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Most genomic predictionmodels are linear regressionmodels that assume continuous and
normally distributed phenotypes, but responses to diseases such as stripe rust (caused by
Puccinia striiformis f. sp. tritici) are commonly recorded in ordinal scales and percentages.
Disease severity (SEV) and infection type (IT) data in germplasm screening nurseries
generally do not follow these assumptions. On this regard, researchers may ignore the lack
of normality, transform the phenotypes, use generalized linear models, or use supervised
learning algorithms and classification models with no restriction on the distribution of
response variables, which are less sensitive when modeling ordinal scores. The goal of this
research was to compare classification and regression genomic selection models for
skewed phenotypes using stripe rust SEV and IT in winter wheat. We extensively
compared both regression and classification prediction models using two training
populations composed of breeding lines phenotyped in 4 years (2016–2018 and 2020)
and a diversity panel phenotyped in 4 years (2013–2016). The prediction models used
19,861 genotyping-by-sequencing single-nucleotide polymorphism markers. Overall,
square root transformed phenotypes using ridge regression best linear unbiased
prediction and support vector machine regression models displayed the highest
combination of accuracy and relative efficiency across the regression and classification
models. Furthermore, a classification system based on support vector machine and
ordinal Bayesian models with a 2-Class scale for SEV reached the highest class
accuracy of 0.99. This study showed that breeders can use linear and non-parametric
regression models within their own breeding lines over combined years to accurately
predict skewed phenotypes.
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1 INTRODUCTION

Genomic selection (GS) is posed to increase genetic gain and
reduce cycle time for complex agronomic traits that are difficult
to phenotype and analyze (Meuwissen et al., 2001). With the
advent of high-throughput genotyping, it is now feasible to
develop and implement GS models for categorical/ordinal
phenotypes that are common in most breeding programs and
often difficult to analyze. The difficulty in phenotyping and
analysis can be due to the traits’ genetic complexity,
environmental dependency to display variation, and the
inability of statistical models to model phenotypes adequately.
Most GS models are linear regression models that assume
continuous and normally distributed phenotypes (Montesinos-
López et al., 2015c).

When faced with data that do not follow the assumption of a
linear model, researchers have several options. They may either
ignore the lack of normality, transform the phenotypes, use
generalized linear models (GLMs), or use machine learning
(ML) algorithms and classification models. Machine learning
models have no restriction on the distribution of response
variables, which are less sensitive when modeling ordinal
scores (Montesinos-López et al., 2015a; González-Camacho
et al., 2018). Most GS models treat disease resistance as
continuous values and utilize regression models and
transformations for prediction whereas only a few studies have
used classification methods (Ornella et al., 2012; Ornella et al.,
2014; Rutkoski et al., 2014; Muleta et al., 2017).

When the number of categories is large and the data follow
more of a normal distribution, the ordinality of data can be
ignored (Montesinos-López et al., 2015b). However, ignoring the
lack of normality and using linear regression models imposes
various problems. Linear regression models are limited to
modeling additive effects only, whereas machine learning
models account for both non-additive and epistatic genetic
effects (Riedelsheimer et al., 2012). Modeling only additive
effects on quantitative resistance to stripe rust is not a major
issue, nonetheless, due to previous studies showing mainly
additive effects of high-temperature adult-plant (HTAP)
resistance to stripe rust (Chen et al., 1995a; Chen et al.,
1995b). Ultimately, linear regression models assume
continuous and normally distributed phenotypes, whereas
machine learning models are not restricted to a certain
distribution of response variable and this causes an issue on
the analysis of traits (González-Camacho et al., 2018).

Data transformation is another approach used to deal with
skewed and ordinal trait information. Logarithmic or square root
transformations are commonly implemented to transform data
for small sample sizes (Montesinos-López et al., 2015c), where
they are considered standard procedures to stabilize variance, but
fail to normalize inflated count data (O’Hara and Kotze, 2010;
Montesinos-López et al., 2015b). Moreover, transforming data
results in a loss of accuracy and power in models, especially in a
small sample size (Montesinos-López et al., 2015a). When
transformations are used on count data with a high number of
zeros causing overdispersion, transformations may not be able to
create a normal distribution (Montesinos-López et al., 2016).

Another issue with using transformations is the resulting negative
predicted values which are not plausible for disease resistance
scores.

Another approach is to use GLMs, which accommodate non-
normal data with heterogenous variance and correlated
observations (Montesinos-López et al., 2015a; Montesinos-
López et al., 2015b). GLMs provide more sensible results and
have greater power to identify model effects as statistically
significant (Montesinos-López et al., 2015b). Poisson and
negative binomial regression models are the most common
GLMs used for count and ordinal data (Montesinos-López
et al., 2015c). GLMs model a function of the response mean as
a linear function of the coefficients rather than modeling y as a
linear function. These models have advantages over linear models
due to their ability to model a skewed non-negative discrete
distribution towards lower numbers as seen in disease resistance
phenotypes (Montesinos-López et al., 2016). Several studies have
shown the feasibility of integrating GLM parametric approaches
into GS models such as Bayesian logistic ordinal regression
(BLOR), threshold genomic best linear unbiased predictor
(TGBLUP), and Bayesian mixed-negative binomial (BMNB)
genomic regression (Montesinos-López et al., 2015a;
Montesinos-López et al., 2015b; Montesinos-López et al.,
2015c, Montesinos-López et al., 2016) and observed that the
ordinal models present a viable alternative for predicting ordinal
traits.

The last approach is to use machine learning algorithms, and
classification models with no restriction on the distribution of
response variables are less sensitive whenmodeling ordinal scores
while also accounting for epistatic effects (Ornella et al., 2014;
González-Camacho et al., 2018). Support vector machines
(SVMs) previously displayed higher performance for relative
efficiency and Cohen’s kappa coefficient than traditional
regression models such as Bayesian LASSO, Ridge Regression,
and Reproducing Hilbert spaces (Ornella et al., 2014; González-
Camacho et al., 2018). For the classification models, Ornella et al.
(2014) further showed the superiority of SVM as the best-
performing model compared to random forest (RF).
Additionally, classification models displayed an advantage in
selecting the top performing lines.

Resistance to diseases, such as stripe rust (caused by
Puccinia striiformis Westend. f. sp. tritici Erikss.) in wheat
(Triticum aestivum L.) is commonly recorded in ordinal scales
and percentages that do not follow the assumptions of linear
regression models (Montesinos-López et al., 2015a; González-
Camacho et al., 2018). The unbalanced, skewed distribution
of resistant phenotypes is another issue for disease resistance
traits in breeding programs. For example, in most wheat
breeding programs, disease resistance is selected early
(i.e., headrow selection before yield trials) in the breeding
process. Consequently, this early selection and screening
process skews the lines in disease nurseries and yield
trials towards mostly resistant lines. Therefore, not only
are disease-resistant traits commonly expressed in ordinal
and categorical scales, but they can also be very skewed
towards resistance and no longer follow a normal
distribution.
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Stripe rust is one of the most devastating diseases of wheat
worldwide (Chen, 2020) and is especially destructive in the
western United States (Chen et al., 1995b; Rutkoski et al.,
2014; González-Camacho et al., 2018; Liu et al., 2019) causing
more than 90% yield losses in fields planted with susceptible
cultivars (Liu et al., 2020). The use of resistant varieties and
fungicide applications are the primary methods to control stripe
rust (Chen et al., 1995b; Liu et al., 2020). Quantitative stripe rust
resistance, also known as adult-plant resistance (APR) or HTAP
resistance, is usually a non-race specific resistance associated with
durable resistance with some genes being effective for more than
60 years (Klarquist et al., 2016). APR is conferred by different
numbers of loci with varying effects and often displays partial
resistance, which makes it difficult to incorporate into new
cultivars (Liu et al., 2019). Therefore, APR must be improved
over multiple cycles of selection and can be approached similarly
to other agronomic traits (Rutkoski et al., 2014; Poland and
Rutkoski, 2016; González-Camacho et al., 2018). GS
approaches would be able to capture the additive effects of
APR and are therefore relevant for accumulating favorable
alleles for rust resistance (Rutkoski et al., 2014; Michel et al.,
2017).

However, most GS studies treat disease resistance as
continuous values and utilize regression models and
transformations for prediction whereas only a few studies have
used classification methods (Ornella et al., 2012; Ornella et al.,
2014; Rutkoski et al., 2014; Muleta et al., 2017). Therefore, this
study presents empirical research to 1) evaluate GS methods

using all transformations, GLMs, and non-parametric models for
handling ordinal categorical phenotypes; and 2) implement these
methods into selected and unselected training populations for
predicting stripe rust resistance. This study identified the most
accurate methods for dealing with complex phenotypes in the
context of disease resistance in winter wheat.

2 MATERIALS AND METHODS

2.1 Phenotypic Data
TheWashington State University (WSU)WinterWheat Breeding
Program takes stripe rust notes every year to select for stripe rust-
resistant lines. Two training populations were used to compare
the different methods. The first training population consists of F3:
5 breeding lines (BL) and doubled-haploid (DH) unreplicated
trials in Pullman and Lind, WA planted in 2016–2018 and 2020
growing seasons evaluated for stripe rust responses (Table 1).
Due to the unreplicated nature of the single plots, each trial in the
BL consisted of unique lines, which resulted in a total of 2,634
lines (1,009 in Lind and 1,625 in Pullman) over all years and
locations. The BL population was subjected to stripe rust
resistance screening and culling in headrows the previous year
in unreplicated trials and therefore represents our prior selected
population. The second training population consisted of a diverse
association mapping panel (DP) with 475 lines evaluated in
unreplicated trials in Central Ferry and Pullman, WA from
2013 to 2016. The DP consisted of varieties from various

TABLE 1 |Study populations for stripe rust infection type and disease severity for the diversity panel (DP) and breeding line (BL) training populations phenotyped from 2013 to
2016 and 2016–2020, respectively.

Location Triala Year Individuals ITb

1
SEVc

1
IT 2 SEV 2 IT 3 SEV 3

Central
Ferry

DP 2013 475 X X X X X X

Pullman DP 2013 475 X X X X - -
Central
Ferry

DP 2014 475 X X - - - -

Pullman DP 2014 475 X X X X X X
Central
Ferry

DP 2015 475 X X X X X X

Pullman DP 2015 475 X X X X X X
Central
Ferry

DP 2016 475 X X X X X X

Pullman DH 2016 136 X X X - - -
Pullman F5 2016 173 X X X - - -
Lind F5 2017 171 X X X - - -
Lind DH 2017 29 X X X - - -
Pullman DH 2017 34 X X X X X X
Pullman F5 2017 506 X X X X - -
Lind DH 2018 448 X X - - - -
Pullman DH 2018 732 X X X X X X
Pullman F5 2018 65 X X X X X X
Lind DH 2020 373 X X - - - -

aTrial: DP: Diversity panel; DH: Doubled-haploid.
bIT: Infection type.
cSEV: Disease severity.
X: Indicates measurement recorded.
-: No measurement recorded.
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breeding programs in the Pacific Northwest region of the US and
represented our unselected population.

The disease traits measured were stripe rust infection type (IT)
and stripe rust disease severity (SEV). The IT was based on a 0–9
scale (resistant: 0–3; intermediate: 4–6; susceptible: 7–9) (Line
and Qayoum, 1992), whereas SEV was measured as the
percentage of the total area of the leaf infected using a
modified Cobb Scale (Peterson et al., 1948). Stripe rust data
were dependent on natural infection and incidence at the time of
observation. Some trials had three observations and were
identified with sequential numbers. The trials with only one
observation were recorded right after anthesis to measure
stripe rust responses at the adult-plant stage. The reason there
was only one observation was that stripe rust was not present in
the field at earlier growth stages. If there were three
observations, stripe rust was present in the field at earlier
growth stages where the first, second, and third scores were
taken soon after flag leaf emergence, after anthesis, and at early
milk stage, respectively. Entries with a high infection type in the
first observation, but a low infection type in the following
observations may indicate that they have a HTAP resistance
(Chen, 2013). However, due to the nature of APR being effective
in the adult stage and that not all trials had multiple recordings,
only the last observation for each trial was used to measure the
stripe rust response.

2.2 Phenotypic Adjustments
In order to compare the regression and classification strategies,
we used multiple methods of phenotypic adjustments. For the
regression models, standard adjusted means were calculated
considering the field design used. The ability of ridge
regression best linear unbiased prediction (rrBLUP), GLM,
and SVM regression (SVMR) to predict the standard and
transformed [square root (SQRT), LOG, and boxcox (BC)
transformed] adjusted means was then compared (Table 2).
For the classification models, Bayesian and SVM classification

(SVM) models were used to predict the full-scale categories for IT
and SEV with the standard adjustments for field design as our
control values (Table 2). We then reduced both traits using
multiple number of classes to determine the scenario resulting
in the highest accuracy for breeding program implementation.

For the field design adjustment for controls for both the
regression and classification phenotypic adjustments, a two-
step adjusted means method was used, in which a linear
model was implemented to adjust both IT and SEV means
within and across environments. Then, a GS model was used
to calculate genomic estimated breeding values (GEBVs; Ward
et al., 2019). Adjusted means from the stripe rust data collected in
the unreplicated trials were adjusted using residuals calculated for
the unreplicated genotypes in individual environments and
across environments using the modified augmented complete
block design model (ACBD; Federer 1956; Goldman 2019). The
adjustments were made following the method implemented in
Merrick and Carter (2021), as follows:

Yij � μ + Blocki + Checkj + εij (1)
where Yij is the phenotypic value for the trait of interest of the ith
block and jth replicated check cultivar (i = 1, . . . ,I,j = 1, . . . ,J); μ is
the mean effect; Blocki is the fixed effect of the ith block; Checkj is
the fixed effect of the jth replicated check cultivar; and εij are the
residual errors with a random normal distribution of
ε ~N(0, σ2ε ). For adjusted means across environments, the
model is as follows:

Yijk � μ + Blocki + Checkj + Envk + Blocki: Envk

+ Checkj: Envk + εik (2)
where Yij is the phenotypic value for the trait of interest of the ith
block and jth replicated check cultivar in the kth environment (i =
1, . . . ,I, j = 1, . . . ,J, k = 1, . . . , K); μ is the mean effect; Blocki is the
fixed effect of the ith block; Checkj is the fixed effect of the jth
replicated check cultivar; Envk is the fixed effect of the kth

TABLE 2 | Regression and classification genomic selection models for stripe rust infection type (IT) and disease severity (SEV) in winter wheat.

Model Type Description References

rrBLUP Regression Linear ridge regression model using untransformed phenotypes Endelman (2011)
SQRT
rrBLUP

Regression Linear ridge regression model using square-root (SQRT) transformation Endelman (2011)

LOG rrBLUP Regression Linear ridge regression model using logarithmic (LOG) transformation Endelman (2011)
BC rrBLUP Regression Linear ridge regression model using Box-Cox (BC) transformation Endelman (2011)
GLM Regression Generalized linear model (GLM) with a Poisson distribution Hastie et al. (2016)
SVMR Regression Non-parametric regression support vector machine (SVMR) using a radial kernel Karatzoglou et al. (2019)
BOR Classification Bayesian ordinal regression (BOR) model using the full-scale IT (0–9) and SEV (0–100%) Pérez and de los Campos,

(2014)
BOR 3-Class Classification Bayesian ordinal regression (BOR) model using the reduced three class scale IT (0–2) and SEV (0–2) Pérez and de los Campos,

(2014)
BOR 2-Class Classification Bayesian ordinal regression (BOR) model using the reduced two class scale IT (0–1) and SEV (0–1) Pérez and de los Campos,

(2014)
SVM Classification Non-parametric classification support vector machine (SVM) using a radial kernel using the full- scale IT

(0–9) and SEV (0–100%)
Karatzoglou et al. (2019)

SVM 3-Class Classification Non-parametric classification support vector machine (SVM) using a radial kernel using the reduced three
class scale IT (0–2) and SEV (0–2)

Karatzoglou et al. (2019)

SVM 2-Class Classification Non-parametric classification support vector machine (SVM) using a radial kernel using the reduced two
class scale IT (0–1) and SEV (0–1)

Karatzoglou et al. (2019)
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environment; and εijk are the residual errors with a random
normal distribution of ε ~N(0, σ2ε ).

The BLUPs for heritability were calculated for each trial and
across trials using a mixed linear model for the full augmented
randomized complete block design in a single environment and is
as follows:

Yijk � μ + Blocki + Checkj + Genl(j) + εijk, (3)
where Yijk is the phenotypic value for the trait of interest of the lth
unreplicated genotype nested in the jth replicated check cultivar
of the ith block (i = 1, . . . ,I, j = 1, . . . ,J, k = 1, . . . ,K); μ is the mean
effect; Blocki is the random effect of the ith block with the
distribution Block ~N(0, σ2Block); Checkj is the fixed effect of
the jth replicated check cultivar; Genl(j) is the unreplicated
genotype l in the jth check with the distribution
Gen ~N(0, σ2Gen); and εijk are the residual errors with a
random normal distribution of ε ~N(0, σ2ε ). The full model
across environments is as follows:

Yijkl � μ + Blocki + Checkj + Genl(j) + Envk + Blocki: Envk
+Checkj: Envk + Genl(j): Envk + εijkl (4)

where Yijkl is the phenotypic value for the trait of interest of the
lth unreplicated genotype nested in the jth replicated check
cultivar of the ith block and in the kth environment (i = 1, . . .
,I, j = 1, . . . ,J,k = 1, . . . ,K, l = 1, . . . ,L); μ is the mean effect; Blocki
is the random effect of the ith block with the distribution
Block ~N(0, σ2Block); Checkj is the fixed effect of the jth
replicated check cultivar; Genl(j) is the random effect of the
genotype l in the jth replicated check cultivar with the
distribution Gen ~N(0, σ2Gen); Envk is the random effect of the
kth environment with the distribution Env ~N(0, σ2Env); and εijkl
are the residual errors with a random normal distribution of
ε ~N(0, σ2ε ). After adjustments were made, values outside of the
0–9 (IT) and 0–100 (SEV) scales were rounded back to 0–9 and
0–100, respectively, to avoid negative values for log
transformations or Poisson distributions and to have the
standard adjusted means for all comparisons.

Broad-sense heritability on a genotype-difference basis was
calculated using the variance components from the models (3)
and (4) implemented by Merrick and Carter (2021) and using
BLUP for both individual environments and across environments
(Cullis et al., 2006):

H2
Cullis � 1 − �vBLUPΔ..

2σ2̂g
(5)

where σ2g and �V BLUP are the genotype variance and mean
variance of a difference between two BLUPs for the genotypic
effect BLUPs, respectively (Schmidt et al., 2019). Trial evaluations
were compared using general summary statistics, coefficient of
variations (CV), skewness, kurtosis, and the non-parametric
Kruskal–Wallis test using the R package “ggpubr” (R Core
Team, 2018; Kassambara and Kassambara, 2020).

2.3 Genotypic Data
Wheat lines were genotyped using genotyping-by-sequencing
(GBS; Elshire et al., 2011) through the North Carolina State

University (NCSU) Genomics Sciences Laboratory in Raleigh,
North Carolina (https://research.ncsu.edu/gsl/) using a two-
enzyme (PstI/MspI) digestion protocol (Poland and Rife,
2012). Genomic DNA was isolated from individual seedlings
at the one- to three-leaf stage using Qiagen BioSprint 96 Plant kits
and the Qiagen BioSprint 96 workstation (Qiagen, MD,
United States). Genotyping by sequencing was conducted
using Illumina HiSeq® 2,500 and NovaSeq 6,000. Sequences
were aligned to the Chinese Spring International Wheat
Genome Sequencing Consortium (IWGSC) RefSeq v1.0
(Appels et al., 2018) using the Burrows-Wheeler Aligner
(BWA) 0.7.17 (Li and Durbin, 2009). GBS-derived single-
nucleotide polymorphism (SNP) markers were called using
TASSEL-GBS v2 SNP calling pipeline in TASSEL v5.2.35
(Bradbury et al., 2007; Glaubitz et al., 2014). Markers with
>20% missing data, minor allele frequency (MAF) <5%, and
those that were monomorphic were removed. Imputation of
missing genotypes was conducted using Beagle 5.0 (Browning
et al., 2018) and markers with <5% MAF were further excluded.
The remaining markers were binned together based on a linkage
disequilibrium threshold value of 0.80 (Ward et al., 2019). The
reduced genotype matrix was computed using JMP genomics
version 9 (SAS Institute, Inc, 2011). Principal components
analysis (PCA) using the SNP data was performed using
“prcomp” and a biplot with k-mean clusters was created using
the “autoplot” packages in R. Cluster number for k-means were
calculated according to the elbow method using a scree plot with
the optimal number of clusters identified when the total intra-
cluster variation was minimized.

2.4 Regression Models
2.4.1 Transformations
Transformations using SQRT, LOG, and BC approaches were
compared to determine the optimal method for phenotypic
adjustment for skewed phenotypes (Table 2). The BC
transformations were conducted using the “forecast”
package (Hyndman and Khandakar, 2008) that identifies
optimal lambda values using the “BoxCox.lambda” function
in R.

2.4.2 rrBLUP Model
rrBLUP was used as the standard GS model for comparing the
predictive ability of the adjusted means and transformed data.
The rrBLUP was selected due to its high predictive performance
for stripe rust resistance (Table 2; Rutkoski et al., 2014; Arruda
et al., 2016; Poland and Rutkoski 2016; Muleta et al., 2017;
Merrick et al., 2021). The model follows the basic mixed linear
model that treats the effects of markers as random effects as
described by Endelman (2011):

yi � WGu + εi (6)
where u ~ N(0, Iσ2u) is a vector of marker effects; yi is a vector
of phenotypes; G is the genotype matrix; and W is the
design matrix for y. The marker effects are then calculated
using û � (Z′Z + λI)−1Z′y with the ridge parameter of
λ � σ2ε /σ

2
u, which is the ratio of the residual and marker

variances.
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2.4.3 Generalized Linear Model
The GLM was implemented using “Glmnet” with a Poisson
distribution (Table 2; Hastie et al., 2016). Glmnet fits a GLM
via penalized maximum likelihood with the elastic net penalty
computed at grid values on the log scale for the regularization
parameter lambda. Glmnet solves the equation:

min
β0 ,β

1
N
∑N
i�1
wil(yi, β0 + βTxi) + λ[(1 − α)β2

2/2 + αβ1
], (7)

over a grid of values of λ; l(yi − ηi)2 is the negative log-likelihood
of i. The elastic net penalty is controlled by α and bridges the
game between lasso regression (α � 1) and ridge regression
(α � 0), with λ controlling the penalty. yi is a vector of
phenotypes; β is the genotype matrix; x is the design matrix
for y. Poisson regression is used to model count data under the
assumption of Poisson error, or otherwise non-negative data
where the mean and variance are proportional. Like the
Gaussian and binomial models, the Poisson distribution is a
member of the exponential family of distributions. We model
its positive mean on the log scale: log μ(x) � β0 + β′x.

2.5 Classification Models
2.5.1 Factor Adjustments
We used a Bayesian ordinal model and an SVM to compare factor
adjustments (Table 2). The adjusted means were used as control
for categorical factors but rounded to discrete values, so they
follow the initial ordinal scales for both IT and SEV. These scales
are 0–9 for IT and 0–100 for SEV. The original 0–9 IT scale and
0–100 SEV scale were reduced to a three-class 0–2 scale (resistant/
intermediate/susceptible), and a binary keep/discard scale of 0–1
in order to be more applicable to breeding programs and reduce
the effect of unbalanced classes.

2.5.2 Bayesian Ordinal Regression Model
The Bayesian Ordinal Regression (BOR) model implemented in
the BGLR package according to Pérez and de los Campos (2014)
follows:

yi � ∑p
k�1

xikβk + εi (8)

where yi is a vector of phenotypes; xik is the genotype of the kth
marker and ith individual, p is the total number of markers, βk is
the estimated random marker effect of the kth marker; and εi is a
vector of residuals with a random normal distribution of
ε ~ N(0, σ2ε ). Each version of the BOR model has its own
conditional prior distribution and a scaled-inverse chi-squared
density described in Pérez and de los Campos (2014) whose
hyper-parameters are set internally by the software. The BOR
model uses the probit link function in which the probability of
each of the categories is linked to the linear predictor according to
the link function outlined in Pérez and de los Campos (2014):

P(yi � k) � Φ(ηi � γk) − Φ(ηi � γk−1) (9)
whereΦ(.) is the standard normal cumulative distribution function,
ηi is the linear predictor, and γk are threshold parameters, with

γ0 � −∞, γk ≥ γk−1, γK � ∞. The BOR model was implemented in
the “BGLR” package in R with a burn-in rate of 10,000 and 80,000
iterations based on convergence of the models using trace plots
(Pérez and de los Campos (2014); Merrick and Carter, 2021).

2.5.3 Support Vector Machine
The SVM is a non-parametric model that can be used for both
classification and regression (SVMR) with no specific phenotypic
distribution requirement. The SVM performs well in a variety of
settings due its use of a maximal margin classifier. The maximal
margin classifier uses a hyperplane to classify and separate
observations by computing the maximum distance of an
observation to the hyperplane and then determining the class
of the observation based on which side of the hyperplane it falls
on (Gareth et al., 2013). Additionally, SVMs can enlarge the
feature space of the data using kernels to accommodate non-
linear boundaries between classes and simplify the inner product,
which overcomes the dimensionality of the data. For
classification, the radial basis function (RBF) was used due to
its wide adaption and ability to be applied to any distribution of
observations (Wang et al., 2018). Both SVM and SVMR were
implemented using the “caret” package in R, with the RBF model
using the “kernlab” function in R (Kuhn, 2008; Karatzoglou et al.,
2019; Meyer et al., 2019). Furthermore, model tuning was
completed using five replications of tenfold CV with
resampling within the training set of the training fold of the
cross-validation or validation sets. Additionally, for classification,
the SVM model was tuned using up-sampling, which randomly
samples the minority class to be the same size of the majority class
in order to deal with class imbalances that can have significant
negative impact on model fitting (Kuhn, 2008).

2.6 Prediction Accuracy and Scheme
Prediction accuracy for the regression models was reported using
Pearson correlation coefficients (r) and prediction bias was
reported using root mean square error (RMSE) between
GEBVs and their respective adjusted means using the function
“cor” in R. However, due to the unbalanced class type, the
classification models were evaluated using overall class
accuracy (R2) using the “confusionMatrix” function in the
“caret” package and reported as R2 (Kuhn, 2008). Cohen’s
kappa coefficient (kappa) was used to evaluate classification
model bias because it takes into account unbalanced classes
(Ornella et al., 2014; González-Camacho et al., 2018).

In order to compare regression and classification models,
relative efficiency (RE) was used. RE is based on expected
genetic gain when individuals are selected by GS compared to
the individuals selected by phenotypic selection. The model for
RE according to Ornella et al. (2014) is:

RE �
(∑α’

yi)
N

α’
− (∑Test

yi)
NTest

(∑α
yi)

Nα
− (∑Test

yi)
NTest

, (10)

where α and α′ are the 15% of individuals selected by the ranking
of observed or predicted values, respectively. Nα � Nα′ is the
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number of individuals selected; yi is the observed phenotypic

value of the ith individual; and
(∑Test

yi)
NTest

is the mean of the test

population. The denominator is the selection differential of the
individuals selected by phenotypic selection and the numerator is
the selection differential of the individuals selected by GS. The
15% selection intensity was chosen due to its performance of RE
when replacing phenotypic selection with GS (Ornella et al., 2014;
González-Camacho et al., 2018).

The prediction accuracy was assessed using a fivefold cross-
validation scheme and independent validation sets for IT and
SEV in the DP and BL training populations (Merrick et al., 2021).
The two populations were used to compare the effects of a
selected and unselected population with varying degrees of
resistance. Models for GS were conducted with fivefold cross-
validation by including 80% of the samples in the training
population and predicting the GEBVs of the remaining 20%
(Merrick and Carter, 2021; Merrick et al., 2021). One replicate
consisted of five model iterations, where the population was split
into five different groups.

Independent validation sets were then performed according to
Merrick and Carter (2021) on a yearly basis by combining the two
locations for each training population and predicting the
following year, which results in three continuous training
scenarios for each population. For example, the combination
of Pullman and Central Ferry trials for the DP in 2013 was used as
a training population to predict the combination of Pullman and
Central Ferry trials in the DP in 2014. Final validation set was
completed by combining all years and locations within a training
population and then predicting the combination of years and
locations for the other training population. All trials in the BL in
both Pullman and Lind combined across 2016 to 2020 were used
to predict all trials in the DP in both Central Ferry and Pullman
across 2013 to 2016. This allows the evaluation of models in a
realistic breeding situation in which we combine all available data
to build a training population. All cross-validations and
independent validations were replicated 10 times. All GS and
MAS models and scenarios were analyzed using WSU’s Kamiak
high-performance computing cluster (Kamiak, 2021). Model,
scenario, and training population comparisons were evaluated
by using a Tukey’s honestly significant difference (HSD) test
implemented in the “agricolae” package in R (de Mendiburu and
de Mendiburu, 2019). The comparison of models was then
plotted for visual comparison using “ggplot2” in R (Wickham,
2011).

3 RESULTS

3.1 Phenotypic Data
The stripe rust phenotypes for both IT and SEV demonstrated
variability for each scale (Table 3). For the DP, the IT and SEV
values ranged the entire scale of each trait for the majority of the
trials. Additionally, the means of the DP were higher than the BL
trials, with lower coefficients of variation (CV). Furthermore, the
BL trials ranged the entire scale for IT, but had lower means. The
SEV in the BL trials did not reach the maximum value of SEV.

Overall, the BL displayed a higher proportion of resistance than
the DP trials. Every trial and trait displayed a positively skewed
distribution, with the exception of SEV in the DP in Pullman in
2015. SEV for the majority of trials was extremely skewed for the
BL, with Lind in 2018 displaying the highest skew of any trial and
trait. Skewness decreased for combined analysis across
environments. Positive values above three display long skinny
tails as in the case for SEV for the BL population in Lind in 2018 at
19.77. The majority of distributions are skinny tailed,
demonstrating the large amount of similar disease resistance
around 0 and the large amount of resistance in the BL and
DP populations.

The skewness and kurtosis of the distributions were further
visualized (Figure 1). The DP is less skewed than the BL. For both
IT and SEV, the DP displayed more variation than the BL, except
for SEV in Central Ferry. Furthermore, there were significant
differences between most years for each population and location
(Figure 1). Heritability of the BL trials was moderately high for
both IT and SEV, with values ranging from 0.76 to 0.97 and
0.52–0.63, respectively. For the DP, heritability ranged from 0.65
to 1.00 for IT and 0.71–1.00 for SEV (Table 1).

3.2 Analysis of Principal Components
After filtering and imputation, a total of 19,861 SNP markers for
the 475 unique DP lines and the 2,630 BL lines were obtained
from GBS. Principal component analysis using SNP markers for
the DP and BL populations resulted in four clusters with Cluster 2
(green) overlapping with the other clusters (Figure 2). PC1
explained 5.8% of the variation whereas PC2 explained 3.4%
of the variation. The biplot displayed four main clusters over the
combined populations using k-means clustering. Cluster 1
consisted of lines common in both the BL and DP. Majority
of lines in both the DP and BL were included in Cluster 3, which
is composed of BL in Lind and Pullman and lines from the
DP. Cluster 4 consisted mainly of lines from the BL in Lind,
whereas majority of lines from the BL in Pullman comprised
Cluster 2.

3.3 Cross-Validations for Regression
Models
Multiple comparisons using HSD for RMSE and Pearson
correlations for accuracy were conducted for the regression
models in individual populations and years for IT and SEV.
The SVMR model resulted in the highest accuracy (r = 0.73) in
the 2018 Pullman BL trial for IT (Figure 3). Accuracy for the
GLM model in 2018 Pullman BL was 0.72. The GLM displayed
consistent high accuracies in the more skewed BL population
than the less skewed DP but displayed the lowest accuracy for the
most skewed trial in the BL in Lind in 2018 (0.23). Overall, there
were no significant differences for the BL, whereas the LOG
rrBLUP and the GLMmodel showed significant differences (HSD
test, p < 0.05) in the DP. Additionally, the BL trials had higher
mean accuracies than the DP trials with an increase in accuracy
with the combination of years. Altogether, the rrBLUP had the
highest accuracy over the transformed phenotypes (0.53). The
rrBLUP model had similar RMSE than the SVMR and GLM
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models with 2.15, 2.18, and 2.28, respectively (Supplementary
Figure S1). The SQRT rrBLUP model had the lowest RMSE
(0.51), and the BC and LOG rrBLUP models had the highest
RMSE (5.67 and 5.93, respectively). Using SQRT transformation
on the phenotypes reduced the error of the predictions compared
to the other transformations.

Similar to IT, the highest accuracies for SEV were obtained in
the 2018 Pullman BL trial, with the GLM reaching the highest

accuracy (0.76), followed by the SQRT rrBLUP (0.74) and SVMR
(0.73) models (Supplementary Figure S2). The lowest accuracies
were also achieved with the GLMmodel in the 2018 Lind BL trial
(0.18). The 2018 Lind BL trial had the lowest accuracies for the
majority of models. Similar to IT, there were no statistical
differences between models overall in the BL, and the SQRT
rrBLUP, rrBLUP, and SVMR reached the highest accuracies in
the DP. The SVMR and SQRT rrBLUP reached the highest

TABLE 3 | Stripe rust infection type (IT) and disease severity (SEV) heritability (H2) and trial statistics for unadjusted phenotypes in the diversity panel (DP) and breeding line
(BL) training population phenotypes from 2013 to 2016 and 2016 to 2020 growing seasons.

Population Location Trait Year H2 CVa Maxb Mean Minc SDd Kurtosis Skew

BL Lind IT 2017 0.82 87.97 8 2.91 0 2.56 −1.21 0.27
2018 0.97 260.58 8 0.66 0 1.73 7.08 2.78
2020 0.96 93.03 8 3.42 0 3.18 −1.60 0.20

2017–2018 0.79 124.19 8 2.03 0 2.52 −0.67 0.84
2017–2020 0.85 116.24 8 2.38 0 2.77 −0.97 0.70

SEV 2017 0.82 125.51 70 13.83 0 17.36 1.33 1.45
2018 0.76 304.83 30 1.29 0 3.93 19.77 4.15
2020 0.97 125.06 80 18.04 0 22.56 0.42 1.25

2017–2018 0.81 168.85 70 8.92 0 15.06 3.97 2.10
2017–2020 0.83 157.72 80 11.23 0 17.71 2.90 1.89

Pullman IT 2016 0.53 87.56 8 2.76 0 2.41 −1.05 0.33
2017 0.56 78.53 9 2.56 0 2.01 0.30 0.87
2018 0.54 150.59 8 2.20 0 3.31 −0.93 0.96

2016–2017 0.56 81.12 9 2.60 0 2.11 −0.17 0.70
2016–2018 0.57 111.41 9 2.43 0 2.70 −0.57 0.85

SEV 2016 0.63 152.31 80 8.49 0 12.94 6.06 2.36
2017 0.54 133.03 90 17.00 0 22.62 2.00 1.70
2018 0.53 177.64 80 15.58 0 27.68 0.76 1.55

2016–2017 0.52 140.51 90 14.96 0 21.03 2.96 1.90
2016–2018 0.53 158.47 90 15.23 0 24.14 1.78 1.73

DP Central Ferry IT 2013 — 55.97 8 3.14 1 1.76 0.55 1.03
2014 0.93 61.93 9 3.06 1 1.90 1.97 1.30
2015 1.00 42.38 9 4.57 1 1.94 −0.79 0.28
2016 0.96 46.23 9 4.19 0 1.94 −0.02 0.57

2013–2014 0.65 58.99 9 3.10 1 1.83 1.37 1.18
2013–2015 0.85 55.46 9 3.59 1 1.99 0.00 0.78
2013–2016 0.75 53.33 9 3.74 0 1.99 −0.07 0.71

SEV 2013 — 99.64 90 24.08 2 24.00 −0.89 0.70
2014 0.89 152.84 90 12.08 2 18.47 6.98 2.63
2015 1.00 73.44 90 36.36 2 26.70 −1.25 0.19
2016 0.97 70.57 100 36.15 0 25.51 −0.85 0.22

2013–2014 0.71 123.34 90 17.98 2 22.18 0.91 1.40
2013–2015 0.78 105.10 90 24.06 2 25.29 −0.47 0.90
2013–2016 0.85 95.59 100 27.06 0 25.87 −0.74 0.70

Pullman IT 2013 1.00 47.89 9 3.78 1 1.81 0.66 0.62
2014 1.00 46.38 9 4.83 1 2.24 −0.77 −0.02
2015 1.00 44.17 9 5.13 1 2.27 −0.82 −0.07

2013–2014 0.75 48.81 9 4.31 1 2.10 −0.42 0.33
2013–2015 0.86 47.89 9 4.58 1 2.19 −0.65 0.21

SEV 2013 0.97 117.71 100 20.33 2 23.93 2.46 1.67
2014 0.89 84.60 90 36.28 2 30.69 −1.41 0.32
2015 0.94 68.17 100 50.56 2 34.47 −1.34 −0.12

2013–2014 0.71 101.13 100 28.33 2 28.65 −0.52 0.87
2013–2015 0.85 91.07 100 35.54 2 32.37 −1.08 0.54

aCV: coefficient of variation.
bMax: maximum.
cMin: minimum.
dSD: standard deviation.
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FIGURE 1 |Comparison of unadjusted phenotypes for infection type (IT) and disease severity (SEV) over years and locations in the diversity panel and breeding line
training populations using Kruskal–Wallis test. Significant differences were based on p-values “*” < 0.05, “**” < 0.01, and “***” < 0.001.

FIGURE 2 | Principal component (PC) biplot and k-means clustering of SNP GBS markers from the diversity panel (DP) and breeding line (BL) training populations.
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accuracies of 0.60 (Supplementary Figure S2). For SEV, the
RMSE for the transformed rrBLUPmodels displayed much lower
RMSE values than the rrBLUP, GLM, and SVMR models
(Supplementary Figure S3). However, this discrepancy is
presumably due to the phenotypic range of the
transformations compared to the untransformed range for
SEV, which is 0–100. The BC rrBLUP model displayed an
extremely large RMSE in the DP in Central Ferry in 2015
(57.11). Overall, the rrBLUP models displayed statistically
similar RMSE values with the transformed rrBLUP models.

3.4 Cross-Validations for Classification
Models
Due to the difference between regression and classification
models, multiple comparisons using HSD for the kappa
coefficient and overall class accuracy were conducted for the
classification models in individual populations and years for IT
and SEV. In contrast to the regression models where the 2018
Lind BL trial had the lowest regression accuracies, the
classification models displayed the highest R2 values with the

2-Class and 3-Class BOR models reaching an overall class
accuracy of 0.88 for IT (Figure 4). Additionally, the SVM
models displayed much higher accuracies than the BOR
models overall. The full scale BOR model had very low
accuracy for the majority of trials with the BL in 2018 in
Pullman. The reduced class sizes, 2 and 3, displayed higher
accuracy than the full IT scales. Overall, the selected BL
displayed higher accuracies than the unselected DP. The 2-
Class SVM reached the highest overall class accuracy with 0.76
in the BL and 0.69 in the DP. The 2-Class SVM reached the
highest overall class accuracy of 0.72 in the overall comparison.
The high-class accuracies in the BL in Lind in 2018 can be
explained by the kappa values of 0 (Supplementary Figure
S4), displaying the highly skewed data and the inability for the
models to account for phenotypes of mostly zeros. The SVM
displayed lower kappa values in the DP than in the BL, but the
BOR models had the opposite trend. The BOR models displayed
higher kappa values than the SVM models, but the SVM models
showed higher accuracy.

The classification models for SEV had very similar results to
IT, with the BOR and SVM 2-Class models reaching an accuracy

FIGURE 3 | Pairwise comparisons of genomic selection regression model accuracy (r) using cross-validations for stripe rust infection type. Pacific Northwest winter
wheat diversity panel (DP) lines phenotyped from 2013 to 2016 in Central Ferry (DP_CF) and Pullman (DP_P), WA. Washington State University breeding lines
phenotyped from 2016 to 2020 in Lind (BL_L) and Pullman (BL_P), WA. Model comparison across the DP (Overall.DP), BL (Overall.BL), and Overall scenarios. Models
labeled with the same letter are not significantly different using Tukey’s honestly significant difference. Bars indicate standard errors.
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of 0.99 and 0.98, respectively (Supplementary Figure S5). This
was due to the very skewed and high levels of zeros in the data in
the BL in Lind in 2018. Additionally, in the DP that had less
skewed phenotypes, the BOR models showed very poor overall
class accuracy with the majority of trials having R2 values of 0.20,
with moderate accuracies for the 2-Class BOR. The 2-Class SVM
displayed the highest statistically significant class accuracy in
scenarios with R2 values of 0.86, 0.78, and 0.81 within the BL, DP,
and overall comparisons, respectively. The kappa values were
higher in the DP trials due to less skewed phenotypes and
displayed low values in the high accuracy trial of the BL in
2018 Lind. Overall, the 2-Class SVM had the highest kappa value
for SEV with 0.46 (Supplementary Figure S6).

3.5 Cross-Validation Relative Efficiency
RE was used to compare the selection differential between the GS
models and phenotypic selection for the phenotypes. Overall, the
highest relative efficiencies for IT were the regression models with
the majority of models having statistically similar relative
efficiencies. The regression models had very high RE values
with the rrBLUP models reaching a maximum value of 0.94 in

the 2018 Pullman BL trial (Figure 5). The SVMR model had
statistically similar RE values to the rrrBLUP models in the overall
comparisons. In contrast, the classification models had relatively low
RE in themajority of trials with the three-class BORmodel (−0.38) in
the combined 2017 to 2018 Lind BL trials. This confirmed the bias
seen in the kappa results with the majority of lines being predicted as
zeros. Interestingly, the two- and three-class BOR and SVMdisplayed
lower RE values overall than the full-scale models. Overall, the
rrBLUP and SQRT rrBLUP reached RE values of 0.62.

Similar to IT, the regression models had very high RE for SEV,
with the classification models reaching low to moderate values
ranging between −0.58 and 0.89 (Supplementary Figure S7). The
rrBLUP models had very high RE (0.98; BL Pullman 2018)
compared to phenotypic selection. The rrBLUP models
showed consistently higher REs than the GLM and SVMR
models. The GLM displayed similar RE values in the BL, but
lower in the DP. The SQRT rrBLUP model had the highest RE
overall (0.81). The classification models had very low RE except
the BL trials in 2018 Pullman and 2017 Lind, which showed very
high RE compared to the other years and populations.
Additionally, the combined trials for both the BL and DP

FIGURE 4 | Pairwise comparisons of genomic selection classification model overall class accuracy (R2) using cross-validations for stripe rust infection type. Pacific
Northwest winter wheat diversity panel (DP) lines phenotyped from 2013 to 2016 in Central Ferry (DP_CF) and Pullman (DP_P), WA. Washington State University
breeding lines phenotyped from 2016 to 2020 in Lind (BL_L) and Pullman (BL_P), WA. Model comparison across the DP (Overall.DP), BL (Overall.BL), and Overall
scenarios. Models labeled with the same letter are not significantly different using Tukey’s honestly significant difference. Bars indicate standard errors.
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displayed higher RE than some of the individual years indicating
an advantage of combining trials.

3.6 Validation Sets for Regression Models
The training populations were evaluated for validation sets on a
yearly basis and over combined years and trials. We used the
earliest trial to predict the following year and then a new model
with the addition of each subsequent trial to evaluate genotype-
by-environment interaction of a prediction model. We then
compared the combination of all trials for one population to
predict the combination of all trials in the other population. The
highest accuracy for IT was in the continuous training scenario of
the DP combined 2013–2015 to predict the DP 2016 with SQRT
rrBLUP reaching 0.65 (Figure 6). There were only a few
significant differences, with none in the overall BL or DP.
Overall, the SQRT rrBLUP displayed the highest accuracy
(0.46). Furthermore, there was an increase in accuracy as the
years were combined within the same population. However, the
accuracy was much lower when predicting into the combined
trials of the other population. Similar RMSE values to the cross-

validations were displayed with SQRT rrBLUP having the lowest
RMSE (1.31; Supplementary Figure S8).

The validation accuracy for SEV displayed similar trends to IT,
with the highest accuracy of 0.72 for the SQRT rrBLUP and
rrBLUP (Figure 6). Interestingly, the combined BL trials
predicting into the combined DP displayed the highest
accuracy in the BL prediction scenarios with BC rrBLUP
reaching 0.53. This trend was in contrast to IT. However, the
opposite was seen in the DP. The validation set accuracy for the
DP was higher than the validation sets for BL. In the overall
comparison, there were no statistical differences between the
models. The BC and Log rrBLUP displayed the highest accuracies
in some scenarios, which was not seen in cross-validations and
was only observed in the BL. The RMSE values were much higher
for SEV with the SQRT rrBLUP displaying similar RMSE to IT
(Supplementary Figure S9).

3.7 Validation Sets for ClassificationModels
The classification models had contrasting results for the
validation sets compared to the regression models. The

FIGURE 5 | Pairwise comparisons of genomic selection regression and classification model relative efficiency (RE) using cross-validations for stripe rust infection
type. Pacific Northwest winter wheat diversity panel (DP) lines phenotyped from 2013 to 2016 in Central Ferry (DP_CF) and Pullman (DP_P), WA. Washington State
University breeding lines phenotyped from 2016 to 2020 in Lind (BL_L) and Pullman (BL_P), WA. Model comparison across the DP (Overall.DP), BL (Overall.BL), and
Overall scenarios. Models labeled with the same letter are not significantly different using Tukey’s honestly significant difference. Bars indicate standard errors.
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validation set class accuracy for the classification models were all
relatively low except for the two- and three-class SVM model.
Furthermore, there was no trend in increasing overall class
accuracy by combining trials. The BL trials displayed the
highest overall class accuracy with R2 values reaching 0.78 for
the two class SVM model (Figure 7). The low accuracies were
presumably due to the increase in resistance and the models
predicting zeros in the IT scale. Similar to the cross-validation
scenarios, the reduced two class models reached a much higher
accuracy across the majority of trials. Furthermore, the prediction
accuracy can be accounted for by the low kappa values in the
majority of models except the 2-Class SVM model reaching 0.40
(Supplementary Figure S10).

SEV displayed similar results with IT, but the BOR model had
zero r for all scenarios. However, the accuracies increased in the
BOR with the reduced class scales (Figure 7). The two- and three-
class SVM models displayed very high accuracy with two-Class
SVM reaching an overall class accuracy of 0.83 and maintained
the high accuracy predicting the other population for both the BL
and DP validation scenarios. Combining years did not result in
improved accuracy. Furthermore, the kappa values were very low
except for the two- and three-Class SVM models reaching kappa
values of 0.63 in the DP (Supplementary Figure S11).

3.8 Validation Set Relative Efficiency
The RE of the regression models were high in the validation
scenarios reaching RE values of 0.85 using the SQRT rrBLUP
model (Figure 8). The BOR and SVMmodels displayed relatively

low RE values compared to the regression models. This was
presumably due to the BOR not being able to predict the
phenotypic values of the majority of the lines; however, the
RE was higher for the classification models than the cross-
validations with only one scenario having a negative value
(−0.20). For overall comparisons, there were significant
differences compared to the cross-validation scenarios. The
SQRT rrBLUP reached the highest overall RE with 0.60.
Furthermore, the RE values were higher in the DP than the
BL. Combining years was related to an increased RE for the
regression models.

Consistent trends for SEV were observed with the transformed
rrBLUP model RE values of 0.97, displaying very high RE
compared to phenotypic selection (Supplementary Figure
S12). The RE for SEV was relatively high for the rrBLUP and
SVMR models predicting into the other population using the DP
as the training population ranging from 0.58 to 0.86, further
displaying the ability for the regression models to accurately
predict across years and populations while dealing with skewed
phenotypes.

4 DISCUSSION

GS has many advantages over traditional phenotypic selection
and marker-assisted selection. Increased genetic gain and
improved trait selection can be achieved by using GS (Heffner
et al., 2010; Rutkoski et al., 2015; Michel et al., 2017).

FIGURE 6 | Pairwise comparisons of genomic selection regressionmodel accuracy (r) using validation sets for stripe rust infection type and disease severity. Pacific
Northwest winter wheat diversity panel (DP) lines phenotyped from 2013 to 2016 in Central Ferry (DP_CF) and Pullman (DP_P), WA. Washington State University
breeding lines phenotyped from 2016 to 2020 in Lind (BL_L) and Pullman (BL_P), WA. Model comparison across the DP (Overall.DP), BL (Overall.BL), and Overall
scenarios. Models labeled with the same letter are not significantly different using Tukey’s honestly significant difference. Bars indicate standard errors.
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Furthermore, GS can aid in selection for traits dependent on the
environment to display variation especially in years with little to
no phenotypic variation for phenotypic selection. Plant breeding
programs continually select and improve disease resistance due to
the evolving race and pathogen changes along with the
breakdown of resistance genes. Due to the high levels of
resistance targeted within most plant breeding programs,
positively skewed phenotypes generally result when selecting
for disease resistance. Furthermore, disease resistance is
commonly phenotyped in ordinal scales and percentages. The
skewed and ordinal phenotypes pose challenges to utilizing
regression models for GS (Montesinos-López et al., 2015a).
However, most GS studies treat disease resistance as
continuous values and utilize regression models and
transformations for prediction, while only a few studies have
used classification methods (Ornella et al., 2012, 2014; Rutkoski
et al., 2014; Arruda et al., 2016; Muleta et al., 2017; González-
Camacho et al., 2018; Merrick et al., 2021). In the current study,
we compared several regression and classification methods for
genomic prediction for skewed phenotypes in the context of
stripe rust resistance in winter wheat and identified the best
approaches to use for predicting traits with skewed distributions.

When utilizing GS for resistance to diseases such as stripe rust,
GS approaches can capture the additive effects of APR and are
therefore relevant for accumulating favorable alleles for rust
resistance. GS can reach high levels of accuracy for stripe rust
and other rust diseases (Ornella et al., 2012; Rutkoski et al., 2014,
2015; Muleta et al., 2017; Merrick et al., 2021). Because of the high

levels of resistance and high heritability of disease resistance in
most breeding programs, phenotypic selection and marker-
assisted selection have been shown to be successful (Lande
and Thompson, 1990). Even so, GS has been shown to be
superior to marker-assisted selection in selecting for APR in
the presence of major resistance genes (Merrick et al., 2021).

4.1 Accuracy of Regression Models
Regression models assume continuous and normally distributed
phenotypes (Montesinos-López et al., 2015c). In the current
study, the BL and DP populations displayed skewed
distributions for both IT and SEV with inflations of zero due
to the high levels of disease resistance. Among the primary
approaches used for phenotypes that do not follow a normal
distribution are disregarding the lack of normality or
transforming the phenotypes to a normal distribution
(Montesinos-López et al., 2015b). In the current study, we
observed that even with the skewed distributions, the rrBLUP
model without transformed phenotypes still displayed high
accuracies and performed similarly to the highest-performing
SQRT rrBLUP model in many scenarios. For example, there were
no significant differences between SQRT rrBLUP and rrBLUP in
the overall comparisons in the cross-validation (Figure 3) or
validation set scenarios (Figures 6, 7). These results support
previous studies that utilized rrBLUP models for disease
resistance (Rutkoski et al., 2014; Rutkoski et al., 2015; Juliana
et al., 2017; Muleta et al., 2017; Merrick et al., 2021). The
performance of the untransformed rrBLUP model may be due

FIGURE 7 | Pairwise comparisons of genomic selection classification model accuracy (R2) using validation sets for stripe rust infection type and disease severity.
Pacific Northwest winter wheat diversity panel (DP) lines phenotyped from 2013 to 2016 in Central Ferry (DP_CF) and Pullman (DP_P), WA. Washington State University
breeding lines phenotyped from 2016 to 2020 in Lind (BL_L) and Pullman (BP_L), WA. Model comparison across the DP (Overall.DP), BL (Overall.BL), and Overall
scenarios. Models labeled with the same letter are not significantly different using Tukey’s honestly significant difference. Bars indicate standard errors.
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to the central limit theorem, which argues that given a sufficient
number of observations, the sampling distribution of the means
can be assumed to be approximately normal (Stroup, 2015).

Transformations were introduced to stabilize variance and
fulfill the homogenous variance assumption of linear regression
models (Bartlett, 1947). However, transformations have shown to
produce a loss of accuracy and power in small sample size
(Stroup, 2015). Furthermore, in our study, the log and BC

transformations displayed lower accuracy than the SQRT
transformation. One of the problems with log transformations is
the large number of zeros due to the presence of highly resistant
lines in both the BL andDP populations. This occurrence constrains
the transformation to stabilize variance and transform the
phenotypes to follow a normal distribution (O’Hara and Kotze,
2010). Furthermore, log transformations yield downwardly biased
estimates, whereas SQRT does not (Stroup, 2015). The BC

FIGURE 8 | Pairwise comparisons of genomic selection regression and classification model relative efficiency (RE) using validation sets for stripe rust infection type.
Pacific Northwest winter wheat diversity panel (DP) lines phenotyped from 2013 to 2016 in Central Ferry (DP_CF) and Pullman (DP_P), WA. Washington State University
breeding lines phenotyped from 2016 to 2020 in Lind (BL_L) and Pullman (BL_P), WA. Model comparison across the DP (Overall.DP), BL (Overall.BL), and Overall
scenarios. Models labeled with the same letter are not significantly different using Tukey’s honestly significant difference. Bars indicate standard errors.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 83578115

Merrick et al. Regression vs. Classification

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


transformations is a powerful transformation that raise numbers to
an exponent; nonetheless, BC requires lambda estimation and can
theoretically be the same as the SQRT transformation at λ = 0.50
(Osborne, 2010). Therefore, if the optimal λ is not chosen correctly,
the BC may not appropriately stabilize the variance of the data.

The SQRT transformation proved to perform very well for both
accuracy and RE across populations, cross-validations, and validation
scenarios in the current study. The SQRT transformations showed
the ability to have higher accuracy and reduced RMSE compared
with the untransformed data for the rrBLUP model. In Poisson
distributions similar to the skewed phenotypes of our study, the
variance is equal to the mean, and the SQRT is recommended to
stabilize variance in those scenarios (Bartlett 1947); this could have
resulted in increased performance for the SQRT transformation.
Overall, the appropriate method must be chosen carefully when
implementing data transformation on breeding programs.

Using the GLM model, high accuracy (0.66 and 0.76) in both
the DP and BL training populations were observed. The
performance of GLM was noted to be dependent on the
distribution of the phenotypes. The GLM performed similarly
to the rrBLUPmodel in the highly skewed selected BL population,
but displayed statistically significant lower accuracies in the less
skewed unselected DP population. Poisson GLMs, which were
implemented in the present work, have been shown to display
superior accuracy while correctly fitting the data (O’Hara and
Kotze, 2010; Montesinos-López et al., 2015b; Montesinos-López
et al., 2016; Montesinos-López et al., 2020; Stroup, 2015). The
Poisson GLM accurately models count and ordinal data and is
therefore suited for skewed phenotypes such as disease resistance
(Ornella et al., 2014; Montesinos-López et al., 2015a; Montesinos-
López et al., 2016). Furthermore, the GLM models outperformed
deep learning models in a previous study (Montesinos-López
et al., 2020). The utilization of GLMs should be implemented in
scenarios with the appropriate distribution of phenotypes.

Non-parametric models such as SVMR, which has no
underlying assumption on the distribution of the phenotypes,
performed better than the LOG and BC transformations, and
similar to the GLM model in the current study. Previously, the
SVMRmodel has been shown to have superior prediction and RE
values over parametric and semi-parametric models for
predicting disease resistance due to the skewed phenotypes
(González-Camacho et al., 2018). This demonstrates that the
SVMR can accurately predict skewed phenotypes without the
need to transform the data. SVM regression maps samples from a
predictor space to a high-dimensional feature space using a non-
linear kernel function and then completes linear regression in the
feature space (Jannink et al., 2010). Consequently, this creates the
ability for the SVMR to predict skewed phenotypes and allows the
model to learn the complexity of the training population without
imposing structure on the data (González-Camacho et al., 2018).

The SQRT rrBLUP models performed better than the SVMR
model in overall prediction accuracy across many scenarios. The
lack of advantage in regression scenarios was also observed by
Ornella et al. (2014), where reproducing kernel Hilbert Space
models were observed to be statistically significant for all yield
datasets over SVM and random forest models. In the current
study, the subordinate performance of the SVMR models is

presumably due to the mostly additive effect of stripe rust
resistance. Once the skewed phenotypes are properly modeled,
the advantage of non-parametric models that also model non-
additive effects disappears (Ornella et al., 2014; Poland and
Rutkoski, 2016).

4.2 Accuracy of Classification Models
In the present study, BOR models displayed the lowest accuracies
and RE across all the classification and regression models,
particularly in the DP population. Conversely, the BOR
models using reduced classes reached the highest overall class
accuracy over all models with r = 0.99 for the BL. In contrast,
when the accuracy was high in the BL, the kappa values were low.
The opposite was shown in the DP with low overall class
accuracies and moderate kappa values indicating that the high
overall class accuracy and low kappa values were a result of the
BOR model consistently predicting zeros and the inability to
predict the other classes. Furthermore, in the validation sets, the
BOR performed very poorly, and resulted in near-zero overall
class accuracy and kappa values for both IT and SEV. The BOR
model uses ordinal regression that is suitable for count and
censored data; nevertheless, the BOR model uses the probit
link function that does not explicitly model non-normal
distribution such as the Poisson distribution model by the
GLM model in our study (Montesinos-López et al., 2015a).
Altogether, our results showed that the BOR model is not
appropriate for the highly skewed phenotypes in our study.

We also used SVMs as the non-parametric machine learning
model for both regression and classification. The advantage in
classification and regression using SVM models for disease
resistance has been previously demonstrated (Ornella et al.,
2014; González-Camacho et al., 2018). Contrary to the BOR
results, the SVMs consistently displayed high accuracies
throughout the locations and years for both DP and BL
training populations. However, the SVM showed lower kappa
values than the BOR in many scenarios. This was not the trend in
the validation sets, where the full-scale BOR and SVM displayed
poor accuracy and kappa values. The consistent accuracy of SVM
over BOR may be due to the non-parametric nature of the SVM
models. The SVM model is implemented similar to the SVMR
model and uses soft classifiers to calculate the probability of the
class rather than hard classifiers that directly target the decision
boundary and allow the model to be flexible (Ornella et al., 2014).
Based on the results for BOR and SVM, classificationmodels need
to be compared by both overall class accuracy as well as a metric
such as kappa that accounts for individual class accuracy.

The precision of the classification models depends on the
number of individuals in a given class. In our study, we
implemented up-sampling (i.e., random sampling with
replacement) to increase the minority class to the same size of
the majority class and reduce the effect of class imbalance (Kuhn,
2008). However, our results showed that with imbalanced class
frequency due to skewed phenotypes, even resampling techniques
such as up-sampling failed to accurately predict disease
resistance. Another approach to deal with class frequency is to
reduce the number of overall classes. We then binned classes to
create 2- and 3-Class prediction scenarios. Reducing the class
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scale to two creates a binary classification model that has been
shown to outperform other regression and classification models
(Ornella et al., 2014). By reducing the number of classes, we also
decreased the effect of class imbalances. Accuracy as well as kappa
increased specifically for the SVM by reducing the class scales.
This observation was seen even in the validation sets, which
resulted in the SVM 2-Class models achieving both high accuracy
and kappa values, consistent with previous studies on the effects
of reduced classes (Ornella et al., 2014; González-Camacho et al.,
2016). Therefore, by reducing the class scale, classification models
such as SVM can accurately predict skewed phenotypes such as
disease resistance.

4.3 Relative Efficiency
RE compares the expected genetic gain when selecting based on
GEBVs compared to phenotypic selection. The RE can be used as
an indicator of the performance of a model when used for
truncation selection and expected genetic gain (Ornella et al.,
2014; González-Camacho et al., 2018). Since classification and
regression do not use the same metrics for performance, simply
comparing accuracies is not possible; hence, we used RE for
comparisons. A selection intensity of 15% was used based on a
previous study (Ornella et al., 2014). In the current work, the
rrBLUP models and SMVR displayed high RE values across both
cross-validation and validation sets for IT and SEV with values
above 0.90. SVMR models have been shown to have superior RE
values for classification in disease resistance (Ornella et al., 2014).
The high RE values indicated that accuracy is linear in the
regression models, but this was not the case for the classification
models. The classification models displayed relatively low RE values
and, in some cases, negative values. Both the SVM and BORmodels
displayed the inability to select the top 15% performers for stripe
rust resistance. The large amounts of zeros (i.e., disease resistant
phenotypes) skew the prediction accuracy for the classification
models to the very high, with low kappa and RE values. The
classification models failed to overcome the skewed phenotypes
even with up-sampling and reduction of classes. Therefore, similar
to our results for prediction accuracy, regression models
outperformed classification models and displayed their ability to
predict and select skewed phenotypes.

4.4 Training Population Comparison
We compared the performance of GS models in different training
populations, environments, and phenotypic distributions. The
effect of environment was less apparent than the effect of
distribution. The differences in distribution of phenotypes for
disease resistance is readily apparent between populations. The
two populations were used to compare the effects of a selected and
unselected population with varying degrees and sources of
resistance. The BL population, consisting of WSU breeding lines
that were selected for disease resistance prior to field trials, is
extremely skewed for both IT and SEV. Therefore, there is already a
selection pressure for high levels of resistance to stripe rust in the
current study. In contrast, the DP appears less skewed with more
variation for disease resistance, a consequence of the population
consisting of diverse varieties from multiple breeding programs in
the Pacific Northwest region of the US. The DP included lines from

the WSU breeding program, but the other varieties were not bred
and selected specifically for resistance to the stripe rust races
present in our study. Additionally, the sources of stripe rust
resistance genes vary more in the DP compared to the BL. The
frequency and type of stripe rust races along with major genes for
stripe rust resistance for these two populations were compared in
depth in Merrick et al. (2021).

The differences in skewness between the populations affected
the performance of the GS models in each population. The GLM
models accurately predicted the extremely skewed BL trials similar
to the other regression models because the skewed phenotypes
follow the Poisson distribution rather than the normal distribution.
However, the GLM model displayed lower accuracies in the less
skewed DP. In addition to the distribution that is modeled, the
skewness affects the frequency of classes used in classification
models. In the extremely skewed BL, the classification models
have high accuracy and low kappa, displaying the prediction of
mainly zeros. However, as mentioned previously, the reduction of
classes helps decrease the effect of class imbalance and increased
accuracy.

The differences in accuracies between populations can also be
attributed to the genetic relatedness of the populations (Asoro
et al., 2011). The effect of the population on accuracy is due to
both population structure and genetic relatedness (Habier et al.,
2007; Asoro et al., 2011; Mirdita et al., 2015). We used the elbow
method to determine the number of clusters when examining
PCs for our populations and resulted in four distinct clusters.
Consequently, the prediction accuracy for the BL cross-validations
was higher than the DP. When independently predicting other
populations as seen in the validations sets, we generally observe a
decrease in accuracy (Merrick and Carter, 2021; Merrick et al.,
2021). Interestingly, though, there was an increase in accuracy
when using the BL to predict the DP in the validation sets.
However, a decrease in prediction accuracy was observed when
the DP predicted the BL. However, this was only seen in the
regression models for predicting SEV in the validation sets.
Furthermore, this trend is not seen in the classification models
that display consistent accuracy across validation scenarios. This
may be due to the effect of predicting a less skewed population in
which regression models generally have better performance
compared to predicting more skewed distributions (Montesinos-
López et al., 2015a).

The increase in prediction accuracy with the increased
combination of years in both our cross-validation and
validation sets can be attributed to the increase of phenotypic
data points and decrease in skewness and accounting for the
genotype-by-environment interaction (GEI). The trials in our
study were dependent on the natural occurrence and pressure of
stripe rust. Therefore, the skewness of the populations, individual
years, and locations may be due to not only the levels of resistance
within the populations, but also the general disease pressure for
stripe rust. By combining environments, we can account for the
GEI in our phenotypic adjustments and increase our prediction
accuracy (Crossa et al., 2014; Jarquín et al., 2014; Haile et al., 2020;
Merrick and Carter 2021; Merrick et al., 2021). The increased
accuracy by accounting for GEI can be seen in the validation sets.
The DP displayed higher accuracies in the validation sets as the
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DP consisted of the same lines each year, whereas the BL consists
of different lines in both years and locations. By screening the
same lines each year, the environmental effect can be effectively
accounted for. However, the trend for increasing accuracy and RE
values by combining years was not seen in the classification
models. This was due to the continued large class imbalances even
when combining years. Therefore, there is a need to develop
training populations carefully to balance class frequencies for the
classification models. Even so, the reduced class SVM models
displayed the ability to overcome the class frequencies regardless
of year combinations. Overall, the rrBLUP and reduced class
classification models displayed the ability to accurately predict
populations and environments with skewed phenotypes.

4.5 Applications in Breeding
GS is becoming more cost-effective due to the decreasing costs of
high-throughput genotyping. With the increased use of GS comes
its utilization for the prediction of complex traits (e.g., disease
resistance), which do not always follow the assumptions of the
commonly used models (Montesinos-López et al., 2015a). Instead
of applying the same approach to every trait, breeders will need to
customize their GS models to achieve accurate GEBVs for
selection. With the integration of data science and plant
breeding, the availability of different prediction models has
resulted in an increased efficiency of implementing GS for a
wide range of traits. This study showed that with the appropriate
choice of model and transformation, even the commonly used GS
regression model, rrBLUP, can be utilized for predicting complex
traits, such as stripe rust resistance, that do not follow a normal
distribution. Furthermore, this study demonstrated the ability to
integrate selection decisions and GS by utilizing classification
models. Reducing classes resulted in higher predictions due to
decreasing the number of outcomes the models need to account
for, especially for classes with only a few observations. Moreover,
by reducing the number of classes, we not only predict resistance
more accurately, but also couple in selection decisions. By reducing
the number of classes for IT from ten to two, we can either keep or
discard lines. Ultimately, by using various GS schemes with
regression and classification models, breeders can reduce the
number of selection decisions made for disease resistance and
focus on selecting other important traits such as grain yield.

5 CONCLUSION

This study compared GS regression and classification models’
ability to accurately predict populations with different levels of
disease resistance and distributions. The varying results for the
classification and transformation methods displayed the need to
choose the prediction model carefully based on the phenotype
distribution. For trials that display a Poisson distribution that is
skewed to lower ordinal values, a GLM or reduced class binomial
classification model can be implemented. However, the SQRT
and SVMR models displayed the flexibility across varying
distributions, and consistently predicted stripe rust with high
accuracies. Moreover, combining years increased the prediction
accuracies for regression models, but failed to increase the overall

class accuracy for classification models due to imbalance class
frequencies. Additionally, regression models displayed high RE,
indicating their ability to select accurately like phenotypic
selection. Overall, SQRT transformation using rrBLUP and
SVM regression models displayed the highest combination of
accuracy and RE across the regression and classification models.
Furthermore, a classification system based on SVMwith a 2-Class
scale can be implemented not only to predict resistance more
accurately, but also to couple in selection decisions. This study
showed that breeders can use linear and non-parametric
regression models using their own breeding lines over
combined years to accurately predict skewed phenotypes.
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