

Amino Acids 1
Amino Acid Content (g/100 g Dry Protein Basis)

Oyster Meat
(n = 12) 2

Antarctic Krill
(n = 12) 2

Sea Cucumber
(n = 12) 2

Fish Skin
(n = 6) 2

TAU 7.49 ± 1.42 0.89 ± 0.72 0.06 ± 0.10 0.11 ± 0.12
ASP 7.78 ± 0.79 9.27 ± 1.31 8.19 ± 0.90 5.54 ± 0.60
THR 3.55 ± 0.31 3.83 ± 0.42 4.04 ± 0.36 2.53 ± 0.10
SER 3.65 ± 0.45 3.51 ± 0.50 3.67 ± 0.82 4.06 ± 1.14
GLU 11.33 ± 1.29 12.64 ± 1.78 11.46 ± 1.11 8.88 ± 0.48
GLY 5.10 ± 0.61 4.21 ± 0.18 13.35 ± 2.80 19.09 ± 1.90
ALA 4.72 ± 0.49 5.02 ± 0.51 6.66 ± 1.21 7.97 ± 1.14
CYS 0.21 ± 0.08 0.24 ± 0.04 0.28 ± 0.12 0.20 ± 0.04
VAL 3.41 ± 0.39 4.09 ± 0.33 2.78 ± 0.49 2.13 ± 0.22
MET 1.70 ± 0.14 2.95 ± 0.53 1.10 ± 0.29 1.57 ± 0.33
ILE 3.06 ± 0.22 4.37 ± 0.40 2.26 ± 0.68 1.32 ± 0.37
LEU 5.43 ± 0.43 7.42 ± 0.87 4.01 ± 1.12 3.00 ± 0.36
TYR 2.80 ± 0.50 3.88 ± 0.59 1.92 ± 0.44 0.91 ± 0.32
PHE 2.85 ± 0.25 4.07 ± 0.56 1.73 ± 0.54 1.77 ± 0.06
LYS 5.95 ± 0.64 7.28 ± 1.09 2.56 ± 1.07 3.42 ± 0.39
HIS 1.60 ± 0.17 1.79 ± 0.25 0.81 ± 0.30 0.99 ± 0.26

ARG 5.31 ± 0.70 5.75 ± 0.76 6.75 ± 0.67 7.31 ± 0.58
PRO 4.09 ± 1.09 3.07 ± 0.59 7.15 ± 1.24 9.88 ± 2.07

Total AAs (g/100 g
dry protein basis) 80.01 ± 7.77 84.28 ± 8.30 78.76 ± 7.06 80.69 ± 3.24

Crude Protein
(g/100 g dry
sample basis)

49.41 ± 11.74 c 73.56 ± 7.78 b 72.06 ± 12.22 b 108.94 ± 9.34 a

1 Abbreviation: TAU, taurine; ASP, aspartic acid; THR, threonine; SER, serine; GLU, glutamic acid; GLY, glycine;
ALA, alanine; CYS, cysteine; VAL, valine; MET, methionine; ILE, isoleucine; LEU, leucine; TYR, tyrosine; PHE,
phenylalanine; LYS, lysine; HIS, histidine; ARG, arginine; PRO, proline; total AAs, total amino acids. 2 All values
are expressed as mean ± standard deviation. a,b,c Values within the same row sharing different superscript
characters are significantly different at a 5% probability level based on ANOVA.
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Linehan et al. reported that the dry protein contents of Pacific oysters (Crassostrea
Gigas) range from 39.1% to 53.1% due to seasonal variation [31]. In the present study,
the significantly lower crude protein contents and a high amount of GLU, ASP, and TAU
in oyster meat samples show good agreement with the previous study [32]. Chen et al.
determined that whole Antarctic krill (Euphausia Superba) contained 76.5% of crude protein
on dry weight basis, and that GLU was the amino acid with the highest content after
ASP [33]. Wen et al. found that the protein contents of eight commercially processed
sea cucumber species ranged from 40.7% to 63.3% and that the most abundant amino
acids in sea cucumbers were GLY, GLU, ASP, ALA, and ARG [34]. The high levels of
GLY in sea cucumber and fish skin samples were related to the presence of high amounts
of collagens, which generally contain a special structure with the sequence of “GLY-X-
Y” [35,36]. The differing protein contents and amino acid distribution profiles for these
four marine material categories are in accordance with the previously reported results.

The contents of protein and 18 types of amino acids were included in the multivariate
statistical analysis for both the PCA and OPLS-DA for the 42 raw material samples. Ac-
cording to the score plot of the PCA model (Figure 1A), the first two principal components
(PC1 and PC2) explain 87.40% of the total variance with an R2X (cum) value of 0.991 and
a Q2 (cum) value of 0.917. The score plot could be divided into four regions without a
clear boundary according to samples in the four categories (Figure 1A). Sea cucumber
samples, with the codes of SC7 and SC10, were close to the oyster meat samples in the
score plot, which might result from the low protein contents of SC7 (45.79 ± 0.94%) and
SC10 (54.27 ± 0.07%). Among all the tested samples, the oyster group showed an average
protein content of 49.41 ± 11.74%, while the sea cucumber group contained an average
protein content of 72.06 ± 12.22%. The Antarctic krill samples (AK7, AK8, and AK9) were
also close to the oyster meat samples due to the lower protein content (64.22 ± 0.40%,
64.22 ± 0.40%, and 64.22 ± 0.40%) than the average protein content (73.56 ± 7.78%) of
the Antarctic krill group. The PCA model was unable to provide good clustering among
the four categories of marine materials. The loading plot (Figure 1B) showed a strong
negative correlation between TAU content and the protein contents for both the PC1 and
PC2 scales. With a negative loading score, TAU was the amino acid that accounted for the
discrimination of oyster meat samples, while GLY and PRO, with high positive loading
scores, were the amino acids that accounted for the discrimination of sea cucumber and fish
skin samples into different clusters by PC1. The results of the loading plot are consistent
with the data shown in Table 1.

A supervised OPLS-DA model was further employed to achieve more significant
clustering and reveal the major variables. It can be seen that the four raw marine material
categories may be distinctly classified into four clusters (Figure 1C). In particular, the
fish skin and sea cucumber groups were distributed at the first principal component, t[1],
with negative coordinates, while the oyster and Antarctic krill groups appeared at t[1]
with positive coordinates. Moreover, the latter two groups could be further discriminated
along the second principal component, t[2]. The oyster group was projected along with
t[2] with negative coordinates, while the Antarctic krill group was distributed along t[2]
with positive coordinates. The varying sample distribution profiles could be attributed to
the different protein compositions. Previous studies have reported that myofibrillar and
sarcoplasmic proteins represent the dominant proteins in oyster and Antarctic krill meat
samples, resulting in similar compositions of amino acids from muscle proteins [37,38].
Saito et al. reported that the collagen content was estimated to be about 70% of the total
protein in the sea cucumber body wall [35]. The collagen content of cod skins amounts, on
average, to 71.2% on a dry weight basis [36]. The similar high concentrations of collagens
in the sea cucumber and fish skin samples led to closer distribution profiles in score plots.
A VIP plot was employed to indicate the weightage of each variable in the OPLS-DA
model to discriminate different classes successfully. The VIP plot shows that the TAU, GLY,
LYS, and protein contents are the major discriminants with VIP values above 1 (Figure
1D). It was not surprising to find that the TAU, GLY, LYS, and protein contents, with
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great discriminative power, were also the variables recorded with high loading scores in
Figure 1B. Accordingly, these four categories of marine material could be clearly divided
into four clusters depending on the protein contents and amino acid composition profiles.
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3.2. Classification of Four Categories of Marine-Derived Peptide Powders

As shown in Table 2, the OP group contained significantly lower protein contents
(p < 0.05) and higher TAU contents than the other three groups. The FSP group contained
the highest level of protein contents among the four categories of marine-derived peptide
powders. The OP and AKP groups contained high levels of GLU and ASP, while the SCP
and FSP groups showed high contents of GLY and GLU. The protein contents and amino
acid composition profiles of peptide powders were consistent with those of the respective
raw material samples.
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Table 2. Crude protein contents and hydrolyzed amino acid compositions of the four marine-derived
peptide powder categories.

Amino Acid 1

Amino Acid Content (g/100 g Dry Protein Basis)

Oyster Peptides Antarctic Krill
Peptides

Sea Cucumber
Peptides

Fish Skin
Peptides

(n = 18) 2 (n = 18) 2 (n = 16) 2 (n = 14) 2

TAU 4.73 ± 2.62 0.38 ± 0.25 0.04 ± 0.14 0.01 ± 0.02
ASP 8.50 ± 1.10 11.57 ± 0.96 9.22 ± 0.91 5.99 ± 0.70
THR 3.68 ± 0.25 4.26 ± 0.65 4.43 ± 0.31 2.90 ± 0.25
SER 3.54 ± 0.33 4.00± 0.60 4.14 ± 0.84 4.35 ± 1.21
GLU 12.77 ± 2.29 15.69 ± 1.44 13.71 ± 1.35 10.27 ± 0.88
GLY 5.89 ± 1.66 4.59 ± 0.26 15.91 ± 3.17 22.94 ± 1.20
ALA 4.88 ± 0.76 6.28 ± 0.45 8.10 ± 1.85 9.18 ± 0.84
CYS 0.17 ± 0.12 0.60 ± 1.04 0.02 ± 0.06 0.07 ± 0.14
VAL 3.56 ± 0.35 4.89 ± 0.23 3.66 ± 0.39 2.66 ± 0.33
MET 1.57 ± 0.21 2.84 ± 0.37 1.44 ± 0.16 1.77 ± 0.29
ILE 3.28 ± 0.43 4.44 ± 0.38 2.39 ± 0.66 1.35 ± 0.09
LEU 5.71 ± 0.69 8.32 ± 0.80 4.19 ± 0.91 2.71 ± 0.43
TYR 2.02 ± 0.35 4.00 ± 0.42 1.96 ± 0.53 0.75 ± 0.09
PHE 2.50 ± 0.46 3.98 ± 0.51 1.82 ± 0.48 1.61 ± 0.17
LYS 6.04 ± 0.63 8.39 ± 0.65 2.58 ± 0.99 3.43 ± 0.49
HIS 1.43 ± 0.20 2.13 ± 0.15 0.78 ± 0.28 0.93 ± 0.10

ARG 5.26 ± 0.56 6.04 ± 1.23 6.85 ± 0.72 6.85 ± 1.54
PRO 4.05 ± 0.94 2.54 ± 0.45 6.74 ± 1.19 10.10 ± 1.71

Total AAs (g/100 g
dry protein basis) 79.57 ± 4.93 94.94 ± 5.41 87.98 ± 5.56 87.87 ± 3.74

Crude Protein
(g/100 g dry
sample basis)

56.97 ± 13.90 c 88.61 ± 3.50 b 86.01 ± 5.71 b 106.36 ± 4.83 a

1 Abbreviation: TAU, taurine; ASP, aspartic acid; THR, threonine; SER, serine; GLU, glutamic acid; GLY, glycine;
ALA, alanine; CYS, cysteine; VAL, valine; MET, methionine; ILE, isoleucine; LEU, leucine; TYR, tyrosine; PHE,
phenylalanine; LYS, lysine; HIS, histidine; ARG, arginine; PRO, proline; total AAs, total amino acids. 2 All values
are expressed as mean ± standard deviation. a,b,c Values within the same row sharing different superscript
characters are significantly different at a 5% probability level based on ANOVA.

The protein contents and 18 types of amino acids were included in the multivariate
statistical analysis of both PCA and OPLS-DA for the 66 marine-derived peptide samples.
The PCA model exhibited good discriminant power with a R2X (cum) value of 0.916 and
a Q2 (cum) value of 0.812 (Figure 1E). The first two principal components (PC1 and PC2)
explained 86.8% of the total variance. The amino acid compositions and protein contents
of the sea cucumber peptide and oyster peptide samples might be influenced by the
geographical locations and processing techniques, which resulted in a dispersed scope for
the score plot (Figure 1E). The loading plot of the PCA model for marine-derived peptide
samples shows high similarity with the raw marine material samples shown in Figure 1B
(Figure 1F). Interestingly, the OPLS-DA score plot illustrates that the four categories of
marine-derived peptide samples could be clearly discriminated (Figure 1G). The protein
content and certain amino acid compositions (GLY, LYS, GLU, ASP, and TAU) represent
the significant variables with VIP values > 1 (Figure 1H).

In the present study, the employed peptide samples were derived from raw marine
materials covering various species and different pre-processing techniques were used. A
good clustering of the four types of peptide samples could be achieved through multivariate
statistical analysis depending on their protein contents and amino acid composition profiles.
The results obtained from the score and loading plots of peptide powder samples are
consistent with those of the raw material samples.

3.3. Establishment and Verification of Classification Models for Marine-Derived Peptide Samples

To verify the raw material categories of marine-derived peptide powders, the marine-
derived peptide samples and corresponding raw material samples were assigned to a new
dataset and all 108 samples were divided into four new groups, namely, the oyster group,
sea cucumber group, Antarctic krill group, and fish skin group. The contents of protein
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and 18 types of amino acids were included in the multivariate statistical analysis of both
the PCA and OPLS-DA models (Figure 2). The first two principal components (PC1 and
PC2) explain 86% of the total variance, with a R2X (cum) value of 0.912 and a Q2 (cum)
value of 0.811 (Figure 2A). The results of the loading plot were in line with those of the
four categories of raw marine materials and their derived peptide samples (Figure 2B).
The four categories of marine-derived peptide samples were clearly classified into four
clusters together with their corresponding raw material samples by the OPLS-DA model
(Figure 2C). Protein content and certain amino acid compositions (GLY, TAU, LYS, and
ASP) were the most important variables that accounted for the discrimination of the four
sample categories (Figure 2D).
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The PCA and OPLS-DA model exhibited tight cluster formation between peptide
samples and respective raw materials and good separation between samples in different
categories. The result demonstrates that the marine-derived peptides included in the
present study share similar amino acid composition with the respective raw materials,
confirming the authenticity of the marine-derived peptide samples. Moreover, the results
demonstrate that multivariate statistical analysis is capable of capturing the variance of
amino acid compositions between peptide samples from marine materials in different
categories, and this further demonstrates the potential of using multivariate statistical
analysis for the adulteration assessment of peptide powder samples. This was also shown
by Seow et al., who reported that the multivariate statistical analysis of amino acid compo-
sition data is an effective method to differentiate between cave and house bird nests [39].
Azevedo et al. determined free amino acid profiles of bracatinga honeydew honey for
geographical classification by using a chemometric approach [21]. Botoran et al. ascer-
tained that multivariate statistical analysis, in combination with amino acid profiles, could
provide valuable information for the authenticity verification of the varietal origins of
fruit juices [19]. Further, Wistaff et al. studied whole amino acid profiles of various fruit
types and validated the capability of adulteration detection for blond orange juice added
in blood orange juice [18]. As such, multivariate statistical analysis tools, such as PCA and
OPLS-DA, when combined with amino acid profiles, provide a feasible and promising
strategy for the quality control of marine-derived peptides.
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A PCA-Class model was applied to establish a classification model for distinguishing
between the four categories of marine-derived peptide samples. Four PCA-Class submod-
els were constructed on basis of the training set, namely the oyster PCA-Class submodel,
sea cucumber PCA-Class submodel, Antarctic krill PCA-Class submodel, and fish skin
PCA-Class submodel (Figure 3A–D). All samples in the oyster group showed a DModX
PS+ < Dcrit (0.05) in the oyster PCA-Class submodel and DModX PS+ > Dcrit (0.05) in
the other three submodels. The same phenomenon was observed for samples in the sea
cucumber group, Antarctic krill group, and fish skin group with respective submodels
(Figure 3A–D). This demonstrates that the four PCA-Class submodels could correctly
classify the 72 samples into four groups, indicating that the accuracy of the PCA-Class
model was 100% (Figure 3E). A prediction dataset was employed to assess the predictive
ability of the constructed classification model as external validation. The four submodels
could classify all the 36 samples from the prediction dataset into respective groups with a
classification accuracy rate of 100% (Figure 3F). It has been reported that a PCA-Class model
built for the authentication of the protected denomination of origin for paprika powder has
had an accuracy of 91%, and the PLS-DA model had an accuracy of 96% [30]. These values
are lower than those in the present study. The PCA-Class model based on amino acid
profiles could be employed to distinguish the raw material categories of marine-derived
peptides.
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3.4. Application of the Classification Model to Adulteration Detection with Marine-Derived
Peptide Mixture Samples

Considering the fact that marine-derived peptides might be partially substituted with
peptides from other marine species, in silico calculation of mixture samples could be em-
ployed as a good test to validate the classification model. In addition, the discrimination of
mixture samples was a challenge for the classification model because of the high similarity
between mixture samples and the modeling samples. In order to increase the variability of
mixture samples, binary, ternary, and quaternary peptide mixtures with different combina-
tion ratios of the four types of marine-derived peptide powder samples were employed for
the application of the classification model to adulteration detection by in silico calculation.
The discrimination results of the 28 marine-derived peptide mixture samples are shown
in Figure 4A–D. A total of 28 mixture samples showed a DModX PS+ > Dcrit (0.05) in the
classification model, indicating that these 28 samples were not classified as belonging to
any of the four types of marine-derived peptides; however, one binary mixture sample
(M2–4, AKP:OP = 1:1) in Figure 4C was very close to the red line (Dcrit 0.05). Accordingly,
the accuracy of classification was 100%. It can be concluded that the classification model
built in this study displayed a reasonably good predictive capability with a correct level of
100%, being higher than those previously reported in literature for mixtures of other foods,
such as 90.03% to 96.52% for edible oil [40], 93.70% for virgin olive oil [41], and 92.00% to
96.60% for milk [42].
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The sample (M2–4, AKP:OP = 1:1) in the present study was a mixture of Antarctic krill
peptides and oyster peptides. This seemed to be in line with the high similarity between
the Antarctic krill and oyster material in terms of the muscle protein composition. It was
hypothesized that extension of the dataset with a larger number of samples to construct
models might improve the robustness and accuracy of the model for classification [18].
Overall, the PCA-Class model constructed with limited number of samples in the present
study exhibited a clear tendency for the correct classification of marine-derived peptides.

3.5. Application of the Classification Model for Adulteration Detection with Other Marine and
Non-Marine Peptide Samples

To evaluate the discriminative ability of the constructed classification model for peptide
samples from other materials, nine peptide powder samples derived from both marine and non-
marine materials were also employed and defined as an unclassified dataset. The amino acid
compositions and protein contents of nine unclassified samples are shown in Supplementary
Table S2. As presented in Figure 4E–H, all unclassified peptide samples showed a DModX
PS+ > Dcrit (0.05) in the four PCA-Class submodels, indicating that the classification accuracy
of the model for the nine unclassified peptide samples was 100%. These unclassified peptide
samples were correctly differentiated from the four categories of marine-derived peptide powder
samples, demonstrating the accuracy and feasibility of the PCA-Class model, based on amino
acid profiles, in the classification of marine-derived peptides.

Marine-derived peptides from various materials in different categories have been
prepared and applied in the food industry. Furthermore, marine-derived peptides might
be produced from different raw materials with the same common name. As an example,
sea cucumber peptides might be prepared from different sea cucumber species, such
as Apostichopus japonicus, Holotoria floridona, and Cucumaria frondosa. In addition, raw
marine materials with different pre-treatment processes, such as fresh sea cucumbers,
dried sea cucumbers, and salted sea cucumbers, might be used for the production of
peptides. Considering the various material species and production processes of peptide
powders, distinguishing between different categories of marine-derived peptides, such
as sea cucumber peptides, oyster peptides, krill peptides, and fish skin peptides, seems
to be difficult. Inspired by the advancement of chemometric analysis methods, we have
established an effective PCA-Class model for the discrimination of marine-derived peptides
in different categories based on amino acid profiles, which might be used for the quality
control of marine-derived peptide powders in the food industry.

4. Conclusions

This study has confirmed the feasibility of discrimination and adulteration detection
of four representative categories of marine-derived peptides, including sea cucumber pep-
tides, oyster peptides, Antarctic krill peptides, and fish skin peptides, by employing amino
acid profiles combined with chemometric analysis. TAU, GLY, and LYS were concluded to
be the major amino acids for the discrimination of the marine-derived peptide powders and
the respective raw marine materials by PCA and OPLS-DA models. A PCA-Class model
was further applied to construct a classification model for the discrimination of the four
categories of marine-derived peptide powders, and the model showed excellent predictive
capability with 100% samples being correctly classified in the prediction dataset. The
classification accuracy of 28 in silico peptide mixture samples, consisting of binary, ternary,
and quaternary peptide mixtures with different combination ratios of the four categories
of peptide powders, was 100%. Furthermore, another validation dataset consisting of a
total of nine unclassified samples was correctly classified when employing the established
PCA-Class model, confirming the robustness of the classification model. The methodology
developed in this study seems to be promising and reliable for the classification of the four
types of marine-derived peptide powder categories and be suitable for the discrimination
of other animal-based peptides with the objective of adulteration detection.
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