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A B S T R A C T   

Background: CircHECTD1 (circ_0031450) is highly expressed in hepatocellular carcinoma (HCC) 
tissues and may act as an oncogene. Its specific competitive endogenous RNA (ceRNA) mecha-
nism remains to be further elucidated. 
Methods: Several databases and online platforms, including pathway activity, immune checkpoint, 
and overall survival analyses, were used to predict targets, download datasets, and perform online 
analyses. The R software was used for differential gene expression analysis, Gene Ontology (GO), 
Kyoto Encyclopedia of Genes and Genomes (KEGG), clinical relevance, receiver operator char-
acteristic curve, and single-cell analysis. Cytoscape software was used to construct ceRNAs, 
protein-protein interactions (PPI), and pivotal networks. 
Results: The ceRNA, PPI, and pivotal networks were successfully constructed. Pathway enrichment 
analysis was mainly related to apoptosis, cell cycle, and epithelial-mesenchymal transition (EMT) 
pathways. Six pivotal targets related to survival, immune infiltration, immune checkpoints, 
clinical stage, and diagnosis of patients with HCC were identified. The recovery function and 
pathway enrichment results were consistent with previous results. Single-cell analysis suggested 
that the pivotal targets were highly expressed in T cells. 
Conclusion: We successfully constructed a prognosis and immune microenvironment-related 
ceRNA network based on circHECTD1, providing new insights for diagnosing and treating HCC.   

1. Introduction 

Hepatocellular carcinoma (HCC) is among the cancers with high incidence and mortality rates, especially in Asia. The newly 
diagnosed cases and deaths are predicted to continue rising over the next two decades [1]. Despite the advancements in HCC diagnosis, 
treatment, and prevention, the prognosis of patients with advanced HCC remains poor [2–4]. Consequently, further research on 
diagnosing and treating HCC remains required. Recently, non-coding RNAs (ncRNAs) have become a prominent subject in tumor 
research. Circular RNA (circRNA) is a member of the ncRNA family. Although it was first discovered decades ago [5], research on its 
functions and regulatory roles in tumors and other diseases is ongoing. MicroRNAs (miRNA) also belong to ncRNA, which can act as an 
epigenetic regulator that regulates tumor occurrence and progression [6–8]. 
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The competitive endogenous RNA (ceRNA) network was first proposed by Professor Pierpaolo Pandolfi in 2011 [9]. This process 
has recently become a novel regulatory mechanism for tumor development. This network involves interactions between coding RNAs 
(mRNAs) and ncRNAs through sharing miRNAs. The ceRNA hypothesis elucidates the mechanism by which these RNAs compete to 
bind to miRNAs. Their disorders may lead to the occurrence and progression of cancer. Several studies have demonstrated that ceRNA 
is crucial in various cancers, including HCC [10,11]. Therefore, identifying and studying the role of ceRNAs in HCC development and 
progression is critical. The ceRNA disorder is closely related to multiple key processes in HCC cells, including enhanced proliferation, 
increased invasion and migration, enhanced metastatic potential, and the development of drug resistance. ceRNA disorder has been 
widely considered an important factor in the complex pathogenesis of HCC [12]. Many studies have revealed the profound impact of 
ceRNA disorder on multiple critical cellular processes, shaping the invasive phenotype of HCC cells. Aberrant ceRNA expression 
profiles are significantly associated with enhanced cell proliferation, promoting uncontrolled growth and expansion of HCC tumors. 
Moreover, disordered ceRNA networks are closely related to the enhanced invasion and migration of HCC cells, allowing them to 
infiltrate surrounding tissues and metastasize distally [13]. Furthermore, ceRNA disorder is strongly linked to the acquisition of drug 
resistance, presenting a significant challenge to the effective treatment of HCC. Overall, these findings underscore the complex 
interplay between ceRNA disorder and the malignant progression of HCC, highlighting the potential of ceRNA-based therapeutic 
strategies to combat this devastating disease. 

However, current ceRNA research has some limitations. The interaction network between RNAs is complex, and current research 
makes it difficult to comprehensively and systematically reveal the overall framework and mechanism of the ceRNA network. In 
contrast, bioinformatic analysis has significant advantages in ceRNA research. It can utilize public databases to integrate multi-omics 
data from multiple samples and construct and explore ceRNA networks at a higher level. Bioinformatic methods can also discover 
potential rules of interaction between RNAs and provide a theoretical basis for further experimental verification. Bioinformatics 
prediction and screening can substantially reduce the amount of experimental work required and improve the research efficiency. It 
can effectively compensate for the limitations of experimental research and provide important references and a foundation for un-
derstanding the overall framework and deeper mechanisms of ceRNA regulatory networks. This study applied bioinformatics methods 
to analyze bulk and single-cell data to identify a new ceRNA network and explore the potential mechanisms regulating HCC 
progression. 

The circHECTD1 is generated from its parental gene HECTD1 through back-splicing. Studies have demonstrated that circHECTD1 is 
significantly upregulated in HCC [14] and gastric cancer [15] and can promote tumor progression through the ceRNA mechanism. In 
HCC, circHECTD1 facilitates the progression by targeting miR-485-5p to upregulate MUC1. In gastric cancer, circHECTD1 promotes 
tumor progression by targeting miR-1256 to activate the β-catenin/c-Myc signaling pathway. Nevertheless, the role of the large and 
complex ceRNA network in disease mechanisms cannot be thoroughly elucidated by a single regulatory axis; therefore, it is imperative 
to employ bioinformatics analysis to identify and screen multiple downstream targets and explore additional potential mechanisms. 

In this study, we used bioinformatics methods to identify a new HCC-related ceRNA network from circHECTD1 and analyze the 
regulatory mechanisms of pivotal targets in the network from multiple perspectives. This network provides a valuable reference for 
studying the functions of ceRNA regulatory networks in HCC and proposes new targets and directions for diagnosing and treating HCC. 

2. Materials and methods 

2.1. Data download and preprocessing 

We downloaded the sequence and related information for circHECTD1 (circ_0031450) from the circBASE database. We down-
loaded all circRNAs and their corresponding targets from the circBANK [16] (http://www.circbank.cn/searchCirc.html) database and 
used Strawberry Perl (https://strawberryperl.com/) to extract the circ_0031450 targets. We screened the miRNA array data from the 
Gene Expression Omnibus (GEO) [17] database (https://www.ncbi.nlm.nih.gov/geo/). The screening criteria were as follows: 1) The 
specimens used for sequencing were human liver tissues (normal and cancerous). 2) Both the normal and tumor group samples 
included more than six samples. 3) The datasets have either not been used or have been used infrequently by others besides the original 
authors. 4) The individuals from whom the sequencing samples were derived have not undergone pharmacological or other thera-
peutic interventions. Following the above criteria, we selected GSE39678, downloaded its expression matrix and platform file, and 
used R software (https://www.r-project.org/) and the limma package to analyze the dataset. Due to the sequencing depth issue with 
the miRNA data, we lowered the screening threshold. |logFC| > 0.5 and adjusted P < 0.05 were screening thresholds for the next 
analysis to obtain differentially expressed miRNAs. We downloaded transcriptome and clinical HCC data from The Cancer Genome 
Atlas (TCGA, https://portal.gdc.cancer.gov/) and used Perl to organize the data for gene expression and clinical information files. We 
then used R software and the limma package to perform differential gene expression analysis of the data. |logFC| > 2 and adjusted P <
0.05 were screening thresholds for the next analysis to achieve differentially expressed mRNAs in HCC. Simultaneously, we screened 
and downloaded recently released single-cell sequencing data of human HCC from the GEO database (GSE210679) for subsequent 
single-cell analysis. An ethical review was not required for this study. 

2.2. Target prediction and ceRNA network construction 

We selected the intersection of circ_0031450’s target genes extracted from the circBANK database and differentially expressed 
miRNAs to identify the final circ_0031450 targets. These targets were used to predict their target mRNAs in the miRTarBase [18] 
(https://mirtarbase.cuhk.edu.cn/~miRTarBase/miRTarBase_2022/php/index.php) and Targetscan [19] (https://www.targetscan. 
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org/vert_72/) databases. Then, we used the intersection of the predicted targets from the aforementioned two databases and the 
differentially expressed mRNAs in HCC from the TCGA database to determine the miRNA targets. We then screened these targets to 
distinguish the unique targets of individual miRNAs or the common targets of multiple miRNAs to construct the ceRNA network. Based 
on the correspondence between circRNA-miRNA-mRNA, we created a network file and imported it into the Cytoscape [20] (https:// 
cytoscape.org/) software to construct the ceRNA network. We used different colors, shapes, and connector lines to distinguish between 
different nodes or relationships between nodes. 

2.3. Functional enrichment analysis of targets, PPI network construction, and key target screening 

To clarify the main biological processes and signaling pathways enriched in the mRNAs of the ceRNA network, we conducted GO 
and KEGG enrichment analysis using R packages (clusterProfiler, org.Hs.eg.db, enrichplot, ggplot2, and ComplexHeatmap) and 
visualized the results. The adjusted P-value filter criterion was set at 0.05. The top 30 most significantly enriched biological processes 
or signaling pathways were displayed in bubble and circle charts. To elucidate the interaction between target proteins and screen out 
key targets, we imported the targets into the STRING [21] (https://cn.string-db.org/) database Multiple Protein module and selected 
"Homo sapiens" as the species. We then obtained a protein interaction network graph and hidden isolated nodes, and we selected the 
default parameters for the remaining. The results were imported into Cytoscape, and the STRINGify network function of the STRING 
plugin was used to visualize and beautify the network. We used the cytoHubba plugin to screen key nodes in the network. The pa-
rameters in the plugin were set as follows: 1) Node scoring method: calculation; 2) selecting the top 15 nodes with the highest scores; 3) 
algorithm: MCC; 4) display options: checking the first-stage nodes and displaying the expanded subnetwork. Finally, we exported the 
network graph and screened key target files. 

2.4. Key target pathway activity and overall survival (OS) analysis 

We clarified the key signaling pathways mainly activated or inhibited by key targets in HCC through the online analysis platform 
GSCALite [22] (http://bioinfo.life.hust.edu.cn/web/GSCALite/).We selected Pathway Activity as the analysis module. The results 
were then exported as heat maps and network graphs. Simultaneously, to clarify whether the expression of key targets was related to 
the survival prognosis of patients with HCC, we used the Kaplan-Meier Plotter [23] (https://kmplot.com/analysis/index.php? 
p=service) online analysis platform to perform an OS analysis on hub targets. We selected the mRNA RNA-seq expression dataset 
for HCC and exported the results after completing the analysis. 

2.5. Immune and clinical correlation analysis 

First, we used the limma package to extract the single-gene expression levels of key targets related to survival in the HCC tran-
scriptome data, used the CIBERSORT [24] algorithm to calculate the correlation between each gene and immune cells, and visualized 
the results. The statistical method for the correlation test was "Spearman," and P < 0.05 was considered the screening threshold. We 
then screened out the targets related to immune infiltration for immune checkpoint analysis. We used the Gene Expression Profiling 
Interactive Analysis 2 [25] (GEPIA2, http://gepia2.cancer-pku.cn/#index) online analysis platform to analyze the correlation between 
the expression of targets and PDCD1, CD274, and CTLA4, three classic immune checkpoint molecules. The statistical method used for 
the correlation test was "Pearson," and P < 0.05 was considered the screening threshold. Finally, we screened out targets related to the 
survival, tumor-infiltrating immune cells, and immune checkpoints of patients with HCC as hub targets. Next, we performed a clinical 
correlation analysis of hub targets. We organized the clinical data of Liver hepatocellular carcinoma (LIHC) in the TCGA database and 
obtained clinical stage data for stages I, II, III, and IV by integrating substages into major stages. We then used R packages (limma, 
ggpubr) to analyze the correlation between the expression of hub targets and the clinicopathological stages of patients with HCC. The 
Wilcoxon test was used for statistical analysis, and P < 0.05 was considered the screening threshold. 

2.6. Hub network construction, gene expression verification, and receiver operating characteristic (ROC) analysis 

Following the relationship between elements, we extracted the corresponding miRNAs of the hub targets derived from the 
aforementioned analysis, generated a network file, and constructed a hub network using the Cytoscape software. We adjusted the 
parameters to ensure that the attributes and implications of each element in the hub network were consistent with those in the ceRNA 
network. According to the literature, circHECTD1 is highly expressed in HCC [14]. According to the ceRNA mechanism, its target 
miRNA expression should decrease, and the downstream mRNA expression should increase. Therefore, we verified the expression of 
circHECTD1 targets and downstream mRNAs in the dataset to clarify whether the constructed ceRNA network conforms to the ceRNA 
regulatory mechanism. We used R to evaluate the differential expression of miRNAs in the hub network between the normal and tumor 
groups in the GSE39678 dataset and visualized the results. We analyzed the differential expression of mRNAs in the hub network 
between the normal and tumor groups in TCGA-LIHC datasets and visualized the results. The Wilcoxon test was used for statistical 
analysis, and P < 0.05 was considered the screening threshold. Simultaneously, to determine whether the aforementioned targets have 
diagnostic value for HCC, we employed the pROC package to conduct ROC analysis on miRNAs and mRNAs in the hub network based 
on GSE39678 and TCGA-LIHC datasets, respectively. An area under the curve (AUC) > 0.7 was considered to indicate the diagnostic 
value of the target for HCC. 
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2.7. Related gene prediction and functional enrichment analysis of hub genes 

We predicted genes related to hub targets and performed GO and KEGG enrichment analyses to verify whether the targets obtained 
through the above analysis steps have major molecular functions in the PPI and ceRNA networks. We used a similar gene detection 
module of the GEPIA2 analysis platform to predict the top 150 genes related to hub targets. We then performed enrichment analysis 
using the same analysis methods and the R packages as before. The adjusted P-value filter criterion was set at 0.05. The top 30 most 
significantly enriched GO and KEGG pathways were identified. We compared the final enrichment results with those obtained in Steps 
1.3 and 1.4 for confirmatory validation. 

2.8. Verification of hub gene expression in single-cell data 

The conditions for initial data filtering were as follows: 1) At least one gene was detected in at least three cells, and 2) the minimum 
number of genes detected in each cell was 200. The data filtering conditions were as follows: retaining cells with 200–8000 detected 
genes and a mitochondrial percentage of less than 5 %. The data were normalized using the NormalizeData function. We implemented 
principal component analysis to reduce the dimensionality of the data and presented the top 20 Principal Components (PCs) in a heat 
map. Combined with the JackStraw and ElbowPlot functions, we selected 16 PCs for the subsequent analysis. We selected the optimal 
resolution as 1.5 to cluster cells based on FindNeighbors and clustree functions. We used the nonlinear dimensionality reduction 
method Uniform Manifold Approximation and Projection (UMAP) to visualize the cell cluster results and used the FindAllMarkers 
function to identify marker genes for each cluster. We annotated the cell subpopulations using the SingleR package, checked the 
annotation results based on the marker genes of each annotated subpopulation, and performed manual annotation of the annotation 
results as needed based on the CellMarker website (http://xteam.xbio.top/CellMarker/). Finally, we visualized the expression of the 
hub genes in each cell subpopulation. 

3. Results 

3.1. Data and target preprocessing 

A total of 138 circ_0031450 targets were extracted from the target data in the circBANK database. Ninety-two differentially 
expressed miRNAs were analyzed using the chip dataset. By considering the intersection, four final circ_0031450 targets were obtained 
(Fig. 1A), namely miR-548c-5p, miR-548d-5p, miR-648, and miR-764. Using TCGA-LIHC, 3457 differentially expressed mRNAs were 
identified. In total, 598 targets were predicted using the miRTarBase database. A total of 9311 targets were predicted using the 
TargetScan database. By taking the intersection of the above differentially expressed mRNAs, miRTarBase, and TargetScan databases, 
102 targets of miRNAs were obtained (Fig. 1B). We screened and sorted the four miRNAs and 102 mRNAs to match the unique or 
common targets of individual or multiple miRNAs for subsequent analysis. The final targets were sorted as follows: ANP32B, AQP3, 
CBX3, DDB1, EBNA1BP2, ERH, ESYT1, GIMAP4, GTPBP2, HSP90AA1, KHSRP, KIF2C, MAP2K1, PRELID1, PTBP1, SPCS3, SPRYD4, 
UBE2D2, VDAC2 and XRCC6 as common targets of miR-548c-5p and miR-548d-5p; ACP1, ARL5B, CAPZA1, CSE1L, MAP2K4, PCGF5, 
RAB1A and TNIP2 as the common targets of miR-548c-5p, miR-548d-5p, and miR-648; ACSM2B, ACTN4, ANGPTL3, C1orf43, CCNB1, 
CDK4, CNBP, COLGALT1, DHTKD1, FCN2, GNPNAT1, HMGN2, MCC, MELK, MFSD2A, MKI67, MPZL1, NSMCE2, PPARA, PPP1R15B, 

Fig. 1. Target prediction results. (A) Targets of circ_0031450. (B) Targets of miR-548c/d-5p, miR-764, and miR-648.  
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Fig. 2. ceRNA network. In the diagram, the central V-shaped red element represents circHECTD1, green diamond-shaped elements represent miRNAs, and circular elements represent mRNAs.  
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RCC2, RHOA, TIMM50, UGGT1, USP14 and ZWINT as the common targets of miR-548c-5p, miR-548d-5p, and miR-764; CALM1, 
MGMT, RIC8A, SGK1, THBS1, UCK2 and WDR45B as the targets of miR-648; ARPC2, FBLIM1, MAPK1, NECAB3, PHLDA3, QDPR, 
RAD21, RPS19, RPS6 and YWHAH as the targets of miR-648 and miR-764; CMBL, COQ10B, DEGS1, GNE, ISG20L2, IVD, MMAB, 
MRPS10, OSTF1, RANGAP1, YWHAG, ZMAT2 and ZNF517 as the targets of miR-764; CDKN3, COPA, DHODH, ENAH, FHL2, FLYWCH2, 
GINM1, IL6ST, LIPG, MTHFD1, PLSCR1, RPL37, SETD7, SMIM14, SYAP1, TBC1D13, TSPYL1 and ZKSCAN1 as the common targets of 
miR-548c-5p, miR-548d-5p, miR-648 and miR-764. 

3.2. Construction of the ceRNA network 

The Cytoscape software successfully constructed a ceRNA network containing 110 nodes and 109 connection edges (Fig. 2). The red 
V-shaped element in the figure represents circHECTD1. Green diamond elements represent miRNAs. Blue circular elements represent 
mRNAs. The thick purple lines represent the target relationships between the circRNAs and miRNAs. Thin gray lines represent the 
target relationships between miRNAs and mRNAs. 

Fig. 3. GO and pathway enrichment analyses. (A-B) Bubble and circle diagrams of GO enrichment. (C-D) Bubble and circle diagrams of 
KEGG enrichment. 
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3.3. GO and KEGG enrichment analysis 

The GO enrichment analysis of the targets yielded 34 entries (Fig. 3A and B). The main enriched biological processes (BP) were 
mitotic cell cycle phase transition (GO: 0044772) and regulation of chromosome segregation (GO: 0051983). The main enriched cell 
components (CC) were focal adhesion (GO: 0005925), cell-substrate junction (GO: 0030055), chromosomal region (GO: 0098687), 
and condensed chromosomes (GO: 0000793). The main enriched molecular functions (MF) were protein serine/threonine/tyrosine 
kinase activity (GO: 0004712) and mitogen-activated protein (MAP) kinase activity (GO: 0004708). Fig. 3A depicts a bubble chart of 
GO enrichment analysis. The horizontal coordinates represent the proportion of genes enriched in the corresponding entries. The 
vertical coordinates represent the enriched GO entries. The larger the bubble diameter, the more significant the enrichment. The 
redder the bubble color, the smaller the q value. Fig. 3B displays a circular chart of the GO enrichment. The outermost circle represents 
the ID number of GO entries. Blue, yellow, and green represent the BP, CC, and MF, respectively. The second circle represents the 
significance of enrichment; the redder the color, the more significant the enrichment. The innermost circle represents the size of the 
enrichment factor. KEGG pathway enrichment analysis of the targets yielded 51 signaling pathways (Fig. 3C and D). The significantly 
enriched pathways included the phosphatidylinositol 3-kinase-protein kinase B (PI3K-Akt) signaling pathway (hsa04151), viral 
carcinogenesis (hsa05203), cellular senescence (hsa04218), hepatitis C (hsa05160), and cell cycle (hsa04110). Fig. 3C illustrates a 
bubble chart of KEGG enrichment analysis. The horizontal coordinates represent the proportion of genes enriched in the corresponding 
pathways. Vertical coordinates represent enriched pathways. The larger the bubble diameter, the higher the proportion of genes 
enriched in the corresponding pathway. The redder the bubble color, the more significant the enrichment. Fig. 3D depicts a circular 
chart of the KEGG enrichment. The outermost circle represents the ID number of the pathway. The second circle represents the sig-
nificance and proportion of the genes enriched in the corresponding pathways. The redder the color, the more significant the 
enrichment. 

3.4. Constructing PPI network and screening key targets 

We successfully constructed a PPI network comprising 68 nodes and 150 edges (Fig. 4A). Nodes of different colors represent 
different proteins, and the strip structure in the center of the protein shows the simulated three-dimensional structure of the protein. 
Gray lines represent the interactions between proteins. Using the CytoHubba plugin, we obtained a network containing 15 key targets 
and 49 edges. Through network expansion, an expanded network containing 45 nodes and 120 edges was obtained (Fig. 4B). The red 
and yellow nodes in the figure represent key targets: YWHAG, YWHAH, MAP2K1, CCNB1, PPARA, ZWINT, CDK4, RHOA, MELK, 
HSP90AA1, CDKN3, KIF2C, MKI67, MAPK1, and RPS6. Nodes with a darker red color indicate that the node rank is higher. The blue 
nodes are other nodes in the PPI network that interact with key targets. 

3.5. Pathway activity analysis and survival analysis 

Pathway activity analysis of key targets suggested that their expression of key targets mainly activates the cell cycle and apoptosis 

Fig. 4. PPI network and the key targets screening. (A) The PPI network. (B) Key targets screened using the CytoHubba plugin.  
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Fig. 5. Pathway activity, survival, and immune cell infiltration analyses. (A-B) Heatmap and network of pathway activity analysis. (C) OS analysis. 
(D) Spearman’s correlation analysis of survival-related targets and immune cell expression. SCC: Spearman correlation coefficient. 
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pathways and inhibits the hormone estrogen receptor (ER) and rat sarcoma/mitogen-activated protein kinase (RAS/MAPK) pathways 
(Fig. 5A). It is noteworthy that ZWINT, MKI67, MELK, KIF2C, CDKN3, and CCNB1 exhibited activating effects in more than 60 % of 
tumors on the cell cycle pathway, the most significant of which were KIF2C (75 %) and CCNB1 (75 %). In LIHC, the main effects of key 
targets on pathway activity were to activate cell cycle, apoptosis, and EMT pathways and inhibit the hormone estrogen receptor/ 
androgen receptor (ER/AR), RAS/MAPK and receptor tyrosine kinase (RTK) pathways (Fig. 5B). Fig. 5A presents a heatmap of the 

Fig. 6. Targets that have a good correlation with immune cells. (A–F) CCNB1, CDKN3, KIF2C, MELK, MKI67, and ZWINT, respectively.  
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pathway activity analysis. The horizontal axis is ten classic signaling pathways associated with tumors, and the vertical axis is a key 
target. The values in the heatmap represent the percentage of gene expression that can activate or inhibit the corresponding pathway in 
33 types of tumors. Positive red values in the heatmap indicate activation, negative blue values indicate inhibition, and darker colors 

Fig. 7. Immune checkpoint analysis, clinical stage correlation analysis, and hub network construction. (A–C) Correlation analysis between hub 
targets and CD274, CTLA4, and PDCD1. (D) Correlation between hub target expression and clinical stage of patients with HCC. (E) The hub network. 
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indicate a higher percentage. Fig. 5B illustrates a network diagram of the relationship between key targets and pathway activity in 
LIHC. Solid lines indicate activation, and dashed lines indicate inhibition. Simultaneously, to clarify the relationship between key 
targets and the prognosis of patients with HCC, we conducted an OS analysis. The results revealed that CCNB1 (P = 3.4e-05), CDK4 (P 
= 3e-05), CDKN3 (P = 0.0066), HSP90AA1 (P = 0.0028), KIF2C (P = 1.7e-06), MAP2K1 (P = 0.048), MELK (P = 3.7e-05), MKI67 (P =
0.00011), PPARA (P = 0.013), RHOA (P = 0.016), YWHAH (P = 0.0025), and ZWINT (P = 8.5e-07) were associated with the prognosis 

Fig. 8. Expression analysis, gene prediction, and functional analysis. (A-B) Expression and ROC analysis of all targets. (C) GO enrichment analysis of 
predicted genes. (D-E) KEGG enrichment analysis. 
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Fig. 9. Sing-cell analysis. (A-B) The features of single-cell data. (C-D) Elbow and JackStraw diagrams of 20 PCs. (E-F) Cell clustering and sub-
population annotation diagrams. (G) Bubble map of the relative expression of hub targets in the cell subsets. (H) Scatter plots of CCNB1, CDKN3, 
KIF2C, MELK, MKI67, and ZWINT expression. 
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of patients with HCC (Fig. 5C). The prognosis of patients with HCC was better in the low expression groups of CCNB1, CDK4, CDKN3, 
HSP90AA1, KIF2C, MELK, MKI67, RHOA, YWHAH, and ZWINT, whereas the prognosis was worse in the low expression groups of 
MAP2K1 and PPARA. 

3.6. Immune and clinical correlation analysis 

The results revealed that these survival-related targets were correlated with the expression levels of immune cells (Fig. 5D). The 
expressions of CCNB1 (Fig. 6A), CDKN3 (Fig. 6B), KIF2C (Fig. 6C), MELK (Fig. 6D), MKI67 (Fig. 6E), and ZWINT (Fig. 6F) were well 
correlated with immune cell contents in the tumor immune microenvironment of HCC, and the results were consistent. We demon-
strated that the expression of the above targets was positively correlated with the content of T cells CD4 memory activated in the tumor 
immune microenvironment of HCC and negatively correlated with T cells CD4 memory resting monocytes and resting mast cells. 
Immune checkpoint analysis indicated that hub target expression was positively correlated with expressions of CD274 (Fig. 7A), CTLA4 
(Fig. 7B), and PDCD1 (Fig. 7C). Clinical correlation analysis suggested that the hub targets were associated with the clinical staging of 
patients with HCC (Fig. 7D). 

3.7. Gene expression and ROC analysis 

Based on the relationship between nodes in the ceRNA network, we extracted the common hub targets of miR-548c/d-5p as KIF2C; 
the common targets of miR-548c/d-5p and miR-764 were CCNB1, MELK, MKI67, and ZWINT; the common targets of miR-548c/d-5p, 
miR-648 and miR-764 were CDKN3. Accordingly, a hub network was created (Fig. 7E). The results of gene expression analysis in the 
dataset showed that miR-548c-5p, miR-548d-5p, and miR-648 were expressed at low levels in the HCC tumor group, whereas miR-764 
was highly expressed in the tumor group. CCNB1, CDKN3, KIF2C, MELK, MKI67, and ZWINT were highly expressed in the HCC tumor 
group (Fig. 8A). ROC analysis revealed that the AUC of the above targets for diagnosing HCC was >0.7, indicating that they had good 
diagnostic value for HCC (Fig. 8B). 

3.8. Prediction and functional enrichment analysis of hub target-related genes 

In total, 150 hub target-related genes were identified. Pearson’s correlation coefficient between these genes and hub targets was 
greater than or equal to 0.78, indicating that the prediction results were highly credible. GO enrichment analysis of these genes 
suggested 420 enriched GO entries. The most significantly enriched BPs were nuclear division (GO: 0000280), chromosome segre-
gation (GO: 0007059), and mitotic cell cycle phase transition (GO: 0044772). The most significantly enriched CCs were chromosomal 
region (GO: 0098687) and condensed chromosome (GO: 0000793). The most significantly enriched MFs were microtubule binding 
(GO: 0008017), ATP-dependent activity acting on DNA (GO: 0008094), and tubulin binding (GO: 0015631) (Fig. 8C). KEGG 
enrichment analysis enriched 10 signaling pathways with statistical significance, including cell cycle (hsa04110), DNA replication 
(hsa03030), oocyte meiosis (hsa04114), cellular senescence (hsa04218), mismatch repair (hsa03430) and p53 signaling pathway 
(hsa04115; Fig. 8D and E). 

3.9. Validation of hub gene expression in single-cell datasets 

The dataset contained 9,439 cells and detected 21783 genes. The basic characteristics of the data are displayed in Fig. 9A. After 
data filtering, 2,584 cells were included in the subsequent analysis. A correlation analysis between the characteristics (Fig. 9B) 
confirmed the good data quality. After data dimensionality reduction, according to ElbowPlot (Fig. 9C) and JackStraw (Fig. 9D) 
graphs, the first 16 PCs and the best resolution of 1.5 were selected for subsequent analysis, and 17 cell clusters were obtained (Fig. 9E). 
Cell subpopulation annotation revealed seven cell types, including T, B, and NK cells (Fig. 9F). Simultaneously, the analysis indicated 
that hub genes were highly expressed in T and mononuclear cells (Fig. 9G and H). 

4. Discussion 

In this study, we constructed a ceRNA network mediated by circHECTD1 and identified its important hub targets using bioin-
formatics analysis. These hub targets are mainly involved in regulating the cell cycle, apoptosis, and EMT pathways and affect the 
tumor immune microenvironment of HCC, thereby further affecting the prognosis of patients with HCC. Studies have revealed that 
circHECTD1 is highly expressed in HCC and may promote tumor progression [14]. However, according to the ceRNA mechanism, its 
target miRNAs should be expressed at low levels, while downstream mRNAs should be highly expressed. This study found that, except 
for miR-764, the three target miRNAs of circHECTD1, namely miR-548c-5p, miR-548d-5p, and miR-648, were lowly expressed in HCC, 
whereas their downstream hub targets KIF2C, CCNB1, CDKN3, MELK, MKI67, and ZWINT were highly expressed in HCC, which is 
consistent with the ceRNA mechanism, indicating that the constructed ceRNA network exhibited certain accuracy and credibility. In 
summary, the bioinformatics analysis in this study revealed that at a higher level, the ceRNA mechanism mediated by circHECTD1 may 
play a regulatory role in the occurrence and development of HCC. 

We successfully screened 15 key targets in the ceRNA network. These targets mainly regulate the HCC progression by activating 
signaling pathways, including the cell cycle and apoptosis, and inhibiting signaling pathways, including hormone receptors and RAS/ 
MAPK. This result is consistent with the biological functions closely related to the occurrence and development of HCC reported in the 
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literature [26–28]. The cell cycle refers to a series of complex molecular events and regulatory mechanisms involved in its life cycle. 
The normal cell cycle regulates the cell from initiation to apoptosis in an orderly manner. When this process becomes disordered, the 
cell cycle may become out of control, and the occurrence of tumors becomes possible [29]. Abnormal regulation of the cell cycle 
pathway in HCC may be an important mechanism in the occurrence and development of HCC. An in-depth study of the abnormal 
regulation of the cell cycle pathway is of great significance for understanding the HCC mechanism and developing new treatment 
strategies. Studies have demonstrated that circBACH1 can inhibit p27 translation, thereby affecting the cell cycle process and ulti-
mately promoting the progression of HCC as an oncogene [30]. Apoptosis is an important form of cell death that plays a key role in 
maintaining the balance of cell numbers in the body, eliminating abnormal cells, and inhibiting tumor development. The apoptosis 
signaling pathway involves a series of molecular signal transduction mechanisms that regulate apoptosis. Abnormal regulation of the 
apoptotic signaling pathway in HCC is closely related to the occurrence, development, and treatment resistance of tumors. The ceRNA 
mechanism affects HCC progression by regulating apoptosis [28,31]. In HCC, the occurrence and regulation of EMT are closely related 
to tumor invasion, metastasis, and treatment resistance. Multiple signaling pathways are involved in the EMT process of HCC cells, 
including Wnt/β-catenin, transforming growth factor-beta (TGF-β), Notch and Hedgehog [12,32,33]. Survival analysis results indi-
cated that the expression of 12 key targets, including CCNB1, CDK4, CDKN3, MELK, and MKI67, is significantly associated with the 
survival prognosis of patients with HCC. These targets may affect patient prognosis by regulating HCC cell proliferation. 

Further analysis revealed that six targets (CCNB1, CDKN3, KIF2C, MELK, MKI67, and ZWINT) were associated with immune 
infiltration and immune checkpoint expression in patients with HCC, suggesting that these six targets may not only directly regulate 
tumor cell growth but also participate in developing HCC by regulating the tumor immune microenvironment. This result is consistent 
with reports that CCNB1 [34], CDKN3 [35], KIF2C [36], and MKI67 [37] have been confirmed to play an important role in immune 
receptors and related cells in patients with HCC. Therefore, these six targets may affect the prognosis of patients with HCC through 
immune-related mechanisms, providing a theoretical basis for treating HCC. Studies on the tumor microenvironment have recently 
become a hot topic in tumor research. Research on the immune microenvironment provides novel insights into tumor treatment [38, 
39]. The ceRNA mechanism can regulate the tumor and immune microenvironments of HCC, thereby affecting disease development 
and guiding targeted treatment of HCC [40–42]. 

We observed that circHECTD1 directly regulates downstream targets, including CCNB1, MELK, MKI67, and ZWINT, by regulating 
miR-548c/d-5p and miR-764 and also indirectly affects the immune microenvironment and prognosis of patients with HCC by 
regulating immune-related targets, including CDKN3 and KIF2C. This suggests that the constructed ceRNA network may play a role 
through multiple mechanisms. We incorporated these immune-related key targets and their corresponding miRNAs into the hub 
network and verified them through functional enrichment and gene expression analysis. The results showed that the functional 
enrichment of related genes was relatively consistent with our previous ceRNA network’s results, further confirming the constructed 
hub network’s reliability. Simultaneously, single-cell data analysis identified that hub genes were relatively highly expressed in T-cells 
and mononuclear cells of patients with HCC, consistent with our results of immune correlation analysis. This indicates that the ceRNA 
and hub networks regulated by circHECTD1 may affect the immune status and prognosis of patients with HCC by regulating T-cells and 
tumor-associated macrophages. Simultaneously, six hub targets were correlated with the clinical staging of patients with HCC and 
performed well as HCC diagnostic markers. 

Although our study provides new insights into the potential role of the ceRNA and hub networks regulated by circHECTD1 in HCC 
development, some limitations still exist. First, our research was mainly based on bioinformatics analysis, and further mechanistic 
verification is required. For instance, in the ceRNA network we constructed, the miR-764 expression level did not align with our 
expectations, and further validation is required to determine whether the expression levels of other downstream mRNA targets 
thoroughly meet our expectations. Although the model is imperfect, we believe that it remains accurate and provides valuable insights 
into the role of ceRNA networks in diseases. The accuracy of our model does not rely entirely on the performance of a single miRNA but 
on the comprehensive behavior of the entire network. Moreover, ncRNA and its interaction networks are abnormally complex. We only 
focused on the regulatory network of circHECTD1; other ncRNAs and related networks may also play an important role in HCC, 
requiring further study. Moreover, the occurrence and development of HCC involve the interaction and imbalance of multiple bio-
logical processes and signaling pathways. Our research mainly focused on immune- and cell-cycle-related mechanisms; other mech-
anisms, including angiogenesis, apoptosis, and metastasis, are also important for future research. 

In summary, our study preliminarily explored the potential role of ceRNAs and hub networks regulated by circHECTD1 in HCC 
development. This study suggests that this network may promote the occurrence and development of HCC by affecting the cell cycle, 
apoptosis, and the tumor immune microenvironment. Our research offers new insights into the role of ncRNA regulatory networks in 
HCC and treatment strategies for HCC. Future research can further confirm and explore this network’s role and potential therapeutic 
targets in the occurrence and development of HCC. 
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