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Lysine glutarylation (Kglu) is a newly discovered post-translational modification (PTM),
which is considered to be reversible, dynamic, and conserved in prokaryotes and
eukaryotes. Recent developments in the identification of Kglu by mass spectrometry
have shown that Kglu is mainly involved in the regulation of metabolism, oxidative
damage, chromatin dynamics and is associated with various diseases. In this review,
we firstly summarize the development history of glutarylation, the biochemical processes
of glutarylation and deglutarylation. Then we focus on the pathophysiological functions
such as glutaric acidemia 1, asthenospermia, etc. Finally, the current computational
tools for predicting glutarylation sites are discussed. These emerging findings point
to new functions for lysine glutarylation and related enzymes, and also highlight the
mechanisms by which glutarylation regulates diverse cellular processes.

Keywords: glutarylation, SIRT5, glutaryl-CoA, PTM, proteomic

INTRODUCTION

Protein post-translational modifications (PTMs), covalent chemical modifications of amino acid
residues (Macek et al., 2019), are a conserved mechanism adopted by organisms to effectively
modulate biological activities, enabling them to make rapid adaptive responses to environmental
changes (Bernal et al., 2014). PTMs have been reported to be involved in various biological processes
(Walsh et al., 2005; Xu et al., 2016). They play crucial roles in the diversification of protein
functions in different biological and physiological interactions (Walsh et al., 2005; Xu et al., 2016).
To date, 676 different PTMs have been identified in the UniProt database1, including lysine (Lys)
acylation, phosphorylation, ubiquitination, SUMOylation, and so forth (Venne et al., 2014; Harmel
and Fiedler, 2018). Lysine acylation is a widely occurring PTM of proteins (Diallo et al., 2019).
Besides the well-known acetylation (Kac) (Kim et al., 2006; Choudhary et al., 2009; Zhao et al.,
2010; Lundby et al., 2012), eight types of short-chain Lys acylations have recently been identified on
histones, including Lys propionylation (Kpr) (Chen et al., 2007), butyrylation (Kbu) (Chen et al.,
2007), 2-hydroxyisobutyrylation (Khib) (Dai et al., 2014), succinylation (Ksucc) (Xie et al., 2012),
malonylation (Kma) (Xie et al., 2012), glutarylation (Kglu) (Tan et al., 2014), crotonylation (Kcr)
(Tan et al., 2011), and β-hydroxybutyrylation (Kbhb) (Xie Z. et al., 2016). These modifications are

1http://www.uniprot.org/docs/ptmlist

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 June 2021 | Volume 9 | Article 667684

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.667684
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2021.667684
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.667684&domain=pdf&date_stamp=2021-06-24
https://www.frontiersin.org/articles/10.3389/fcell.2021.667684/full
http://www.uniprot.org/docs/ptmlist
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-667684 June 18, 2021 Time: 17:45 # 2

Xie et al. Lysine Glutarylation

similar to the well-studied Kac in their ε-amine linkage, but
different in hydrocarbon chain length, hydrophobicity or charge
(Sabari et al., 2017). Such as, compared to the Kac changing
the charge of lysine from +1 to 0 and adding a 2-carbon acyl
group to lysine (Hirschey and Zhao, 2015), Kglu means adding
glutaryl groups to specific lysine residues (Dou et al., 2021). Kglu
changes the charge of lysine from +1 to −1 and adds a 5-carbon
acyl group to lysine (Hirschey and Zhao, 2015). These changes
may lead to structural alterations on proteins, affecting their
physiological functions and disrupting any interactions between
the lysine side chains of glutarylated proteins and negative
charged molecules (Hirschey and Zhao, 2015).

The Kglu was first identified by Tan et al. (2014). They
performed immunoblot analysis with whole-cell lysates
from Escherichia coli, Saccharomyces cerevisiae, Drosophila
melanogaster (S2), mouse (MEFs), and human cells (HeLa).
The results showed that Kglu is a conserved PTM and exists in
both eukaryotic and prokaryotic cells. Afterward, more proteins
including histone and non-histone proteins were identified as
glutarylated proteins, and they were found to play important
roles in mitochondrial functions (Schmiesing et al., 2018),
oxidative damage (Zhou et al., 2016), sperm motility (Cheng
et al., 2019), and glutaric aciduria 1 (GA1) (Dimitrov et al., 2020).

To systematically review the roles of Kglu in prokaryotes and
eukaryotes, we searched PubMed for studies that mentioned
glutarylation. Our specific advanced search terms included:
“Glutaric acylation” OR “glutarylation” OR “Kglu” OR
“glutarylated.” The results provided 186 papers as of January
10, 2021. Two investigators reviewed each initial study to
determine whether it was related with glutarylation. Finally,
23 papers were preserved by exclusion criteria described in
Figure 1. In this review, we mainly summarized recent studies
about Kglu and discussed its implications. The scope mainly
includes mechanism, function, identification and prediction of
glutarylated proteins.

PROTEOMIC PROFILING OF LYSINE
GLUTARYLATION

With the development of proteomic technology, the landscape
of glutarylation is expanding (Figure 2). The proteomic method
combing the sensitive immune-affinity purification and high-
resolution liquid chromatography-tandem mass spectrometry
(LC-MS/MS) has been used to find new glutarylated proteins
and modification sites. Recently, four studies have identified
new glutarylated proteins and glutarylated lysine residues in
Mycobacterium tuberculosis, mouse and human serum. Xie L.
et al. (2016), our group identified a total of 24 glutarylated
proteins and 41 Kglu sites in M. tuberculosis. Schmiesing et al.
(2018) found 37 glutarylated proteins with 73 Kglu sites in the
brain of mice. Bao et al. (2019) revealed that Kglu occurs at
27 lysine residues on human core histones. Zhou et al. (2020)
reported 4 kinds of glutarylated proteins with 10 sites in human
serum. It shows that Kglu occurred in different species, and most
of glutarylated proteins contain at least two Kglu sites in Table 1.

Since the discovery of immonium ion on acetylated lysine,
most of the modifications based on acylation have their
corresponding immonium ion characteristics. Parameter 86 m/z
was set for detecting this PTM after MS/MS searches.

Antibodies are crucial for experimental studies, especially for
the identification of protein PTMs. Therefore, we have reviewed
the experimental studies on antibody for lysine glutarylation, and
found eight related articles (Tan et al., 2014; Xie L. et al., 2016;
Zhou et al., 2016, 2020; Schmiesing et al., 2018; Bao et al., 2019;
Cheng et al., 2019; Wang et al., 2020). The specific Methods
and reagents used in previous studies were summarized in
Supplementary Table 1. Among eight studies, the glutarylation
antibodies used in five studies are from the same company
BioLabs (Tan et al., 2014; Xie L. et al., 2016; Zhou et al., 2016;
Schmiesing et al., 2018; Cheng et al., 2019). Tan et al. (2014) found
that the number of glutarylated peptides is 157, and the number
of unmodified peptides is 297. Meanwhile, they performed Dot-
blot assay using anti-Kglu antibody by incubation of the peptide
libraries bearing a fixed unmodified lysine (K), acetyl-lysine
(Kac), malonyl-lysine (Kmal), succinyl-lysine (Ksucc), glutaryl-
lysine (Kglu), respectively. Each peptide library includes 10
residues CXXXXKXXXX, where X is a mixture of 19 amino
acids (excluding cysteine), C is cysteine, and the 6th residue
is a fixed lysine residue. The results showed that only peptide
bearing a fixed Kglu can be detected, whereas other types of
peptides cannot be detected. This shows the specificity of this
glutarylation antibody (Tan et al., 2014). For the remaining three
studies, Bao et al. (2019) raised a rabbit polyclonal antibody which
is site specific against histones glutarylation and conducted dot-
blot and western blot analysis to verify whether the antibody has
high specificity. Although the origin of the antibodies was not
specified in the remaining two papers, western blot analysis or
mass spectrometer were also performed to verify the specificity
of antibodies (Wang et al., 2020; Zhou et al., 2020).

Anyway, proteomic profiling of Kglu provides a key resource
for finding novel properties and regulatory functions of Kglu.

THE DISCOVERY OF LYSINE
GLUTARYLATION

Tan et al. (2014) first identified and validated Kglu as a PTM
by four independent approaches, which is present in both
prokaryotes and eukaryotes. They not only first discovered the
presence of Kglu in E. coli, but also detected 23 Kglu sites in 13
glutarylated proteins. In addition, they isolated 10 glutarylated
proteins in HeLa cells and detected 10 Kglu sites, and they also
detected 683 sites in 191 glutarylated proteins in mouse liver
cells. They also demonstrated that Kglu could be regulated by
sirtuin 5 (SIRT5) and nutrient and showed that glutaryl-CoA
could directly lead to non-enzymatic Kglu. They further showed
that carbamoyl phosphate synthase (1), as a glutarylated protein,
is associated with glutaric academic type 1 (GA1). Furthermore,
they identified three Kglu sites on core histone H2B (H2BK5,
H2BK116, and H2BK120), which are critical for regulation of
gene expression (Tan et al., 2014). This research is significant, and
it opens the door for further biological studies of Kglu (Figure 2).
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FIGURE 1 | The process of literature screening. The articles were sorted into three categories: mechanism, function, identification and prediction of glutarylated
proteins. N = number of literature records.

FIGURE 2 | The discovery and development history of Lysine glutarylation (Kglu).

LYSINE GLUTARYLATION AND
DEGLUTARYLATION

Glutaryl coenzyme A (CoA) serves as the main acyl donor
molecule for Kglu reaction (Schmiesing et al., 2018). SIRT5,
which relies on nicotinamide adenine dinucleotide (NAD+), can
catalyze lysine deglutarylation in vivo and in vitro (Schmiesing
et al., 2018). Glutarylation was considered a non-enzymatic
process in the past (Tan et al., 2014), but in recent years, it has
been found that glutarylation can be achieved enzymatically in
histones (Bao et al., 2019; Figure 3).

Lysine Glutarylation
Non-enzymatic reactions: Similar to acetyl coenzyme A and
succinyl coenzyme A, glutaryl-CoA can directly induce the
non-enzymatic Kglu (Tan et al., 2014). Cellular glutaryl-CoA
forms a reactive cyclic anhydride that readily glutarylates
lysine residues (Harmel and Fiedler, 2018). The level of
Kglu is affected by multiple factors: (1) decreasing the
concentration of other CoAs, thus reducing the competition
with glutaryl-CoA; (2) increasing the concentration of glutaryl-
CoA, both means could enhance the level of Kglu in vivo
(Sabari et al., 2017).
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TABLE 1 | Information on glutarylated proteins and sites that have been found.

Time
(year)

Experimental
subject

Position Protein
(n)

Sites
(n)

References

Organ Ultra
structure

2014 E. coli - - 13 23 Tan et al., 2014

2014 HeLa cell - - 10 10 Tan et al., 2014

2014 Mouse liver - 191 683 Tan et al., 2014

2014 Mouse liver nucleus 1 (H2B) 3 Tan et al., 2014

2016 Mycobacterium
tuberculosis

- - 24 41 Xie L. et al.,
2016

2018 Mouse brain - 37 73 Schmiesing
et al., 2018

2018 Mouse liver - 154 425 Schmiesing
et al., 2018

2019 HeLa cell - nucleus 4 27 Bao et al., 2019

2020 Human serum - - 4 13 Zhou et al.,
2020

2020 Rat serum - - 2 4 Zhou et al.,
2020

Enzymatic reaction: P300, a member of histone
acetyltransferases (HATs), is a well-studied transcription
co-activator (Sabari et al., 2017). Apart from its initially
described acetyltransferase activity (Bannister and Kouzarides,
1996; Ogryzko et al., 1996), P300 was also found to catalyze
the Ksucc (Sabari et al., 2017) and Kglu (Tan et al., 2014)
of histone. Although P300 has enzymatic activity for the
modification of Kglu in vitro, no acyltransferase could catalyze
the transfer of malonyl, succinyl, or glutaryl to proteins
in vivo (Tan et al., 2014). Bao et al. (2019) found that KAT2A
(lysine acetyltransferase 2A) and α-ketoadipate dehydrogenase
(α-KADH) complex were conjugated, which could play the role
of histone glutamyltransferase in cells. This implies that both
P300 and KAT2A may be the glutaryl transferase responsible
for the histone glutarylation. It will be very interesting to
study whether these two glutaryl transferases also can catalyze
the glutarylation of non-histone proteins in the cytoplasm
and mitochondria.

Lysine Deglutarylation
Sirtuins are a class of protein deacylases and/or ADP
ribosyltransferases that depend on NAD+ (Kumar and
Lombard, 2018). In mammals, the sirtuin family consists of
seven members (sirt1–7) that have conserved NAD+ binding
and catalytic domains (Kumar and Lombard, 2017). Zhao et al.
(2010) proved that the previously annotated deacetylase SIRT5
is a lysine depentadiene Chemase (Tan et al., 2014). One recent
research showed that SIRT5 is mainly present in mitochondria,
cytoplasm, and nuclear loci (Park et al., 2013). SIRT5 is
involved in glycolysis, tricarboxylic acid (TCA) cycle, fatty acid
oxidation, and reactive oxygen species (ROS) detoxification
(Kumar and Lombard, 2018).

Kglu is a PTM regulated by SIRT5, which possesses potent
desuccinylase, demalonylase, and deglutarylase activities (Tan

et al., 2014). At physiological pH, succinyl, malonyl and glutaryl
will negatively charge the modified lysine residue (Hirschey
and Zhao, 2015). There are two positively charged amino
acid groups in the active center of SIRT5 (Du et al., 2011;
Peng et al., 2011; Zhou et al., 2012). Therefore, it is not
difficult to understand that SIRT5 displays a unique affinity
for negatively charged acetyllysine modification and catalyzes
protein desuccinylation, demalonylation, and deglutarylation.
The SIRT5-catalyzed deglutarylation reaction requires NAD+
as a cofactor, which is inhibited by nicotinamide, a class
III HDAC inhibitor (Tan et al., 2014). Expression of SIRT5
can be regulated by peroxisome proliferator-activated receptor
coactivator-1α (PGC-1α) and AMP-activated protein kinase
(AMPK) (Buler et al., 2014). Overexpression of PGC-1α

increased SIRT5 mRNA and protein levels, whereas AMPK
overexpression inhibited SIRT5 expression in primary mouse
hepatocytes (Buler et al., 2014). Under normal basal conditions,
the depletion of SIRT5 does not result in an indispensable effect
on cell metabolism (Osborne et al., 2016).

Another study showed that SIRT7 catalyzed the hydrolysis
of glutaryl peptides in the presence of nicotinamide adenine
dinucleotide (NAD) and DNA in vitro and in cells (Bao
et al., 2019). This implies that SIRT7 may be a compensatory
mechanistic pathway. However, whether the SIRT7 possesses
potent deglutarylase activities remains to be verified in vivo.

FUNCTIONAL ROLES OF LYSINE
GLUTARYLATION

Regulation of Metabolism
Glutaryl-CoA, one of the precursors of glutarylation, is a thiol
ester compound of glutaric acid and coenzyme A (Menon and
Stern, 1960; Nishizuka et al., 1960). Glutaric acid, derived from
lysine and tryptophan, is mainly metabolized in mitochondria,
and the metabolism of glutaryl-CoA is also mainly located in the
mitochondria (Besrat et al., 1969; Vamecq et al., 1985). Glutaryl-
CoA dehydrogenase (GCDH) is a key enzyme in the metabolic
process of glutaryl-CoA (Cheng et al., 2019). GCDH catalyzes
the oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA
in the lysine and tryptophan degradation pathways, and the
increase of glutaryl-CoA content in GCDH KO mice elevated the
level of Kglu (Goodman and Frerman, 1995; Koeller et al., 2002;
Tan et al., 2014).

It has been discovered that protein glutaryl metabolism
mainly occurs in mitochondria (Schmiesing et al., 2018). For
example, proteomic analysis of mouse liver revealed that there
are 191 glutarylated proteins, of which 148 are mainly or
partly located in mitochondria, accounting for more than three-
quarters of all identified glutarylated proteins (Tan et al., 2014).
There are two reasons why glutaryl metabolism mainly exists
in mitochondria: It may be because glutaryl-CoA is mainly
located in mitochondria (Besrat et al., 1969; Vamecq et al.,
1985); in addition, this may be related to the higher pH
(7.9) of mitochondrial matrix which is associated with the
deprotonation of the ε-amino group of lysine, making them
more susceptible to acylation (Carrico et al., 2018). Mitochondria
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FIGURE 3 | Mechanisms and regulation of non-histones lysine glutarylation (Kglu). Glutaryl-CoA forms a reactive cyclic anhydride that readily glutarylates lysine
residues on target proteins. No enzymes were found in this process in vivo. Whether the p300 is involved in the process of Kglu remains to be identified. Kglu is
targeted for removal by the NAD+-dependent SIRT5. Expression of SIRT5 can be inhibited by NAM and be regulated by PGC-1α and AMPK. Whether the SIRT7
possesses potent deglutarylase activities remains to be verified in vivo. Lys, Lysine; Trp, Tryptophan; NAM, Nicotinamide; OG-ADPR, O-Glutaryl ADP-Ribose;
PGC-1α, peroxisome proliferator-activated receptor coactivator-1α; AMPK, AMP-activated protein kinase; Mr, molecular mass.

FIGURE 4 | Mechanisms and features of Histone H4 Lysine 91 glutarylation (H4K91glu). KAT2A is coupled with α-KADH to catalyze the H4K91glu as the histone
glutaryl transferase. H4K91glu could regulate chromatin structure and enhance active gene expression. SIRT7-catalyzed removal of H4K91glu is related to
chromatin condensation. KAT2A, lysine acetyltransferase 2A; α-KADH, α-ketoadipate dehydrogenase; NAD, nicotinamide adenine dinucleotide.

play a key role in energy production, cell signaling and cell
survival, and mitochondrial dysfunction can lead to the aging
and aging-related diseases, such as metabolic diseases, cancer,

and neurodegeneration (Osborne et al., 2016). Since acyl-
CoA cannot penetrate the inner mitochondrial membrane,
its accumulation in the mitochondrial compartment is easy.
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Accumulation of toxic acyl-CoA will affect mitochondrial energy
metabolism (Dimitrov et al., 2020). Glutaryl-CoA inhibits
the E2 subunit of α-ketoglutarate dehydrogenase complex
(KGDHc), similar to the feedback inhibition of its physiological
product, succinyl-CoA, leading to mitochondrial TCA cycle
dysfunction (Sauer et al., 2005). Notably, the reduction of
α-ketoglutarate dehydrogenase (KGDH) activity has recently
been demonstrated in other neurodegenerative diseases, such
as Alzheimer (Gibson et al., 1988), Parkinson (Mizuno et al.,
1994, 1995), and Huntington diseases (Klivenyi et al., 2004),
sharing neuropathological similarities with GCDH deficiency
(Strauss and Morton, 2003).

In addition, lysine glutarylation can also affect mitochondrial
metabolism and other mitochondrial functions (Ju and He,
2018). CPS1, mainly found in mitochondria (Summar et al.,
1995), is the first rate-limiting enzyme in the urea cycle (UC),
which is responsible for directly incorporating ammonia into the
intermediate of UC (Nitzahn and Lipshutz, 2020). It is verified
that CPS1 is a substrate of Kglu, and that Kglu of CPS1 inhibits its
enzymatic activity (Tan et al., 2014). Excessive glutarylation will
reduce the activity of CPS1 enzyme, resulting in increased blood
ammonia levels and damage to nerve cells (Nakagawa et al., 2009;
Tan et al., 2014; Nitzahn and Lipshutz, 2020).

Regulation of Asthenospermia
Unlike somatic cells, mature sperm has a highly concentrated
chromatin structure. Except for a few genes that are expressed
in sperm mitochondria, there is almost no transcription and
translation activities (Gur and Breitbart, 2008). Therefore,
compared with somatic cells, the function regulation of mature
sperm cells is more dependent on PTMs (Cheng et al., 2019).

The most widespread PTM in human sperm studies
is phosphorylation, followed by acetylation, and these
modifications are essential for sperm differentiation, maturation,
and function (Porambo et al., 2012; Yu et al., 2015). Cheng et al.
(2019), for the first time, reported the cofactor and regulatory
protein of human sperm Kglu, and also discussed the correlation
between sperm Kglu and sperm motility, as well as the role
of Kglu in asthenospermia. As the energy metabolism center,
mitochondria are vital to sperm motility (Yu et al., 2015). They
found that Kglu is clearly present in the mitochondria of normal
male sperm, while the content of Kglu is reduced in weak
sperm (Bakos et al., 2011). Therefore, they speculated that Kglu
is involved in the regulation of human sperm mitochondrial
function. The decrease of Kglu in mitochondria may damage
mitochondrial function and ultimately affect sperm motility
(Cheng et al., 2019).

In addition, many studies have proven that obesity can reduce
sperm quality and functions, which cause sperm DNA damage,
and lead to hypogonadism (Jensen et al., 2004; Ghanayem et al.,
2010; MacDonald et al., 2010; Bakos et al., 2011; Dupont et al.,
2013; Samavat et al., 2014; Ramaraju et al., 2018). Wang et al.
(2020) found that obesity in men can increase testicular histone
Kglu levels by 36%. Although they proved that Kglu is related
to male reproductive dysfunction caused by obesity, whether
there is a causal relationship between increased histone Kglu and
decreased sperm motility still needs to be verified.

Regulation of Oxidative Stress
It has been reported that Kglu is closely related to oxidative
metabolism (Tan et al., 2014; Zhou et al., 2016; Chen et al.,
2020). Tan et al. (2014) through GO enrichment analysis, found
that Kglu was significantly enriched in many cellular metabolic
processes, including redox and aerobic respiration. They also
found the potential impact of Kglu on metabolic pathways
of oxidative metabolism through KEGG and Pfam enrichment
analysis (Tan et al., 2014). Study has showed that reactive oxygen
regulatory proteins such as superoxidase dismutase could be a
substrate of the enzymes involved in the addition of glutarylation
(Xie L. et al., 2016).

The central nervous system has a high metal content,
which can catalyze the formation of oxygen free radicals,
and its antioxidant defense ability is relatively low, so it is
vulnerable to free radical damage (Facheris et al., 2004). It is
known that excessive mitochondrial ROS are the main cause
of cellular oxidative stress (Tojyo et al., 1989; Turrens, 2003;
Orrenius et al., 2007; Park et al., 2011). GSH can remove ROS
and protect cells from oxidative damage (Zhou et al., 2016).
Nicotinamide Adenine Dinucleotide Phosphate (NADPH) is the
main intracellular reducing agent and plays a key role in keeping
glutathione in its reduced form of GSH. Zhou et al. found that
deglutarylation can activate one NADPH-producing enzyme:
glucose-6-phosphate dehydrogenase (G6PD) (Zhou et al., 2016).
In conclusion, Kglu may reduce or inactivate the activity of
the enzyme, and the amount of NADPH will decrease, thus
reducing the antioxidant defense ability of the nervous system
and leading to nervous system damage. However, this still needs
to be further verified.

Chen et al. (2020) found that mitochondrial ROS can cause
endothelial dysfunction and hypertension. Therefore, oxidative
stress is not only related to the nervous system but may also
be an important mechanism of stress-induced cardiovascular
disease (CVD). CVD is the main cause of morbidity and
mortality worldwide, and metabolic dysfunction is the basic core
mechanism of CVDs. Protein acylation plays an important role
in the physiological and pathological processes of the heart and
blood vessels (Chen et al., 2020). For example, malonylation
can damage the activity of mTORC1 kinase and ultimately
lead to angiogenesis defects, which is an important part of
myocardial infarction (Bruning et al., 2018). Although the
current studies on the relationship between Kglu and myocardial
damage are less than that of malonylation, some important
results have been discovered in recent years. For example, it’s
found that the serum protein Kglu level decreased after acute
myocardial infarction (Zhou et al., 2020). In addition, Zhou et al.
(2016) found that SIRT5 KO mice showed higher sensitivity
to cardiac ischemia-reperfusion injury, which was related to
the increased production of ROS. Relevant experiments have
confirmed that by reducing ROS production and alleviating
mitochondrial swelling, the damage caused by mitochondrial
membrane potential in mice’s cardiovascular system can be
partially saved (Nagao et al., 2016; Yu et al., 2018). The association
between Kglu and CVD is a new research field. In the future, it
may be possible to reduce the oxidative stress after myocardial
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TABLE 2 | Statistics of information on developed site prediction models.

Time (year) Tool 10-fold cross-validation References URL

SN SP ACC MCC

2018 GlutPred 65% 77% 75% 0.32 Ju and He, 2018 http://dx.doi.org/10.1016/j.ab

2018 iGlu-Lys 50% 95% 88% 0.51 Xu et al., 2018 http://app.aporc.org/iGlu-Lys/

2019 MDDGlutar 68%* 62%* 64%* 0.28* Huang et al., 2019 http://csb.cse.yzu.edu.tw/MDDGlutar/

2019 RF-GlutarySite 81% 68% 75% 0.50 Al-Barakati et al., 2019 -

2020 PUL-GLU 72% 75% 75% 0.35 Ju and Wang, 2020 -

2020 BiPepGlut 70% 93% 82% 0.64 Arafat et al., 2020 www.brl.uiu.ac.bd/bioglutarylation

2021 iGlu_AdaBoost 87% 74% 80% 0.61 Dou et al., 2021 -

SN: sensitivity; SP: specificity; ACC: accuracy; MCC: matthew correlation coefficient.
*5-fold cross-validation.

infarction by regulating the enzymes of Kglu, thereby reducing
the damage to the heart.

Regulation of Glutaric Aciduria Type 1
Glutariduria type 1 (GA1), a type of organic aciduria (Mahoney,
1976), was first reported by Goodman and Kohlhoff (1975).
It is an autosomal recessive genetic disease that causes lysine
and tryptophan metabolism disorders due to insufficient GCDH
activity (Goodman et al., 1977). It is characterized by intermittent
metabolic acidemia, dystonia, asthenia, and mental retardation
(Stokke et al., 1976). The GCDH gene is located on human
chromosome 19p13.2, spans about 7 kb, contains 11 exons and
10 introns (Goodman et al., 1977; Shadmehri et al., 2019), and
it is involved in the degradation of L-lysine and L-tryptophan
(Tan et al., 2014). It is known that GCDH degrades glutaryl-CoA,
thereby reducing the Kglu level of the protein, and the GCDH
deficiency will lead to the increase of glutaryl-CoA and Kglu
(Tan et al., 2014).

Glutaric aciduria 1 is a multi-organ disease, and the organ
most affected during metabolic abnormalities in patients is the
brain (Zhou et al., 2016). GA1 is caused by a mutation in the
gene of the mitochondrial stromal enzyme GCDH, which elevates
the level of glutaric acid (GA) in the brain and blood (Koeller
et al., 2002). GCDH deficiency could impair the degradation of
lysine/tryptophan (Zhou et al., 2016), which may be an important
reason for the increase of glutaric acid, because lysine/tryptophan
is the source of glutaric acid. It is known that glutaric acid
is one of the precursors of glutaryl-CoA, and the augment of
glutaric acid will indirectly lead to the increase of glutarylation
(Tan et al., 2014; Chen et al., 2020). Schmiesing et al. (2018) also
believed that GCDH deficiency is related to the mitochondrial
protein lysine Kglu in the pathogenesis of GA1 disease, which
leads to the heterogeneity and fragility of glial cell mitochondria
(Zhou et al., 2016). Is it possible to treat or alleviate the
neurological symptoms of GA1 by regulating the protein Kglu?
This is a challenging subject for researchers.

Regulation of Chromatin Dynamics
Nucleosome is the basic repetitive unit of chromatin. Both
structures are highly dynamic, and one main mechanism for
controlling their dynamics is through PTMs of histone. H4K91
is a residue located at the interface between H3-H4 tetramer and
H2A-H2B dimer (Bao et al., 2019). There are salt bridges between

H4K91 and glutamate residues from histone H2B in nucleosome
(Cosgrove et al., 2004).

It has been reported that a known histone acetyltransferase
KAT2A (Grant et al., 1997; Wang and Dent, 2014) is coupled
with α-ketoadipic dehydrogenase to catalyze the oxidative
decarboxylation of α-ketoadipic acid to glutaryl-CoA as the
histone glutaryl transferase (Bao et al., 2019). Then SIRT7
can catalyze the removal of H4K91glu. H4K91glu disturbs the

TABLE 3 | The number of positive and negative samples in the training and
testing data sets.

Time (year) Tool Testing data set Training data set

Positive Negative Positive Negative

2018 GlutPred 56 428 590 3498

2018 iGlu-Lys - - - -

2019 MDDGlutar 46 92 430 860

2019 RF-GlutarySite 44 203 400 400

2020 PUL-GLU 56 428 590 3498

2020 BiPepGlut 217 192 1952 1731

2021 iGlu_AdaBoost 44 203 400 1703

-, Data are not available.

TABLE 4 | Scientific questions for future studies about Kglu.

No. Classification Questions

1 Mechanism Is there any relationship between the regulation
of Kglu, acetylation and succinylation overlap
sites?

2 Does glutaryl transferase also exist in other
parts such as the glutarylation of proteins in the
cytoplasm and mitochondria?

3 Distribution Why are there so few sites found in eukaryotes?

4 Is Kglu present in prokaryotes other than E. coli
and M. tuberculosis?

5 Is there Kglu of prokaryotic biofilm proteins?

6 Function Is it possible to treat asthenospermia and GA1
by regulating Kglu of proteins?

7 Is there any connection between Kglu and the
development of cancer?

8 Except for H4K91, what is the function of other
histone glutaric acid sites?
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efficient assembly of H2A/H2B dimer and H3/H4 tetramer
to form octamer (Bao et al., 2019; Figure 4). Therefore,
glutaryl groups of histones affect the stability of nucleosomes
and chromatin. In mammalian cells, H4K91glu is mainly
enriched in the promoter region of highly expressed genes.
The downregulation of H4K91glu is closely associated with
chromatin aggregation during mitosis and the response to DNA
damage (Bao et al., 2019), suggesting that H4K91glu plays a vital
role in modulating gene expression and chromatin damage. In
addition, histone H4K91 was mutated into glutamate (K91E) in
S. cerevisiae to simulate Kglu. The results consistently showed
significant delays during S and G2/M phase in H4K91E mutant
cells, suggesting that the K91E mutations (mimicking K91glu)
may also destroy the assembly of nucleosome and chromatin
during S phase and mitosis (Bao et al., 2019).

PREDICTION OF GLUTARYLATION BY
COMPUTATIONAL TOOLS

To better understand the molecular mechanism of Kglu, it
is important to accurately identify the substrate of Kglu
and its corresponding Kglu sites. The traditional method of
identifying Kglu is based on affinity enrichment proteomics
method (Chen et al., 2012): pan anti-Kglu antibody was used
to enrich the glutarylated peptide, and then the HPLC-mass
spectrometry (MS)/MS was used to analyze it (Chen et al., 2005).
This experimental method is expensive, cumbersome and time-
consuming (Xu et al., 2018). Therefore, some computational tools
for predicting Kglu sites have been developed (Table 2). Based
on known protein interaction data, using feature extraction and
feature selection techniques (Chen et al., 2019), combined with
probability theory and mathematical statistics, using recognized
machine learning algorithms, such as support vector machines
(SVMs) (Huang et al., 2019), random forest (RF) (Al-Barakati
et al., 2019), to discover possible proteins Interaction site.

Ju and He (2018) discovered that kspaced amino acid pair
features play an important role in the prediction of glutarylation
sites. Then they established a predictive model GlutPred based
on comprehensive features composed of amino acid factor
(AAF), binary code (BE), and composition of k-spaced Amino
Acid Pairs (CKSAAP). In the same year, Xu et al. (2018) used
the characteristics of the position-specific propensity matrices
(PSPM) to build a model iGlu-Lys, which improved the
prediction performance. Huang et al. (2019) later developed a
model MDDGlutar based on SVM, which combines six motifs
identified by maximal dependence decomposition (MDD). This
model significantly improves the predictive performance of
Kglu sites recognition and takes into account sensitivity and
specificity. Then Al-Barakati et al. (2019) used Random Forest
(RF) to predict the Kglu sites from the primary amino acid
sequence and established the model RF-GlutarySite. In terms
of performance indicators that are most affected by TP rate
(such as SN, PR, and F1 scores), RF-GlutarySite is superior
to the existing glutaric acid site predictors. On the contrary,
for indicators that are more sensitive to the TN rate (such
as SP and ACC), it does not work well. Ju and Wang (2020)

regarded the experimentally verified glutaric acid sites as positive
samples, and the remaining unverified lysine sites as unlabeled
samples. A new type of glutaric acid site predictor PUL-GLU was
developed by using positive unlabeled (PU) learning technology.
Based on the evolutionary characteristics of double peptides,
Arafat et al. (2020) used Extra-Trees (ET) classifier to build
the model BiPepGlut. Recently, Dou et al. (2021) believed that
the physical and chemical properties of charge, polarity, and
van der Waals volume play a key role in the recognition of
protein glutarylation, especially the positively charged R and K
residues around the Kglu sites. They used the ensemble classifier
AdaBoost to identify Kglu sites and built a new computational
predictor called iGlu_AdaBoost. Here is a comparison of these
predictors. iGlu-Lys did not utilize the secondary structure and
tertiary structure characteristics of protein, and not balance
positive and negative data. The SN of iGlu-Lys is the lowest
(Xu et al., 2018). GlutPred used a biased SVM algorithm to
handle the unbalanced problem in the prediction of glutarylation
sites and showed good performance in specificity (SP) and
accuracy (ACC). However, there was a large gap between the
positive and negative prediction abilities (Ju and He, 2018). The
prediction results of iGlu-Lys and GlutPred were significantly
biased toward the majority of samples (i.e., non-glutarylation
sites), and the prediction efficiency of positive samples was lower
(Dou et al., 2021). RF-GlutarySite helps discover the relationship
between glutarylation and well-known lysine modifications,
such as acetylation, methylation, and some recently identified
lysine modifications. PUL-GLU could predict more non-glutaryl
lysine sites (Al-Barakati et al., 2019). iGlu_AdaBoost has good
prediction generalization ability, and the prediction results have
high consistency between positive samples and negative samples
(Dou et al., 2021).

From GlutPred to iGlu_AdaBoost, which was recently
developed (not yet online), there are currently seven
computational prediction models (Table 2). Besides, the
number of positive and negative samples in the training and
testing data sets were shown in Table 3. These tools provide
researchers an easy way to discover new Kglu sites and proteins.

CONCLUSION

Although the study of Kglu of biological proteins started late,
the research on Kglu is increasing quickly and has achieved
great results. The development of high-resolution LC-MS/MS
methods has made it possible for the identification of massive
Kglu proteins. Kglu is involved in various pathways that
control diverse cellular functions ranging from mitochondria
to chromosomal histones. Current studies mainly focus on
mitochondrial metabolism and related content (Tan et al., 2014;
Schmiesing et al., 2018). The emergence of Kglu site prediction
tools also accelerates the discovery of new Kglu sites.

However, some limitations in the previous reported studies
still need to be addressed. One important question is the reasons
for the small number of sites found in eukaryotes. We consider
the following four aspects: (1) The antibody specificity. Although
eight studies stated that their antibodies were highly specific
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and verified, the relevant data about the number of glutarylated
peptides vs. unmodified peptides were not easily accessed from
three studies. Hence, it is better to firstly collect these antibodies
to evaluate their specificity in the same species/tissues, and
then use the antibody with highest specificity to identify the
glutarylated protein and sites in the new species/tissues. (2)
The low stoichiometry of this modification (Schmiesing et al.,
2018). It is well known that discovering a new, unknown
PTM with low stoichiometry is a great challenge for analytical
techniques. (3) The sample preparation. Different preparation
methods will influence the purity of the sample, which in turn
affects the specific binding of antibodies. During the sample
preparation, if deglutarylase inhibitors are used in advance to
inhibit deglutarylation, the number of identified glutarylated
protein and sites will be increased. For example, Tan et al. (2014)
identified more glutarylated proteins and sites from Sirt5−/−

mice, which can block deglutarylation with the deletion of SIRT5,
and maximize the number of sites in tissues. But in other
studies, these did not use inhibitors to block deglutarylation
during sample preparation, which may reduce the number of sites
(Schmiesing et al., 2018; Bao et al., 2019; Zhou et al., 2020). (4)
The lability of this PTM. Kglu sites are characterized by instability
and low abundance in vivo (Huang et al., 2019). If this PTM is
decomposed before detection, it will result in a small number of
sites found in eukaryotes. Hence, it is very important to add the
stabilizer of PTM during sample preparation.

Another important question is the relationship between
Kglu and cancer. As early as Tanaka et al. (1993) glutarylated
the serum proteins of mice with glutaric anhydride, and
found that glutarylation reduced the distribution of carrier
protein in normal tissues, resulting in higher accumulation
of tumor tissues. Therefore, they believed that glutaryl serum
proteins have relative tumor selectivity and can be used as a
macromolecular carrier for anti-tumor drugs, but this requires
further research and verification. It is known that SIRT5 is
responsible for de-glutarylation of Kglu (Tan et al., 2014).
Recently, Osborne et al. (2016); Bringman-Rodenbarger et al.
(2018), and Kumar and Lombard (2018) showed that SIRT5
plays an important role in cancer models, including tumor
suppression and tumor metabolism (Osborne et al., 2016;
Bringman-Rodenbarger et al., 2018; Kumar and Lombard, 2018).
In addition, Carrico et al. (2018) believed that a potential key
role of mitochondrial acylation in tumorigenesis is to initiate the

Warburg effect. Hence, future studies are needed to uncover the
role of Kglu in cancer.

For other questions about glutarylation, we have made a
table (Table 4). For example, there are some Kglu sites that
partially overlap with other PTMs such as Kac or Ksucc
(Du et al., 2011; Chen et al., 2012; Park et al., 2013). Is
there any crosstalk in the regulation of overlapping sites?
Currently, most of the Kglu studies focus on the non-histone
proteins, while the research on histone Kglu is relatively
rare. Therefore, more research on histone Kglu is needed.
As there are many problems, it is not necessary to list
them all here, but these issues are basic and critical. We
hope these questions can provide some enlightenment for
future researchers.
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