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Abstract: Titanium implants have been widely applied in dentistry and orthopedics due to their biocompatibility and resistance to
mechanical fatigue. TiO2 nanotube arrays (TiO2 NTAs) on titanium implant surfaces have exhibited excellent biocompatibility,
bioactivity, and adjustability, which can significantly promote osseointegration and participate in its entire path. In this review, to
give a comprehensive understanding of the osseointegration process, four stages have been divided according to pivotal biological
processes, including protein adsorption, inflammatory cell adhesion/inflammatory response, additional relevant cell adhesion and
angiogenesis/osteogenesis. The impact of TiO2 NTAs on osseointegration is clarified in detail from the four stages. The nanotubular
layer can manipulate the quantity, the species and the conformation of adsorbed protein. For inflammatory cells adhesion and
inflammatory response, TiO2 NTAs improve macrophage adhesion on the surface and induce M2-polarization. TiO2 NTAs also
facilitate the repairment-related cells adhesion and filopodia formation for additional relevant cells adhesion. In the angiogenesis and
osteogenesis stage, TiO2 NTAs show the ability to induce osteogenic differentiation and the potential for blood vessel formation. In the
end, we propose the multi-dimensional regulation of TiO2 NTAs on titanium implants to achieve highly efficient manipulation of
osseointegration, which may provide views on the rational design and development of titanium implants.
Keywords: nanostructure, TiO2 nanotube arrays, titanium implant, osseointegration, anodization

Introduction
Titanium was first applied as an implant material in the late 1960s by Brånemark.1 The term “osseointegration” was
created to describe the direct contact between the implant and the bone, which can be revealed using the light
microscope.1 To date, titanium still plays an indispensable role in bone tissue-related diseases and is considered an
attractive first-rate metal material based on the following several aspects.2,3 First, it exhibits excellent biocompatibility,
one of the essential characteristics of a titanium implant. In a broad sense, biocompatibility can be understood as “the
ability of an implant to perform with an appropriate host response in a specific application”.4 Second, titanium performs
a superior ability in corrosion resistance. For example, it is resistance to the electrochemical corrosion from the
encompassed interstitial fluid. Such resistance may be attributed to the oxide layer (TiO2) naturally formed on the
titanium surface with a thickness of several nanometers.5 Third, the surface charge of the titanium implant surface can be
manipulated via different techniques. The surface charge has been widely acknowledged to impact protein adsorption and
cell behaviors.6,7 Fourth, the appropriate elastic modulus allows the titanium implant to be undeformed under stress.
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Generally, when the implant has a higher elastic modulus than the surrounding bone tissue, it causes a “stress shielding”
effect. That is, the bone tissue suffers less stress than it does, which usually leads to aseptic loosening.3,5,8 Especially,
titanium has a comparatively lower elastic modulus than many other biomaterials used in medical implant, so titanium is
the most applicable one to use in orthopedics for the suitable mechanical property.3

Besides, titanium can naturally form a TiO2 oxide layer on its surface when exposed to oxygen-containing environ-
ments, including the living human body. Although such an oxide layer without specific surface topography shows
excellent biocompatibility on titanium implants, its biological activity is inadequate. It is reported to induce a layer of
fibrous tissue formation around the implant, preventing osteogenesis-related cells adhere to the implant surface, and
further causing implant failure.9,10 Therefore, the additional TiO2 layer with surface topography can be artificially
designed on the titanium implant surface to exhibit better biological activity and prevent the formation of fibrous tissue,
which is beneficial to osseointegration.11,12

For example, scientific attention has recently been directed to manufacturing and stabilizing the nanostructured TiO2

oxide layer on titanium implants. By fabricating the nanostructured surface, the surface nano-topological pattern is
formed simultaneously.13 Studies show that nano-topography can improve osseointegration in several aspects, including
protein adsorption,14,15 fibrin clot attachment,16,17 cell behavior18,19 and immune response.20 On one side, the nano-
topological oxide layer increases cell adhesion and influences the secretion of cytokines.21 On the other side, it mimics
the intrinsic topography of the native bone with great structural complexity, which might be the signal for osteoblast-like
cells to recognize the implant surface. Such reorganization by the cells is required in osteogenesis, and it is essential for
osteointegration by promoting the osteogenesis on the implant surface to achieve contact osteogenesis.22–24 Therefore,
efforts to fabricate appropriate nano-topological TiO2 patterns on the implant surface have been devoted.

Previous studies have suggested that nanotubes, nanorods, nanodots and other nano-techniques can be applied to
fabricate surfaces with distinct biological properties. However, the function of the surface mainly contributes to only one
specific stage during osteogenesis.16,23,25–30 That is, systematic investigations and discussions of a nano-topological layer
that influence each stage of osseointegration for a titanium implant are lacking. Therefore, in this review, we use TiO2

nanotube arrays (TiO2 NTAs) as an example, to discuss the mechanism at each stage during osseointegration, and the
rational design of TiO2 NTAs on titanium implants.

TiO2 Nano-Topography
It is found that ordered and partially ordered surface nano-topological patterns contribute to cell adhesion and osteogenic
differentiation.31 To modify the titanium surface in a vertical dimension, nano-topography involving nanodots,32–36

nanorods37–39 and nanotubes40–42 can be constructed. TiO2 NTAs have been widely investigated in bone repair. It is
confirmed as a promising material with outstanding ability of biocompatibility, corrosion resistance and
osseointegration.9 Moreover, its multi-dimensional structure, including length, diameter, wall thickness and spacing,
makes it a potential candidate to be regulated for efficient osseointegration.43–45 More importantly, compared with
nanodots and nanorods, often prepared by sputter deposition or spray, the anodic TiO2 NTAs strongly adhere to the
titanium surface and show an adjustable aspect ratio. The high aspect ratio provides sufficient vertical space for further
modification, and provides the nanotubular layer with solid stability. Thus, in this review, we take TiO2 NTAs as an
example to clarify how the TiO2 nanostructure facilitates osseointegration.46

TiO2 NTAs equip the titanium surface with different patterns based on the tube-like protrusions. Anodization is the
most used technique to prepare a defined TiO2 nanotube layer on the titanium implant.47 As shown in Table 1, under
different anodization time, voltage and electrolytes, TiO2 NTAs can be regulated in length, diameter, wall thickness and
spacing.48 The nanotube diameter has shown to be an essential factor to impact the bioactivity of TiO2 NTAs, which may
be attributed to the high sensitivity of cultured cells to sense on the surface.16,49–51 Other parameters such as spacing and
wall thickness need to be further studied. So far, TiO2 NTAs have been suggested to affect protein adsorption, cell
behaviors like adhesion, proliferation and differentiation through the recognition between cell and implant surface.23,40–42

In detail, the TiO2 NTAs impact the osteointegration via protein adsorption,52 platelet activation,42 inflammatory
response16 and osteogenic property.53 Hence, in this review, the biological role of TiO2 NTAs at each stage in
osseointegration will be discussed.
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The Process of Implant Osseointegration
The implant osseointegration is complicated with multiple biological processes, which can be regulated by different
implant surface topography.54,55 These surface characteristics impact each stage of interaction between bone tissue and
implant. So we first sketch out the process of implant osseointegration (Figure 1).

Firstly, when the orthopedic implant is inserted into the aimed position, the water molecules adsorb on the implant
surface in several nanoseconds.56 The hydrated titanium surface provides a favorable condition for the adsorption of
proteins from blood, forming a “protein layer” which involves proteins for host inflammatory response and cell
adhesion.23,55–59

Afterward, the blood platelets attach to the titanium implant surface, secreting inner contents to form the fibrin clots,
which facilitate the migration of cells towards the implant surface.23 Blood is the main route for cell migration, in which

Table 1 Adjust Anodization Parameters to Regulate TiO2 NTAs with Multi-Dimensional Structure, Impacting on the Biological Effect

Anodization Parameters Nanotube Characteristics Biological Effects Ref.

Electrolyte Applied
Potential

(V)

Anodization
Time (min)

Diameter
(nm)

Length
(nm)

Wall
Thickness
(nm)

Spacing
(nm)

HF+H3PO4 1–20 120 15, 30, 50,

70, 100

20–800 – – Improve BMP-2 expression and bone-

implant contact as diameter increases

from 15 nm to 100 nm

[29]

Ethylene glycol+NH4F

+Methanol

5 120 15 – – – 15 nm diameter TiO2 NTAs improve

platelets activation and reduce

inflammation, compared to bare

titanium and 120 nm diameter

[42]

30 60 60 – – –

60 10 120 – – –

Glycerol+NH4F 20 120 78 850 – 18 80 nm lateral spacing TiO2 NTAs

induce osteoblasts osteogenic

differentiation, compared to 18 nm

lateral spacing

[44]

Step I: Ethylene

glycol+NH4F

53 60 78 850 – 80

Step II: Diethylene

glycol+HF+NH4F

27 240

Ethylene glycol+NH4F 30, 40, 50,

60

30 30, 50, 70,

90

5000,

7000,

15,000,

22,000

– – 30 nm diameter TiO2 NTAs improve

biocompatibility, reduce platelets

adhesion and increase endothelial

cells cellular activities, compared to

bare titanium and 90 nm diameter

[49]

HF+H3PO4 1–20 – 15, 20, 30,

50, 70, 100

– – – 15 nm-30 nm diameter TiO2 NTAs

improve mesenchymal stem cells

cellular activities, compared to bare

titanium and 100 nm diameter

[50]

HF+Acetic acid 5–20 – 30, 50, 70,

100

– – – 30 nm diameter TiO2 NTAs improve

osteoblasts adhesion, compared to

pure titanium 70 nm–100 nm TiO2

NTAs improve osteoblasts bone-

forming ability, compared to bare

titanium

[51]

Ethylene glycol+NH4F 30, 40, 50,

60, 70

60 74, 92, 112,

128, 148

2000 – – Improve mesenchymal stem cells

osteogenic differentiation as diameter

increases from 74 nm to 148 nm

[53]

HF 20 60 70 250 15 – Improve osteoblasts adhesion and

proliferation, compared to bare

titanium

[117]
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angiogenesis plays a vital role and runs through the overall osseointegration process. Besides, vascular invasion supplies
nutrients, oxygen, cytokines, growth factors, osteoblasts, osteoclast precursors and mesenchymal stem cells (MSCs) for
osteogenesis. The close relationship between osteogenesis and vascularization is called “angiogenic–osteogenic
coupling”.60

During cell migration, neutrophils and macrophages are considered as first arrivals to initiate an inflammatory
response, and clean the wound site and the necrotic tissue.16,61 The most recent work suggests that neutrophils are
essential in recruiting and orchestrating innate and adaptive immunocytes, especially recruiting MSCs at the initial
stage of bone regeneration.62 For macrophages, its polarization determines the fate of bone regeneration. Although
many investigations demonstrate diversity in macrophage polarization, which expanded M1/M2 phenotypes, M1 and
M2 macrophages are considered the main phenotypes in peri-implant immune response.63–65 Our preliminary results
suggest that M1/M2-related gene expression participates in bone metabolism around the implant; thus, our following
discussions will be focused on M1 and M2 macrophages. Macrophages can be polarized to proinflammatory M1
macrophages and anti-inflammatory M2 macrophages in response to the local microenvironment.64 The former
secrets proinflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1) to intensify
the inflammatory response.30 Inversely, the M2 phenotype participates in alleviating inflammatory response and
promoting tissue repair by releasing cytokines like interleukin-4 (IL-4) and interleukin-10 (IL-10).66 These two
phenotypes exhibit entirely different bioactivity. Long-persisting M1 macrophages may cause the formation of
fibrotic encapsulation which brings implant failure.16,67 However, M2 macrophages release chemokines and growth
factors involving transforming growth factor-β (TGF-β) and platelet-derived growth factor (PDGF) to facilitate the
migration, homing and osteogenic differentiation of MSCs.25,68

When MSCs from bone marrow arrive at the implant surface, they accelerate tissue healing and osteogenesis under
the existence of inflammatory cytokines and growth factors. They differentiate into different cell types including
osteoblasts, chondrocytes and fibroblasts depending on the biological microenvironment which is affected by the surface

Figure 1 Schematic illustration of the implant-bone osseointegration process. According to different pivotal biological processes, we define osseointegration into four
stages: protein adsorption, inflammatory cell adhesion/inflammatory response, additional relevant cells adhesion, and angiogenesis/osteogenesis. The biological process in
each stage has close relation with the titanium implant surface. It should be noted that although the stage “angiogenesis” is categorized as the last stage, it indeed runs
through the entire osseointegration process.

https://doi.org/10.2147/IJN.S362720

DovePress

International Journal of Nanomedicine 2022:171868

Wu et al Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


topological characteristics.23,30,42,59 The nanostructure on titanium implants that mimics the intrinsic topography of the
native bone makes MSCs and osteoblast-like cells adhesion on the surface, achieving contact osteogenesis, and
promoting osseointegration.22,23

The above-mentioned biological processes are strongly influenced by the topography of the titanium implant surface.
Previous studies show that the nano-topological characteristics of TiO2 NTAs on titanium implants provide favorable
conditions for osseointegration.16,30,42,58,69 To understand how TiO2 NTAs participate in the whole processes in osseointe-
gration, according to different pivotal biological processes, we define osseointegration into four stages: protein adsorption,
inflammatory cell adhesion/inflammatory response, additional relevant cells adhesion, and angiogenesis/osteogenesis.
Although the stage “angiogenesis” is categorized as the last stage, it actually runs through the entire osseointegration
process. In the following, the function of TiO2 NTAs will be discussed at each of the four stages, respectively.

The Impact of TiO2 NTAs on Titanium Implants on Osseointegration
Protein Adsorption
Protein adsorption on the titanium surface occurs immediately after forming a hydrated surface. Such a “protein layer” is
fundamental for the subsequent biological processes. For example, previous studies show that vitronectin accelerates the
attachment of osteoblast, and the fibrin functions for the recruitment of cells.70,71 It is also suggested that the adsorbed
vitronectin or fibronectin influences the initial adhesion and spreading of osteoblast-like cells and other cells.72,73 These
proteins at the interface between the implant surface and cells work as extracellular signals for the organization of cell
cytoskeleton.21 Therefore, the capability of the titanium implant to adsorb such proteins from blood fundamentally
determines the subsequent cell attachment and spreading.74

It is suggested that protein adsorption ability is closely related to the surface properties of titanium implants, such as
wettability and surface charge.14,21,75–78 Surface wettability is an essential factor for protein adsorption. In comparison
with a hydrophilic surface, previous studies show hydrophobic one can adsorb more protein.14,79 However, the quantity
of adsorbed proteins hardly determines the biological effect of the implant. Instead, the type of adsorbed proteins is
essential. For example, it is suggested that an enhanced quantity of adsorption of albumin on a hydrophilic surface,
results in anti-inflammatory cytokines expressed by macrophages. On the contrary, hydrophobic surface adsorbs more
IgG2, which results in more pro-inflammatory cytokines expressed by macrophages.80 Thus, the hydrophilic surface may
induce a better reparative effect through its adsorbed anti-inflammatory cytokines.

Taking TiO2 NTAs on titanium implant as an example, the protein adsorption is mainly attributed to its hydrophilic
surface and high surface area.14 For instance, TiO2 NTAs of 30–130 nm inner diameter exhibit more hydrophilic than
bare titanium, but such hydrophilicity weakens after being aged in the air for three months.49,78 In addition, TiO2 NTAs
of 90 nm diameter with hydrophilic surface adsorbs more vitronectin and fibrinogen than bare titanium.16 Moreover,
Gong et al report that hydrophilic TiO2 NTAs can selectively adsorb proteins, such as promoting bovine serum albumin
adsorption, and decreasing fibrinogen adsorption. The phenomenon attributes to the surface charge of different proteins
and the hydrophilicity, surface area and surface charge of TiO2 NTAs.49

The conformation of adsorbed proteins is impacted by the surface of TiO2 NTAs as well. For instance, it is
demonstrated that TiO2 NTAs of 30 nm diameter show noticeably weakened pro-inflammatory properties on macrophage
polarization, since the adsorbed fibronectin, which is reported to be involved in the manipulation of integrin-induced
macrophage behavior on biomaterial, displayed different conformations as the nanotube size changed, specific in the
changing of exposed Arg-Gly-Asp (RGD) domain.52,81 TiO2 NTAs of 30 nm diameter allow the maximum exposure of
RGD domain in fibronectin.52 Hence, TiO2 NTAs can regulate the protein conformation, which is also significant in
protein adsorption, even more critical than the adsorbed concentration.

To sum up, many studies on TiO2 NTAs have proved their favorable ability to adsorb proteins due to the hydrophilic
surface and tunable diameters.82 However, as the wettability of the surface is just one of the key factors that influence
protein adsorption, it is hard to conclude precisely the best degree of contact angle for protein adsorption. But according
to previous studies, the contact angle of TiO2 NTAs below 50 degrees shows better biological activity compared with
materials with larger contact angle.16,42,49,80 In addition to the surface wettability, the nanotube diameter also impacts
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protein adsorption. Considering that protein conformation plays a more significant role in protein function, we thus
believe that a diameter of about 30 nm is more suitable for the function of relevant protein.52

Inflammatory Cell Adhesion/Inflammatory Response
Along with protein adsorption, platelets from blood adhere to the titanium implant surface, secreting endogenous
substances to recruit more platelets to assemble irreversibly, forming blood clots with polymerized fibrin, and resulting
in the formation of peri-implant hematoma.83 It is suggested that TiO2 NTAs are able to accelerate platelets adhering,
aggregating, transforming, and spreading, but TiO2 NTAs of 50–100 nm diameter decrease platelets adhesion and
activation.26,84 In order to clarify the function of TiO2 NTAs in platelet adsorption in detail, Bai et al culture platelets on
TiO2 NTAs of different diameters. In comparison with platelets cultured on a bare titanium surface, platelets cultured on
TiO2 NTAs stretch more lamellipodia and filopodia, and more platelets are activated, releasing more growth factors
(PDGF-AB and TGF-β).42 The growth factors can further influence subsequent biological processes such as cell
recruitment, cell differentiation and macrophage polarization.85 These bioactive factors are essential in tissue regenera-
tion and the healing process, regarded as regulators of cell behaviors.64,85

Under the cytokines in the microenvironment, neutrophils and macrophages are recruited to clean the wound site, considered
the first arrival to the peri-implant.61 Neutrophils are activated by the interaction between their integrin and platelets,
phagocytosing foreign body and necrotic tissue.86,87 The latest study also shows the critical role of neutrophils in bone
regeneration, indicating their significant effect in recruiting and regulating immunocytes and MSCs at the initial bone
regeneration.62 So far, the impact of TiO2 NTAs on neutrophils behaviors is less studied. Macrophages also arrive around the
implant at an early time, and initiate the host body response.61 They are polarized to different phenotypes according to the diverse
local microenvironment, including blood clot conditions, reinforcing the inflammatory response (M1 macrophages) or accel-
erating tissue repair (M2 macrophages) by secreting different cytokines.64,88 M1 polarization during the early stage of bone
repairing determines the cytokines released by M2 macrophages, which means prolonged M1 polarization results in M2
macrophages releasing fibrosis-related cytokines, leading to the formation of fibrous encapsulation, even to the implant failure.89

To verify how TiO2 NTAs influence macrophages, macrophages are co-cultured with blood clots on TiO2 NTAs. More
macrophages tend to be polarized to theM2 phenotype, which is beneficial to tissue repair. RNA sequence analysis in vivo shows
a decrease in inflammatory-related signaling pathways and an increase in metabolism-related signaling pathways in TiO2

nanotubes groups, corresponding to in vitro experiments.42 Besides, this study also finds that different nanotube diameters
impactedmacrophages polarization to a different degree, and 15 nm is the optimal one for osteogenesis.42 Similarly, investigation
on TiO2 NTAs of 90–5000 nm diameter suggests the sample of 90 nm diameter remarkably allows the macrophages to extend
more filopodia from the cell body and induce more macrophages M2-polarization, decreasing the inflammatory factors
production and facilitating osteogenesis.16 In the above two works, we noticed that two different optimal diameters of TiO2

NTAs were reported. The latter proposes that 90 nm diameter is optimal for M2-polarization, while the former reports 15 nm is
optimal. We speculate that the reason is connected with the different purposes of the study. The latter study aims to clarify that
nanoscale-topography is more efficient onM2-polarization than microscale-topography by comparing 90 nm diameter and 5000
nm diameter, while the former study further focuses on the optimal nanoscale-topography for M2-polarization and compares the
diameter of 15 nm, 60 nm and 120 nm.16,42 Thus, for facilitating M2-polarization, we propose that the diameter of 15 nm in the
nanoscale investigation is a more precise nanotube parameter than 90 nm.42

As a biophysical signal, the effect of TiO2 NTAs on macrophages polarization relates to the change of relevant
signaling pathways. Peroxisome proliferator-activated receptor (PPAR) signaling pathway and RhoA/ROCK signaling
pathway have been confirmed as M2-polarization related pathway.90,91 After culture macrophages on 90 nm diameter
TiO2 NTAs, the PPAR signaling pathway and RhoA/ROCK signaling pathway are up-regulated. Meanwhile, pathways
related to M1-polarization, including mitogen-activated protein kinase (MAPK), Adenosine monophosphate-activated
protein kinase (AMPK) signaling pathway, TNF, nuclear factor light chain enhancer of activated B cells, and nucleotide-
binding oligomerization domain (NOD)–like receptor signaling pathways, are down-regulated after culture macrophages
on 90 nm diameter TiO2 NTAs.16,92–97 Therefore, TiO2 NTAs with suitable size can first regulate the formation of stable
inflammatory cell adhesion, and then regulate the bioactive factors’ secretion at the cellular level and signaling pathway
expression at the molecular level.
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These studies exhibit a significant connection between innate immunity and TiO2 NTAs. Besides, the important role of
TiO2 NTAs in adaptive immunity was discovered recently. TiO2 NTAs can activate T lymphocytes and induce the expression
of fibroblast growth factor-2 (FGF-2) by blocking key MAPK signaling pathways; however, the optimal nanotube diameter is
105 nm, rather than the optimal diameter of 15 nm for macrophage M2-polarization.42,98 M2-polarization facilitates
osseointegration, while T lymphocyte plays a vital role in fibrosis.99 Therefore, we can deeply investigate the difference in
the optimal TiO2 NTAs diameters of the two cells, and try to increase M2-polarization and decrease T lymphocyte activation,
to avoid fibrotic encapsulation forming around the implant and facilitate osseointegration.

To sum up, we propose that TiO2 NTAs of about 15 nm in diameter are more suitable for inflammatory regulation.
They can facilitate M2-polarization as well as prevent fibrous tissue formation.16,42,98 Figure 2 shows how TiO2 NTAs
manipulate inflammatory cell adhesion and inflammatory response.

Additional Relevant Cells Adhesion
The hematoma formed in initial inflammation is also regarded as a fibrillar scaffold for recruiting repairment-related cells
including MSCs, osteoblasts and fibroblasts under the effect of released cytokines and chemokines.42,68,87 The different
cells adhere to the titanium implant surface and play their specific roles, as discussed below.

It is widely accepted that cells can perceive and respond to the extracellular matrix (ECM) biochemical environment and
the ECM biophysical environment such as the nano-topological surface. After migrating to the biomaterial surface, MSCs and
other repairment-related cells are able to adapt to the nano-topography, and recognize the ECM proteins adsorbed on the
implant surface, such as collagens, vitronectins, fibronectins, and laminins, via a kind of cell transmembrane receptor proteins
that are referred as integrins.55 Integrins are responsible for cell-matrix adhesion, connecting the intracellular and extracellular
environment through their globular head domain. They can be combined with specific domains on ECM proteins such as RGD
domain.74,100 After integrins bind with the targeted ECM proteins, intracellular signaling pathways induce integrins to
assemble at the plasma membrane and change their conformation to influence the cytoskeletal organization.101 The integrin
assembling accelerates hundreds of cytoplasmic proteins and signaling molecules to move to the attachment site, enhancing
the adhesion strength and forming focal adhesions. The connection between the cell actomyosin system with ECM is formed
by focal adhesions that form a “gear box” to perceive mechanical forces of ECM and achieve mechanotransduction.102

Subsequently, the cascade reaction influences cell behaviors like migration and spreading.74

Studies have proved that TiO2 NTAs have a favorable function for cell adhesion by culturing different cells on TiO2 NTAs,
and have shown that the nanostructure of TiO2 NTAs has a positive role in accelerating adhesion of migrated MSCs and
osteoblasts.103 However, MSCs show diverse optimal diameters for cell adhesion and osteogenic differentiation, respectively,

Figure 2 Schematic illustration showing the inflammatory cell adhesion and inflammatory response on TiO2 NTAs, mainly includes biological behaviors of blood platelet,
neutrophil, macrophage and T lymphocyte. TiO2 NTAs can manipulate these biological behaviors by multi-dimensional regulation including diameter, spacing, etc.
Abbreviations: TiO2 NTAs, TiO2 nanotube arrays; M1, M1 macrophage; M2, M2 macrophage; MSCs, mesenchymal stem cells; FGF-2, fibroblast growth factor-2.
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after culturing on TiO2 NTAs of different diameters. For example, MSCs, cultured on TiO2 NTAs of 30 nm diameter, exhibit
promoted cell adhesion and proliferation without noticeable osteogenic differentiation, but on TiO2 NTAs of 200 nm diameter,
MSCs show promoted osteogenic differentiation but impaired cell adhesion.104 Considering that cell adhesionmainly relies on
the biophysical signal and ECM proteins, studies confirm the synergistic effect of TiO2 NTAs topological signal and pre-
adsorbed proteins (fibronectin, vitronectin, and laminin) to promote MSCs’ adhesion.82 In addition, TiO2 NTAs, solely as
a kind of biophysical signal, can affect MSCs’ adhesion without adsorbed proteins, which may be attributed to the hollow
structure of TiO2 NTAs, providing anchoring sites for cell attachment.105 Such configuration makes focal adhesion complex
and F-actin stronger and more stable, compared to that on bare titanium.53 Besides, the size and complexity of focal adhesion
complex further grow as adhesion time increases.106

Similar to MSCs, osteoblasts’ adhesion is intensified on TiO2 NTAs as well.45,107 Immunofluorescence and SEM
analysis show more extensive focal adhesion and wider filopodia after culturing osteoblasts on TiO2 NTAs of 15 nm
diameter, compared to that on 20–100 nm diameter and bare titanium.45 It has been proved that the osteoblast adhesion is
related to the PI3K-Akt-mTOR pathway, Ras-MAPK-ERK1/2 pathway and p130Cas-RhoA GTPase pathway,107 which
are mainly functioning in response to extracellular biophysical signal through integrins. In addition to diameter, the
lateral spacing of TiO2 NTAs also influences osteoblast behaviors. Osteoblasts cultured on nanotubes of 80 nm spacing
display slightly less spreading and focal adhesion, compared with nanotubes of 18 nm spacing.44 Such phenomenon can
be attributed to the reduced surface area for cell attachment on the top wall surface as the spacing increases.44

Besides, macrophages, adhered to TiO2 NTAs of 15 nm diameter, stretch a high density of filopodia since the
topological signal up-regulated RhoA family protein expression in macrophages.42,107,108

To conclude, TiO2 NTAs of 15–30 nm diameter have a positive effect on repairment-related cell adhesion.42,45,104 In
detail, cells cultured on TiO2 NTAs form intensified focal adhesion and stretch filopodia from the cell body.45,53 Such
structures intensify cell adhesion, and further lay a foundation for subsequent contact osteogenesis on the implant
surface, facilitating osseointegration.

Angiogenesis/Osteogenesis
Protein adsorption, inflammatory response and cell adhesion are indispensable during osseointegration, which can be
considered as the foreshadowing of angiogenesis and osteogenic differentiation. Angiogenesis and osteogenesis can also
be impacted by TiO2 NTAs (Figure 3).

Figure 3 Schematic illustration showing the angiogenesis and osteogenesis on TiO2 NTAs. For osteogenesis, MSCs and osteoblasts cultured on TiO2 NTAs are manipulated
by two aspects: nano-topological signal and cytokines secreted by macrophage, and show stretched cell morphology and promoted ALP, OCN, OPN expression. For
angiogenesis, there is little research directly investigating the angiogenesis function of TiO2 NTAs in bone implants, but endothelial cells on TiO2 NTAs show high activity,
suggesting the potential to promote angiogenesis in osseointegration. Angiogenesis and osteogenesis on TiO2 NTAs can also manipulate under its multi-dimensional
regulation, such as diameter regulation and spacing regulation.
Abbreviations: TiO2 NTAs, TiO2 nanotube arrays; OPN, osteopontin; OCN, osteocalcin; ALP, alkaline phosphatase.
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Angiogenesis starts from inflammatory responses, providing a healing site with nutrients, cytokines, growth factors
and chemokines, removing waste products and setting up access for cell recruitment.60 New blood vessel formation is
essential in osteogenesis, and runs through the whole process.109 However, the process is complicated, and involves
various bioactive factors and biological reactions.110 The TiO2 NTAs are applied to cardiovascular stents, where excellent
endothelial cell activity is required. Though little research on the angiogenic application of TiO2 NTAs in bone implants,
it is found that the TiO2 NTAs can obviously promote endothelial cell spreading and migration in the application to
vascular stents, through which we can speculate the angiogenesis potent of TiO2 NTAs.111 Culturing bovine aortic
endothelial cells (BAECs) on TiO2 NTAs, in comparison with cells on flat titanium, the cells appear prominently more
elongated morphology, larger spreading area and increased cell migration ability, with more protrusions forming.112,113

Noticeably, these protrusions from the cell body form broad cellular interconnections, suggesting an active state for cell
function and intercellular signal delivery, which contributes to angiogenesis.114 An essential process in angiogenesis is
the capability of viable endothelial cells to grow and proliferate in response to different biomaterial surfaces. Thus, the
increased endothelial activity on TiO2 NTAs may promote new blood vessel formation, and further accelerate various
biological mediator transportation and cell recruitment in the peri-implant microenvironment, promoting osteogenesis
indirectly.115

Osteogenesis is the crucial stage in osseointegration. Osteogenic associated cells such as MSCs and osteoblasts are
recruited to the implant position and adhesion on the implant surface, secreting osteoid and mineralizing. The key to
osseointegration is to promote osteogenesis on the implant surface, achieving contact osteogenesis and avoiding the
formation of fibrous encapsulation.23,24 TiO2 NTAs can directly affect osteoblasts as an extracellular mechanical signal,
transmitting into intracellular signals and regulating cell behaviors. For example, TiO2 NTAs made osteoblasts stretch
well with a high amount of filopodia, and the filopodia could grow into nanotube pores.116,117 It suggested that the
surface nano-pattern plays a guiding role in cell adhesion and spreading. An excellent cell stretching and spreading
condition indicates a good condition for cell function. Thus, the stretched osteoblasts morphology hinted at better
osteogenic ability on TiO2 NTAs, with enhanced alkaline phosphatase (ALP) activity, mineral deposition, and osteogen-
esis-related gene expression.45,50,117,118

Furthermore, researchers make use of the adjustability of TiO2 NTAs, to explore the most suitable diameter for cell
adhesion and osteogenic differentiation. When culturing MSCs and osteoblasts on TiO2 NTAs of different diameters,
respectively, Park et al found that they both performed better osteogenic differentiation on TiO2 NTAs of 15 nm diameter
compared with cell culture on 100 nm TiO2 NTAs.45,50 However, Oh et al report that MSCs cultured on 100 nm diameter
TiO2 NTAs exhibit an elongated morphology with better osteogenic differentiation ability compared with MSCs cultured
on 30 nm diameter nanotubes. They further perform quantitative real-time PCR analysis and immunofluorescent staining
of osteopontin (OPN) and osteocalcin (OCN), connecting the elongated morphology with osteogenic differentiation. The
result confirms the better osteogenic differentiation guiding function of 100 nm diameter TiO2 NTAs than 30 nm
diameter TiO2 NTAs and bare titanium.118 The results of the two studies on the optimal diameter for osteogenesis
seem to be contradictory. Regarding the different opinions on the optimal diameter, from our perspective, in Park’s
research, the high mineralization ability on nanotubes of 15 nm diameter is much related to its high quantity of MSCs,
according to the cell adhesion, proliferation and migration in the study. Besides, Park et al used rat MSCs for the
experiment, while Oh et al used human MSCs. Previous studies confirm that the same cell from different species has
distinct cell behaviors.119,120 Hence, the MSCs derived from humans and rats also affect the results due to the different
osteogenic differentiation abilities.

Additionally, the lateral spacing of TiO2 NTAs can regulate osteogenic differentiation. Osteoblasts cultured on TiO2

NTAs of 80 nm spacing show a significant increase of ALP, OPN and OCN expression than TiO2 NTAs of 18 nm
spacing, suggesting remarkable high osteogenic activity.44

In addition to the direct physical signal, macrophages co-cultured on TiO2 NTAs can also affect MSCs indirectly. To
compare MSCs differentiation in different conditions, MSCs are first cultured with TiO2 NTAs directly, and only found
a slightly increased ALP activity. Subsequently, cytokines collected from macrophages cultured on the same TiO2 NTAs
are added to the cultured MSCs. And ALP activity, osteogenic gene expression and mineralization remarkably increase,
compared to the same process on bare titanium.16 According to the study, we speculate that TiO2 NTAs also accelerate
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osteogenic differentiation through cytokine modulation, as we reviewed above in inflammatory cell adhesion and
inflammatory response.42,89

According to the direct and cytokines-induced indirect effect of TiO2 NTAs on osteogenesis, we propose that TiO2

NTAs of about 100 nm diameter are suitable for osteogenesis.16,118

Conclusion and Future Perspectives
In conclusion, we have summarized the impact of TiO2 NTAs on osseointegration at four different stages, respectively. In
the first stage, TiO2 NTAs not only impact the type of adsorbed proteins, but change the conformation of adsorbed
protein. In the second stage, TiO2 NTAs mainly manipulate inflammatory response by regulating platelet behaviors,
macrophage polarization and T lymphocyte behaviors. In the third stage, the repairment-related cells, including MSCs
and osteoblasts, adhere to TiO2 NTAs surface, stretch filopodia from the cell body, and form intensified focal adhesion.
The last stage includes angiogenesis and osteogenesis. Although angiogenesis is closely linked with osteogenesis, it
indeed begins from the inflammatory stage, playing an essential role in cell recruitment and biological mediator
transportation. For osteogenesis, osteogenic differentiation is manipulated by TiO2 NTAs, with promoted osteogenesis-
related gene expression, ALP activity and mineralization. More importantly, the above-mentioned biological processes
can be controlled as nanotube diameter and spacing change.

Based on this, we speculate that, in addition to diameter and spacing, other parameters of nanotube such as length and
wall thickness also possess the potential to regulate biological processes on TiO2 NTAs, and we call it “multi-
dimensional regulation.”

Although many experiments are performed to investigate TiO2 NTAs on titanium implants, from our perspective,
these studies have some limitations. Firstly, they mainly focused on a particular stage during osseointegration, instead of
regulating the entire process of osseointegration. Secondly, as a nanomaterial with multi-dimensional regulation
potential, TiO2 NTAs possess numerous adjustable parameters. Before we take advantage of the nanotube parameters,
we need to figure out the corresponding biological effect using different TiO2 NTAs. However, present studies focus the
majority on the diameter, and do not pay enough attention to the other parameters such as length, wall thickness and
spacing. From another perspective, most in vivo experiments in current studies grow TiO2 NTAs on the smooth surface
of a titanium plate or rod. However, the clinically used implants with thread are more challenging to be modified with
TiO2 NTs. These shortcomings limit the clinical application of TiO2 NTAs in implant surgery.

To achieve highly efficient regulation, we address the assumption to manipulate the entire osseointegration by multi-
dimensional regulation. Several aspects need to be noted in the following studies.

Firstly, when we focus on diverse stages of osseointegration, we notice that there is no single biological process, since
every biological process in osseointegration affects mutually. Therefore, we need to keep an integrated perspective to
achieve one-to-multiphase efficient regulation.

Then, how to achieve one-to-multiphase regulation in osseointegration becomes a significant challenge. In our
opinion, immunoregulation may be a suitable way for such highly efficient osseointegration adjustment. Researchers
have proved that immunology is an indispensable factor in bone regeneration, and importantly, the immunology
microenvironment seems to be the common regulatory factor in the almost whole process of osseointegration.121 On
this basis, we can adopt a new idea to design TiO2 NTAs on titanium implants. Instead of directly facilitating MSCs or
osteoblast-like cell adhesion and differentiation, it is more balancing to adjust the initial inflammatory response to
establish an appropriate microenvironment around the implant, and subsequently, promote angiogenesis and osteogenesis
indirectly.

Thus, the immunomodulation function of TiO2 NTAs may become a significant research direction for designing a new
generation of implant biomaterial with outstanding osseointegration properties. As the anodization technique develops,
we can even customize personalized TiO2 NTAs parameters on titanium implant surfaces in different cases, to achieve
more efficient osseointegration. Such efficient regulation needs to be reached by further investigations on multi-
dimensional regulation. Specifically, more studies are required to investigate the coordinating combination of TiO2

NTAs parameters including diameter, spacing, wall thickness and length. The TiO2 NTAs in this review are taken as an
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example to illustrate the function of nanostructures on the titanium implant. We hope the underlying mechanism
discussed here can be applied to other surfaces.
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