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Abstract

Microsatellites make up�3% of the human genome, and there is increasing evidence that some microsatellites can have important

functions and can be conserved by selection. To investigate this conservation, we performed a genome-wide analysis of human

microsatellites and measured their conservation using a binary character birth–death model on a mammalian phylogeny. Using a

maximum likelihood method to estimate birth and death rates for different types of microsatellites, we show that the rates at which

microsatellites are gained and lost in mammals depend on their sequence composition, length, and position in the genome.

Additionally, we use a mixture model to account for unequal death rates among microsatellites across the human genome. We

use this model to assign a probability-based conservation score to each microsatellite. We found that microsatellites near the

transcription start sites of genes are often highly conserved, and that distance from a microsatellite to the nearest transcription

start site is a good predictor of the microsatellite conservation score. An analysis of gene ontology terms for genes that contain

microsatellites near their transcription start site reveals that regulatory genes involved in growth and development are highly enriched

with conserved microsatellites.

Key words: tandem repeats, simple sequence repeats, comparative genomics, promoters, Genomic Regions Enrichment of

Annotations Tool.

Introduction

Microsatellites, also known as short tandem repeats or simple

sequence repeats, are composed of short DNA sequences,

1–6 bp in length, repeated in tandem. Microsatellites are

useful genetic markers because microsatellite length changes

at a rate that is typically orders of magnitude higher than rates

of nucleotide substitution (Ellegren 2004; Buschiazzo and

Gemmell 2006; Kelkar et al. 2008; Leclercq et al. 2010).

Because of this hyper-mutability, microsatellites are tradition-

ally considered to be nonfunctional, “junk” DNA.

Microsatellites make up �3% of the human genome

(Warren et al. 2008) and some microsatellites are known to

perform important genomic functions (Gemayel et al. 2010).

For example, microsatellites composed of the motif AC/TG

can absorb negative supercoiling through the formation of

Z-DNA, which can displace nucleosomes (Liu et al. 2006;

Zhang et al. 2006; Xu et al. 2011) and also prevent the for-

mation of potentially hazardous non-B-DNA structures like

slipped-strand DNA (Edwards et al. 2009). Microsatellites

can also affect RNA secondary structure, altering their binding

properties and stability (Riley and Krieger 2009; Meng et al.

2010; Kozlowski et al. 2010).

Some of these functional microsatellites are known to

modulate phenotypes as they expand and contract. For exam-

ple, the expansion of microsatellites that code for proteins are

located in untranslated regions (UTRs) can result in neurode-

generative diseases or muscular dystrophy (Fondon et al.

2008). Not all phenotypic changes induced by microsatellite

mutations are deleterious, however, and some microsatel-

lites can produce beneficial variation (Fondon et al. 2008;
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Gemayel et al. 2010). Commonly cited examples of pheno-

types modulated by microsatellites are the mating behavior of

voles (Hammock and Young 2004) and the morphology of

dogs (Fondon and Garner 2004). Additionally, microsatellites

in yeast promoters modulate levels of gene expression, and

both yeast and human promoters contain relatively high den-

sities of microsatellites (Vinces et al. 2009). These and other

microsatellites may be acting as important sources of pheno-

typic variation (Rando and Verstrepen 2007; Fondon et al.

2008; Hannan 2010), potentially acting as bet-hedging mech-

anisms (Rando and Verstrepen 2007). Bet-hedging involves

stochastically switching phenotypes and can be optimal

when the environment is uncertain (Donaldson-Matasci

et al. 2010).

To determine which human microsatellites may be of func-

tional significance, one can take a comparative genomics ap-

proach and search for highly conserved mammalian

microsatellites. Similar approaches have uncovered other

types of functional elements in the human genome (Siepel

et al. 2005; Guttman et al. 2009). These approaches mod-

eled genome evolution at the nucleotide level and searched

for regions in which nucleotide bases have been highly con-

served. However, models at the nucleotide level are not easily

applied to microsatellites, because nucleotide substitutions are

frequently shuffled around, duplicated, or lost as microsatel-

lites expand and contract. The complex history of nucleo-

tide substitutions combined with motif insertions and

deletions make alignment of microsatellites very inaccurate.

Therefore, typical measures of sequence conservation that in-

volve the rates of nucleotide substitution are not easily applied

to microsatellites (Buschiazzo and Gemmell 2010). Although

modeling microsatellite evolution at the nucleotide level is

possible (Faux et al. 2007), such modeling efforts rely on

strong assumptions about sequence evolution that do not

apply to the entire genome.

To avoid modeling the complex nucleotide changes that

occur in microsatellites, previous studies have considered mi-

crosatellites as simply present or absent from a given genome

(Buschiazzo and Gemmell 2009, 2010; Mularoni et al. 2010)

with the working assumption that the presence of a micro-

satellite at orthologous positions indicates that the sequence

has been conserved. Using this assumption, these approaches

have uncovered microsatellites that have been highly con-

served across vertebrate genomes (Buschiazzo and Gemmell

2009; Mularoni et al. 2010). For example, Buschiazzo and

Gemmell (2009) uncovered microsatellites shared among dif-

ferent vertebrate clades, indicating that these repeats were

present in the vertebrate genome prior to the split of these

clades 450 Ma. Although that study laid the groundwork for

our current analysis, this earlier approach did not strictly mea-

sure microsatellite conservation. Rather, it only uncovered a

subset of human microsatellite believed to have been present

early in vertebrate evolution. Therefore, the work of

Buschiazzo and Gemmell (2009) and similar studies (Riley

and Krieger 2009; Mularoni et al. 2010) did not attempt to

quantify relative conservation of microsatellites.

To provide a measure of microsatellite conservation in

mammalian genomes, we conducted a phylogenetic analysis

of data from Buschiazzo and Gemmell (2009) that contain

virtually every single-copy human microsatellite and its pres-

ence or absence in alignments of the human genome with 11

other mammalian genomes. An example alignment of a con-

served microsatellite is shown together with the phylogeny

used in our analysis (fig. 1). We modeled microsatellite

A B C

FIG. 1.—Conservation of a promoter microsatellite. (A) Phylogeny of mammalian species used in our analyses. Branch lengths are measured in average

number of substitutions per 4-fold degenerate site. (B) An example of a highly conserved microsatellite (highlighted in yellow) uncovered by the birth–death

mixture model. This GT-motif microsatellite is found�800 bp upstream of the insulin growth factor 1 (igf1) transcription start site. (C) Generic examples of

other patterns of highly conserved loci. The + and � symbols represent present and absent, respectively.
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evolution as a birth–death process on this fixed phylogeny,

where birth–death indicates the gain–loss of microsatellites

at a given locus. The birth–death process is useful here be-

cause it reduces the number of possible states for each locus

to simply present or absent. Expanding the number of states in

our model by including microsatellite length would require a

detailed model of microsatellite mutation, and these models

can be rather complex (e.g., Calabrese et al. 2001; Kelkar

et al. 2011). Ultimately, we are interested in measuring the

conservation of microsatellites of any length, and therefore

detailed models of microsatellite expansion and contraction

may be unnecessarily complex for our purposes.

We used two different birth–death models to better under-

stand microsatellite evolution. Our simplest model assumed

that birth and death rates are equal across microsatellite loci

and uses the maximum likelihood (ML) method to estimate

these rates of microsatellite gain and loss. We found that the

rate at which a microsatellite is lost depends on its position,

length, and sequence composition. Our second approach

used a phylogenetic mixture model that assumes that death

rates vary among loci (Yang 1994; Cohen and Pupko 2010).

The mixture model allowed us to rank individual microsatel-

lites by their probability of belonging to the lowest death rate

class. We used this probability as a measure of microsatellite

conservation, and found a clear relationship between distance

from a microsatellite to the nearest transcription start site and

that microsatellite’s conservation score. We also found that

the promoters of genes involved in the development and

growth are enriched with highly conserved microsatellites.

Our results indicate that the phylogenetic mixture model pro-

vides a general framework for measuring microsatellite con-

servation on a genomic scale.

Materials and Methods

Microsatellite Data

Our data set was obtained from Buschiazzo and Gemmell

(2010) and isbasedon the identification of conserved microsat-

ellites in the publicly available alignment of the human genome

against 16 other species (available from the UCSC website

at ftp://hgdownload.cse.ucsc.edu/goldenPath/hg18/multiz17

way/, last accessed 9 June 2012). Briefly, a microsatellite was

considered present in another species if a microsatellite in that

species overlapped with the human microsatellite in the align-

ment (Buschiazzo and Gemmell 2010). Microsatellites in trans-

posableelementswerenot included in thisoriginal analysis, and

are thus absent from our data set.

Microsatellites in this set are made of 1–6 bp motifs, and

are at least 12 nt in length for mono-, di-, tri-, and tetranu-

cleotide repeats and three perfect repeats for penta- and hex-

anucleotide repeats. These parameters were based on

definition of microsatellites found in the literature (details in

Buschiazzo and Gemmell 2006, 2009, 2010). These length

thresholds are predicted to have rates of expansion and con-

traction high enough to be polymorphic within a species

(Kelkar et al. 2008). We excluded human microsatellites that

were closer than 25 bp to other microsatellites. The distance

of 25 bp was initially chosen to allow for the design of unique

polymerase chain reaction primers. Additionally, these micro-

satellites are known to behave differently than simple micro-

satellites (Varela and Amos 2009) and cannot always be

classified by a single motif.

We categorized microsatellites by their length, motif, and

functional position (coding, intron, 30 and 50-UTR, intergenic)

in the human genome, as in Buschiazzo and Gemmell (2010).

In our analysis, drawing reasonable conclusions from subsets

of the data relies on the assumption that this categorization

accurately represents the locus on the rest of the phylogeny.

For example, if the human microsatellite is included in a

coding region, the locus was categorized as coding and we

assumed that this categorization was, for the most part, valid

across the phylogeny. Although this assumption is not entirely

accurate, especially for distantly related species, it allowed us

to make some inferences about and control for the effect of

motif, length, and position on microsatellite conservation.

Some microsatellites overlap the boundaries between

two regions. We limited the categorization of these loci to

a single position by prioritizing the regions with the lon-

gest overlap or, if there was an even overlap between

two regions, we used a preferential site localization:

coding>50-UTR> 30-UTR> intron> intergenic regions. For

example, a microsatellite that evenly spans a coding and

intron boundary would be considered coding.

We restricted our analyses to just the 12 mammalian ge-

nomes in the data set (fig. 1) to avoid possible complications

from genome expansions and duplications that have occurred

outside of the mammalian clade and to avoid inaccuracies

driven by alignments of distantly related species (Prakash

and Tompa 2007; Buschiazzo and Gemmell 2010). Note

that these inaccuracies are only significant in nonmammalian

alignments (Buschiazzo and Gemmell 2010). We also ex-

cluded microsatellites found in human sex chromosomes be-

cause, on average, these chromosomes undergo different

numbers of replication events per generation than the auto-

somal chromosomes. Under these restrictions, our data set

has a total of 538,964 human microsatellites and records

their presence or absence in 11 other aligned mammalian

genomes (fig. 1).

Assumed Phylogeny

The 12-species phylogeny with corresponding branch lengths

was taken from Miller et al. (2007). This tree was generated

using substitutions in 4-fold degenerate sites in coding re-

gions, established as protein-coding by ENCODE (Miller

et al. 2007). Because branch lengths were measured in ex-

pected number of substitutions per site, our estimated
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microsatellite birth and death rates are measured in gains and

losses per substitution per 4-fold degenerate site. Measuring

tree branches using “evolutionary time” allows us to control

for variable rates of evolution across branches.

Birth–Death Model with Homogeneous Rates

Starting with n ¼ 12 species and s microsatellite loci, we rep-

resented microsatellite absence/presence data as matrix

y ¼ fyijg, where i ¼ 1;…; n, j ¼ 1;…; s, yij2f0,1}, 0¼ab-

sence, and 1¼presence. We assumed that the matrix

columns, corresponding to microsatellite loci, were indepen-

dent and identically distributed (iid) and that evolution of each

microsatellite absence/presence followed a continuous-time

Markov chain (CTMC) on the state space f0,1} with infinites-

imal generator

Q ¼
�� �
� ��

� �
;

where l and m are birth and death rates, respectively. This

birth–death process starts with some initial distribution

� ¼ ð�0; �1Þ at the root of the phylogeny F and proceeds

down the phylogeny in such a way that conditional on the

absence/presence state of each internal node of F the micro-

satellites die and get (re)born independently in the two clades

descending from this node. We assume that the root distribu-

tion is equal to the stationary distribution of the birth–

death CTMC: � ¼ ½�=ð�þ �Þ; �=ð�þ �Þ�. We then used

Felsenstein’s pruning algorithm to compute the probability

of observing microsatellite absence/presence data at the tips

of the phylogeny F for each locus i:

f ðy; �; �Þ ¼ Prðyi; �; �Þ;

where yi ¼ ðy1i;…; yniÞ
T (Felsenstein 1981). In our analysis,

we considered only microsatellites that are present in the

human genome. Following Felsenstein (1992), we corrected

this ascertainment bias by conditioning on the event that the

human tip in our phylogeny is always in state 1, fh ¼ 1}:

Prðyi j h ¼ 1; �; �Þ ¼
Prðyi; �; �Þ

Prðh ¼ 1; �; �Þ
:

Under our stationarity assumption at the root of the phy-

logeny, Prðh ¼ 1; �; �Þ ¼ �=ð�þ �Þ. The assumed iid prop-

erty of microsatellite loci implies that the likelihood of

observing matrix y is

Lðy; �; �Þ ¼
Ys

i¼1

Prðyi j h ¼ 1; �; �Þ:

We obtained maximum likelihood estimates of birth and

death rates, �̂ and �̂, by numerically maximizing the above

likelihood with respect to l and m using custom C++ and

R code. In order to arrive at category-specific estimates (e.g.,

coding region birth and death rate estimates), we formed a

category-specific data matrix y by including into this matrix

only loci that belong to a category of interest. We used as-

ymptotic normality of maximum likelihood estimators and the

observed Fisher information matrix to construct confidence

intervals for birth and death rates.

Birth–Death Mixture Model

To model birth–death rate heterogeneity across microsatellite

loci, we used a simplified version of one of the mixture models

proposed by Cohen and Pupko (2010), which in turn are slight

modifications of the standard phylogenetic gamma mixture

model (Yang 1994). Our mixture model postulates that each

locus i has a locus-specific death rate �i, which is obtained by

multiplying some unknown baseline rate m by scaling factor ri:

�i ¼ �ri. The locus-specific scaling factors themselves are iid

and gamma distributed:

ri � Gammað�; �Þ; for i ¼ 1;…; s;

where a is an unknown shape parameter. In practice, such

continuous mixture models are approximated via discretiza-

tion (Yang 1994). More specifically, we assumed that there

were three death rate scaling factors, corresponding to low,

medium, and high conservation of microsatellite loci. Then we

formed scaling factors r1,r2,r3 by discretizing the Gammað�; �Þ

distribution. These scaling factors were normalized so thatP3
j¼1 rj ¼ 1. Using locus probabilities from the homogeneous

birth–death model, we wrote the probability of observing

locus i under the mixture model as

Prðyi; �; �; �Þ ¼
1

3

X3

j¼1

f ðyi; �; �rjÞ:

To correct for the ascertainment bias, we rescaled the

above expression by the probability that the human tip of

the tree is in state 1:

Prðyi j h ¼ 1;�; �; �Þ ¼
Prðyi; �; �; �Þ

Prðh ¼ 1; �; �; �Þ
:

As before, we formed the likelihood by multiplying locus

probabilities,

Lðy; �; �; �Þ ¼
Ys

i¼1

Prðyi j h ¼ 1; �; �; �Þ;

and maximized this likelihood function to arrive at estimates of

birth rate, baseline death rate, and the shape parameter of the

gamma distribution: �̂, �̂, and �̂. As before, the maximization

was done numerically using custom code. In principle, we

could also assume variability in the birth rate as in Cohen

and Pupko (2010). However, microsatellites get (re)born very

infrequently, making our data much less informative about

the birth rate than about the death rate. Motivated by this

observation and by the fact that death rate is our main pa-

rameter of interest, we chose to keep the birth rate equal

across microsatellite loci.

Measuring Microsatellite Conservation GBE
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Estimation of birth–death mixture model parameters

allowed us to assign each locus i a probability triplet

p̂ ¼ ðp̂i1; p̂i2; p̂i3Þ, where

p̂ij ¼
f ðyi; �; �rjÞ

1
3

P3
l¼1 f ðyi; �; �rlÞ

:

We quantified conservation of microsatellite locus i

based on its probability of belonging to the highly conserved

class, p̂i1.

Enrichment Analysis

After estimating parameters of the birth–death mixture

model, we chose a cut-off value 0< c<1 and classified

each locus i as highly conserved if p̂i1 4 c. Suppose this pro-

cedure finds x highly conserved loci out of all s loci under

consideration. We would like to know if a particular category

of microsatellites, A (e.g., loci located in coding regions), are

enriched in the set of highly conserved loci. We proceed with

standard enrichment analysis based on a hypergeometric dis-

tribution (Tavazoie et al. 1999; Huang et al. 2009). Suppose a

out of all s loci belong to the category A. Moreover, we find

that our set of highly conserved loci contains z< a loci in A.

Under the null hypothesis of sampling x loci from s loci uni-

formly at random, the random number of sampled loci that

are in A, X, follows a hypergeometric distribution with param-

eters s, a, x. We computed the enrichment P value as

PrðZ � zÞ using the statistical computing environment R (R

Development Core Team 2011).

Genomic Regions Enrichment of Annotations Tool

The enrichment of gene ontology terms for highly conserved

microsatellites around transcription start sites was done using

the Genomic Regions Enrichment of Annotations Tool, version

1.7.0, species assembly hg18 (GREAT; McLean et al. 2010).

Briefly, this tool tests for an association between gene ontol-

ogy terms and genes that contain input sequences, in the

form of a genomic position, in their promoter region. We

used distances of 2,000 bp from the transcription start site,

upstream and downstream, as our “promoter” region.

GREAT also provided the distance from all of our microsatel-

lites to the nearest canonical transcription start site. We did

not include curated regulatory domains or distal regulatory

regions in the analysis.

Linear Regression

We applied a linear regression model to investigate the rela-

tionship between our conservation score and other factors

associated with each locus. We only examined microsatellites

that were at least 5,000 bp from the canonical transcription

start site, as provided by GREAT, for a total of 38,432 loci.

The covariates used in this analysis were absolute distance to

the nearest canonical transcription start site in base pairs,

motif (284 different types), length in the human genome,

and position in functional region (five different types:

coding, 30 and 50-UTR, intronic, and intergenic). As our con-

servation score for each locus, we used the logit of the prob-

ability of belonging to the lowest death rate class.

Keeping the identifiability constraints in mind, we esti-

mated 290 regression coefficients in R (R Development Core

Team 2011). To overcome the multiple testing problem while

testing which of the coefficients are nonzero, we controlled

the false discovery rate (FDR) using the R package fdrtool and

computed the FDR q value for each regression coefficient

(Strimmer 2008).

Results

Global Birth–Death Rate Estimates

Under the assumption of homogeneous rates, the ML estima-

tion of the death rate was 8.59 ± 0.03 deaths per nucleotide

substitution at 4-fold degenerate sites per microsatellite (here-

after all rates mentioned use this metric). This result indicates

that microsatellites are, on average, lost more rapidly than the

rate at which substitutions occur. The ML estimate for birth

rate was 0.169 ± 0.03. This is best interpreted as a locus spe-

cific rate of (re)birth.

Locus Categorization by Genomic Position and Motif

We categorized microsatellites by their motif and position in

the human genome: coding regions, 30 and 50-UTR, introns,

and intergenic regions (table 2). This categorization allowed us

to measure rates for different types of microsatellites. The ML

death rate estimates for microsatellites in coding regions,

30 and 50-UTR were all relatively low (fig. 2). Microsatellites

in these positions are thus more likely to be conserved. In

addition, microsatellites in coding regions and 50-UTR had a

relatively high estimated birth rate, indicating an increased

rate of gain of microsatellites in these regions.

In addition, we made motif specific measurements, but

microsatellites with different motifs are not necessarily uni-

formly distributed throughout the genome. For example,

many tri- and hexa-nucleotide motif microsatellites are

found at a relatively high frequency in coding regions

(Li et al. 2004). Therefore, we limit our discussion here to

the three most common motifs in our data: A, AT, and AC.

Note that motifs were standardized (Kofler et al. 2007;

Buschiazzo and Gemmell 2009), so the motif “AC” includes

all permutations of the motif, in this case CA, GT, and TG. The

majority of these ubiquitous microsatellites are found in

stretches of noncoding, presumably nonfunctional regions

of the human genome, and thus we assume that the majority

of them are nonfunctional (Li et al. 2004). Extensive death rate

variation exists among these motifs, indicating a clear

motif-specific effect (fig. 2). AC microsatellites had the

lowest motif-specific death rate, whereas AT microsatellites

Sawaya et al. GBE
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had the highest. We excluded coding and UTR microsatellites

in this estimate in an attempt to only measure neutral, “non-

functional” microsatellites.

Variation was also found among the death rates of less

common motifs (data not shown). Rate estimates for less

common motifs may be influenced by their relative overabun-

dance in functional genomic regions. Delimiting the effects of

sequence constraints in functional regions and effects of motif

is thus difficult, and requires a priori knowledge about which

regions of the genome are evolving neutrally. Therefore, al-

though our results support the hypothesis that motif does

affect the rate at which a microsatellite is lost during evolution

(Buschiazzo and Gemmell 2009; Taylor et al. 1999), we did

not estimate rates for uncommon motifs.

Locus Categorization by Length

Investigating the relationship between microsatellite conserva-

tion and length is not a simple task. Due to their high rate of

expansion and contraction, the length of these microsatellites

can be highly variable. Each locus has an unknown distribution

of lengths for each species, and this distribution may vary

significantly between species, and between each species

and their ancestors. Therefore, length is not a fixed parameter

on the phylogeny.

To better understand how microsatellite length is related to

conservation without explicitly modeling microsatellite length

evolution, we treat length as a fixed quantity for each locus.

We assign each locus a length value equal to the length of the

microsatellite in the human genome sequence examined

(build36/hg18), and obtain ML birth and death rates for

each length value. Our primary intention here to see if micro-

satellite length in the human genome can serve as a proxy for

the effect of microsatellite length, which changes along the

phylogeny, on microsatellite birth and death rates. We find

that stratifying microsatellites by the human length results in a

sensible pattern showing that shorter loci have higher birth

and death rates (fig. 3).

Death rates appear to slightly increase for microsatellites

with a length of 60 bp or greater, but we believe these esti-

mates are less meaningful for two reasons. First, there are

many more short microsatellites than long microsatellites,
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FIG. 3.—ML estimates for microsatellites categorized by their length in

the human genome. (A) ML estimates of death rate for each length.

(B) ML estimates for birth rate for each length. Error bars on each plot

represent 95% confidence intervals. We fix the minimum possible value of

the birth rate to 0.
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FIG. 2.—ML birth and death rate estimates for different subsets of the

data: coding regions, intronic regions, intergenic regions, 30 and 50-UTR,

and microsatellites in all of these regions composed of the motifs A, AC,

and AT. The point labeled “All loci” is the birth and death estimate for the

entire data set. Confidence intervals for these estimates were too narrow

to be added to the figure.
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and as the sample size decreases with length, uncertainty in-

creases. Second, longer microsatellites have a higher rate of

expansion and contraction (Kelkar et al. 2008; Leclercq et al.

2010), and their lengths may be less accurately represented by

the length found in the human genome. There are a limited

number of microsatellites with lengths longer than 90 bp

(1697 loci, 0.3% of the total data), and we did not estimate

rates for these lengths.

Mixture Model Results

Under the mixture model, we assumed that death rates follow

a discretized gamma distribution, with three rate classes: low,

medium, and high. The parameters of our gamma distribution

were estimated with the ML method. Table 1 shows that,

according to Akaike and Bayesian information criteria, the

mixture model is more appropriate for our data than the

model with homogeneous rates. This mixture model allowed

us to investigate the conservation of individual microsatellites.

Microsatellites can be assigned to estimated death rate classes

based on their locus-specific probabilities for each class.

However, such assignments suppress uncertainty associated

with this locus classification. Instead of assigning each locus

into a rate class, we examined the relative probabilities of each

microsatellite belonging to the three different rate classes.

Limiting ourselves to three death rates and a single birth

rate allows us to plot the simplex of locus-specific class prob-

abilities (fig. 4). The estimated death rate classes (low,

medium, and high) correspond to estimated death rates

5.92, 10.92, and 18.20, respectively. Loci with a high proba-

bility of belonging to a single rate are found in the corners of

the simplex, whereas loci with approximately equal probabil-

ities of belonging to each rate class are found in the middle.

A large proportion of our loci fell near the center of the

simplex plot and did not fit cleanly into any specific death rate

class (fig. 4). Although we do not attempt to measure infor-

mation content per locus, the simplex plot clearly demon-

strates that there is limited information about the death

rates for many of the microsatellites in our data set, which

makes their locus-specific death rates difficult to estimate.

Other loci, however, contained sufficient information about

their death rates and fell cleanly into the low death rate class.

These are the most conserved microsatellites present in the

human genome, and are of primary interest to this study.

Notice that the ordered nature of death rate classes

(low<medium< high) results in a parabolic shape of our sim-

plex histogram.

Highly Conserved Loci

We considered loci with a probability of belonging to the

lowest death rate class greater than 99% to be “highly con-

served.” According to this criterion, there are 13,600 highly

conserved loci representing 2.5% of the total data set.

Figure 1 shows some examples of phylogenetic patterns

seen at highly conserved loci. These highly conserved loci

are significantly enriched with microsatellites in coding, 30

and 50-UTR regions (table 2). Microsatellites with the motif

AC are also statistically enriched in this set, perhaps reflecting

the functional importance of this motif in mammalian ge-

nomes (Rothenburg et al. 2001). Only 6% of these highly

conserved AC microsatellites are found in regions that

encode mRNA.

We are particularly interested in these highly conserved loci

as functional elements in gene promoters. Microsatellites have

been previously associated with promoters in humans and

yeast, both upstream and downstream of the transcription

start site (Vinces et al. 2009). To investigate which genes con-

tain highly conserved microsatellites in their promoters, we

–5.43 –0.354

Low Medium

High

5.92 10.92

18.20

Logit Score

FIG. 4.—Locus-specific probabilities for the three death rate classes.

The color of each triangle represents the frequency of loci that have death

rate probabilities within the triangle, with dark red representing the trian-

gles with the highest density of loci. The values of the death rates are

indicated at the corners of the simplex. Loci that fall in the middle of the

simplex have an equal probability of belonging to each rate class. The color

scheme is set on the logit scale, defined as log odds of histogram frequen-

cies. To convert back to the frequency scale, one can use the logistic

function (f ðxÞ ¼ 1=½1þ expð�xÞ�). For example, the boundary logit

scale values �5.43 and �0.354 correspond to frequencies 0.0044 and

0.41, respectively.

Table 1

Model comparsion

Log Likelihood AIC BIC

Homogeneous rates �716740.79 1433485.58 1433507.97

Mixture model �708064.18 1416134.36 1416167.95

NOTE.—We report log likelihood, Akaike Information Criterion (AIC), and
Bayesian Information Criterion (BIC) values for the model with homogenous
birth–death rates and for the mixture model.
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used the Genomic Regions Enrichment of Annotations Tool

(GREAT; McLean et al. 2010), which tests for an association

between genomic positions and gene promoters. Using this

tool, we examined the association between highly conserved

microsatellites and gene promoters, which we defined as

2,000 bp upstream and downstream of the canonical tran-

scription start site.

We found 1,463 genes that contain highly conserved mi-

crosatellites in their promoters, �8% of the genes examined

in the analysis. The results of the gene ontology analysis indi-

cate that these genes are an astonishingly nonrandom sample

of the human genome (table 3). We display the results of two

tests done by GREAT. The hypergeometric test counts each

gene with a microsatellite in its promoter only once, whereas

the binomial test counts the total number of base pairs cov-

ered by microsatellites in each gene’s promoter. Many of

these genes encode proteins that are regulatory and are in-

volved in development (see Discussion). Table 3 contains a

small subset of the significant gene ontology terms, and the

entire list can be found in the Supplementary Material online.

To further investigate the relationship between promoters

and microsatellite conservation, we used a linear regression

with our conservation score, taken as the logit of the proba-

bility of the lowest death rate, as a response and the distance

to the nearest transcription start site, in base pairs, as a covar-

iate. To control for other factors that may affect this conser-

vation score, we included three other covariates: the motif

type of each locus, the length in the human genome, and

the functional category of each locus (coding, 50-UTR, etc.).

Even after controlling for all these factors, distance to the

transcription start site is negatively correlated with conserva-

tion score (regression coefficient¼�0.00016, false discovery

q value¼10�121, table 4). This is the second most significant

factor in the linear analysis, and remains so even if coding and

Table 3

A sample of results with the most significant binomial test values from the online web-tool GREAT (McLean et al. 2010)

Ontology Category Binom.

FDR Q-value

Binom.

fold enrich.

Hyper

FDR Q-value

Number of

genes found

GO molecular function Nucleic acid binding 0 9.1 10�17 419

Protein binding 0 6.8 10�13 843

Binding 0 6.3 10�13 1167

Transcription regulator activity 10�305 14 10�44 300

GO biological process Multicellular organismal development 0 11 10�47 491

Anatomical structure development 0 11.2 10�47 458

Developmental process 0 10.4 10�45 515

System development 0 11.5 10�44 422

Regulation of cellular biosynthetic process 0 10.3 10�34 450

Regulation of nucleobase, nucleoside, nucleotide and

nucleic acid metabolic process

0 10.4 10�34 449

Regulation of biosynthetic process 0 10.2 10�34 451

Regulation of gene expression 0 10.5 10�33 438

Regulation of nitrogen compound metabolic process 0 10.3 10�33 449

Regulation of macromolecule biosynthetic process 0 10.5 10�33 430

Regulation of transcription 0 10.8 10�32 401

Mouse phenotype Mammalian phenotype 0 8.7 10�50 777

Nervous system phenotype 0 12.2 10�47 390

Lethality-prenatal/perinatal 0 12.2 10�44 374

Growth/size phenotype 0 11 10�40 400

NOTE.—The test examined enrichment of conserved microsatellites within 2,000 bp of the canonical transcription start site. The binomial false discovery rate (Binom. FDR)
Q-values are the result of a test that examines the total coverage of microsatellites in each gene’s promoter. The binomial fold enrichment (Binom. Fold Enrich.) represents
enrichment of highly conserved loci in promoter regions associated with the gene ontology term. To generate the hypergeometric false discover rate (Hyper FDR) Q-value,
genes were counted a single time if their promoters contain at least one microsatellite. In total, all 13,600 microsatellites tested picked 1,463 genes, 8% of the 17,506 genes
used in the analysis.

Table 2

Enrichment of categories in the highly conserved microsatellite set

No. of

loci

% of

loci

No. of

cons. loci

% of

cons. loci

Enrich.

P value

All loci 538,964 100 7,557 100 —

Intronic 225,162 41.8 2,412 31.9 1.0

Intergenic 300,042 55.7 3,315 43.8 1.0

Coding 4,968 0.9 961 12.7 10�772

50-UTR 2,516 0.4 245 3.2 10�122

30-UTR 6,276 1.1 624 8.3 10�319

A 104,373 19.3 772 10.2 1.0

AC 91,786 17.0 2,257 29.9 10�168

AT 37,219 6.9 213 2.8 1.0

NOTE.—The number of loci in each category is given, along with the number
of loci found in the highly conserved set (“cons. loci”). Enrichment P values were
calculated under a hypergeometric test.
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50-UTR microsatellites are removed from the analysis (data not

shown). The most significant factor was presence in 30-UTR.

Also, there is a positive correlation seen between microsatellite

length and conservation, supporting the trend seen in the ML

estimates for length (fig. 3). In addition, all functional catego-

ries and many motif types show significant association with

our conservation score.

Discussion

Modeling microsatellite evolution using simple binary birth–

death models allowed us to measure microsatellite conserva-

tion without modeling the complex mutational mechanisms

prevalent at these loci. We found that microsatellite deaths

occur more frequently than nucleotide substitutions, and that

microsatellite births appear to be exceedingly rare (fig. 2), sup-

porting the assumption that the presence of a microsatellite in

multiple species is the result of sequence conservation, rather

than convergent evolution.

These findings disagree with results in Kelkar et al. (2011),

where births were found to be more frequent than deaths

within primate genomes. This disagreement is likely driven by

multiple factors, such as microsatellite birth/death rate varia-

tion along mammalian genomes, rate variation accross the

tree of mammals, and differences in estimation methodolo-

gies employed in the two studies. For example, one difference

between our study and the work of Kelkar et al. (2011) is the

fact that we did not examine microsatellites in transposable

elements, which (Kelkar et al. 2011) showed to be important

factors in determining the birth and death rates of microsat-

ellites in primates. In addition, when we used our methodol-

ogy to estimate birth and death rates only in the primate clade

of our mammalian tree, our estimated birth rate became

much higher than the original estimate, but still lower than

the estimated death rate.

Although evolutionary models at the nucleotide level are

the methods of choice for measuring sequence conservation,

these models are not easily applied to hypermutable genomic

elements which are difficult to align. By simplifying genome

alignments into microsatellite presence or absence data, we

avoided the need to model the complexities of microsatellite

evolution (Buschiazzo and Gemmell 2009). Applying a birth–

death model to the simplified alignments allowed us to rank

microsatellites by the rate at which they have been lost on our

phylogeny, their death rate. We then make the working as-

sumption that microsatellites with the lowest death rates have

been conserved because of selection, and not because they

have a low mutation rate, although intragenomic variation in

rates of nucleotide substitution (e.g., Hardison et al. 2003)

may be partially responsible for differences in conservation

between microsatellites.

Selection can prevent the loss of a microsatellite, even if the

microsatellite itself is neutral. For example, some microsatel-

lites might be conserved simply because they code for amino

Table 4

Results of the regression analysis for our conservation score

Covariate Q-value Reg. coef.

Intercept: function: 30-UTR 6.1E-143 1.7

distance to promoter 3.8E-121 �1.6E-04

function: intergenic 6.2E-93 �1.3

function: intron 5.7E-90 �1.2

length 9.5E-82 1.8E-02

motif: AC 2.7E-42 4.7E-01

motif: AT 2.1E-38 �6.9E-01

motif: C 1.5E-31 �1.2

motif: CCG 4.9E-25 4.7E-01

motif: AGC 5.3E-25 6.8E-01

motif: AGG 4.6E-20 4.7E-01

motif: AAT 1.9E-12 �3.9E-01

motif: AATG 6.5E-12 4.4E-01

motif: CCCCGG 1.9E-11 �1.7

motif: ATACCT 6.7E-11 �1.3E+01

motif: CCCCG 1.8E-10 �6.0E-01

motif: AAC 7.3E-10 �3.9E-01

motif: CG 1.8E-07 8.7E-01

motif: AGCCCC 6.8E-07 �1.4

function: coding 1.9E-06 3.8E-01

motif: CCCCCG 6.8E-06 �9.6E-01

motif: CCGCG 8.6E-06 �1.0

motif: AGGGG 9.1E-06 �5.8E-01

motif: ACCCC 1.8E-05 �6.8E-01

motif: AAAAC 2.6E-05 �3.1E-01

motif: ATAG 6.7E-05 �5.6E-01

motif: AGGGC 1.3E-04 �7.7E-01

motif: ACACGC 1.8E-04 2.5

motif: AGGC 2.0E-04 �3.7E-01

motif: CCGG 2.5E-04 �7.4E-01

motif: AGGGGC 2.7E-04 �1.4

motif: ACCCCC 5.7E-04 �8.1E-01

motif: CCCG 8.2E-04 �2.6E-01

motif: CCCGCG 9.4E-04 �1.5

motif: AAAAT 1.0E-03 �3.9E-01

function: 50 UTR 1.3E-03 �2.6E-01

motif: ATAC 1.5E-03 �3.8E-01

motif: ACG 1.6E-03 1.2

motif: AAAC 2.0E-03 �2.0E-01

motif: AGCGG 2.8E-03 �1.6

motif: AGGCG 3.2E-03 �1.3

motif: CCCGG 3.7E-03 �5.5E-01

motif: AGCCG 4.0E-03 �1.2

motif: AAATT 5.0E-03 �7.1E-01

motif: ACAG 5.2E-03 3.4E-01

motif: ACCC 5.3E-03 �2.6E-01

motif: AATT 5.3E-03 �4.0E-01

motif: AAGCCG 6.0E-03 5.2

NOTE.—We display regression covariates for which FDR Q-value is <0.01
(second column). The last column shows the corresponding regression coefficients.
The adjusted r2 for this regression analysis is 0.1588.
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acid repeats (Faux et al. 2007; Simon and Hancock 2009) that

can serve as disordered regions, inducing instability in protein

structure (Simon and Hancock 2009). The frequent expansion

and contraction of these microsatellites may be selectively

neutral, or even slightly deleterious. In this scenario, a micro-

satellite would be conserved passively, hitchhiking in a

functional region simply because mutations within the micro-

satellite can sometimes interfere with the region’s function.

Microsatellites with lower rates of expansion and contraction,

such as short microsatellites (Kelkar et al. 2008), may be more

likely to be found under this neutral selection scenario. These

microsatellites are less likely to change length, and therefore

less likely to generate potentially deleterious mutations. In

fact, selection could preserve the length of these microsatel-

lites, even those with high rates of expansion and contraction,

if length changes were highly deleterious.

Other microsatellites, however, might be conserved pre-

cisely because of their high mutation rate, which in some

cases may provide a selective advantage (Kashi et al. 1997).

If these microsatellites are acting to modulate phenotypes

(Rando and Verstrepen 2007; Fondon et al. 2008; Gemayel

et al. 2010) and microsatellites are responsible for some of the

“missing heritability” in the human genome (Hannan 2010),

then conserved microsatellites may help to explain some of

the phenotypic diversity found in humans and other mammals

(Buschiazzo and Gemmell 2010; Mularoni et al. 2010).

For example, microsatellites near transcription start sites

can modulate levels of gene expression as they expand and

contract, and are important sources of variation in yeast gene

expression (Vinces et al. 2009). When transcribed in a gene’s

50-UTR, mutations in microsatellites may alter levels of tran-

scription and translation (Riley and Krieger 2009; Meng et al.

2010; Kozlowski et al. 2010). The high density of microsatel-

lites around the transcription start site in the human genome

indicates that they may be serving important functions in this

region (Vinces et al. 2009). The negative correlation between

a microsatellite’s conservation score and its distance to the

nearest transcription start site supports this hypothesis.

These results suggest that microsatellites can have important

functions in mammalian gene promoters, and we are prepar-

ing in-depth analyses of microsatellite conservation in these

regions.

Genes that regulate development often contain multiple

highly conserved microsatellites in their promoters (table 3).

Many of these regulatory genes are involved in growth, a trait

that has significant agricultural importance. If some of these

highly conserved promoter microsatellites are modulating

body size they may be useful for animal breeding programs.

For example, insulin growth factor 1 (igf1), contains a highly

conserved microsatellite �800 bp upstream of its start site

(fig. 1). This microsatellite appears to be a conserved source

of variation in growth, as the length of this microsatellite is

associated with circulating igf1 levels and/or body size in

humans (Rietveld et al. 2004; Sweeney et al. 2005; Akin

et al. 2010; Chen et al. 2011), pigs (Estany et al. 2007), and

cows (Curi et al. 2005). Highly conserved microsatellites in the

promoters of developmental regulators like igf1 may make

useful targets for quantitative genetics studies.

Although the birth death model has uncovered many in-

teresting conserved microsatellites, it does not explicitly model

the changes in microsatellite length or the accumulation of

nucleotide substitutions within the microsatellite. Such a

model would not necessarily affect which microsatellites are

considered to be conserved. It would, however, provide fur-

ther insight into how microsatellite length and nucleotide

substitutions might relate to microsatellite death on the mam-

malian phylogeny.

Recently, a detailed model of microsatellite birth and death

in primates indicates that both length change and nucleotide

substitution are responsible for microsatellites births and

deaths (Kelkar et al. 2011). For short microsatellites, nucleo-

tide substitutions are the more frequent cause of births and

deaths (Kelkar et al. 2011). Therefore, the higher observed

birth and death rates for short microsatellites seen in

figure 3 are likely due to the fact that short microsatellites

are fewer substitutions away from nonmicrosatellite se-

quences. However, without modeling microsatellite evolution

at the nucleotide level, we cannot determine the relationship

between nucleotide substitution, length change, and micro-

satellite conservation in our results. Therefore, we recommend

interpreting results displayed in figure 3 with caution, as mi-

crosatellite length in the human genome provides only a very

rough approximation of the length effect on microsatellite

conservation.

Another limitation of our model comes from the way that

we examine other factors affecting our rate estimates, such as

motif or position. We used a two-stage approach; first esti-

mate the rates, then examine how these factors may affect

these rates. This could be done in one stage, in which the log

of the death rate is taken as a linear combination of predictive

factors, and ML is then used to infer rates parameters of this

generalized linear model. If this approach were used in the

mixture model, it would provide locus-specific rate estimates

conditional on various predictive factors. This approach would

be more computationally demanding, but would obtain more

accurate (conditional) rate measurements.

An additional limitation of our approach comes from

the data. The ability of a mixture model to detect microsatel-

lite conservation is restricted by the amount of information in

the data. In our results, locus-specific death rate class assign-

ments were uncertain for many of the loci examined; many

loci had an approximately equal probability of belonging to

any specific death rate class (fig. 4). The accuracy of

locus-specific assignments should increase if we add more

species to the analysis. A larger data set will also enable us

to use more sophisticated mixture models to accurately esti-

mate locus-specific microsatellite death rates (Yang et al.

2005).
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Conclusion

We performed the first statistically rigorous analysis of human

microsatellite conservation on a mammalian phylogeny. The

simplicity of the birth–death models allows us to make mea-

surements of microsatellite conservation on a genome-wide

scale. Although more complicated methods could have been

used, our approach has nevertheless uncovered some inter-

esting patterns related to microsatellite evolution. We hope

this and future work on conserved microsatellites will help

shed light on the functional importance of these hypermuta-

ble elements. Our publicly available results (see Supplementary

Material online) include the location, motif, and conservation

score for each microsatellite. These results can be used to

select candidate microsatellites to be used in association

studies.

Supplementary Material

We have made our data set publicly available at www.stat.

washington.edu/vminin/sawaya2011_supp/, last accessed

9 June 2012. The full list of results from GREAT can also be

found there. The software is available from https://github.

com/dnlennonpu01/mcsmac, last accessed 9 June 2012.

Acknowledgments

S.M.S was partially funded by the WRF-Hall foundation and

would like to thank Joe Felsenstein and Carl Bergstrom for

their help on this project. VNM was partially supported by the

National Scientific Foundation grant No. DMS-0856099. EB

and NJG were partially supported by Royal Society of New

Zealand Marsden grants UOC 202 and UOO 721.

Literature Cited
Akin F, Turgut S, Cirak B, Kursunluoglu R. 2010. IGF(CA)19 and

IGFBP-3-202A/C gene polymorphism in patients with acromegaly.

Growth Horm IGF Res. 20:399–403.

Buschiazzo E, Gemmell NJ. 2006. The rise, fall and renaissance of micro-

satellites in eukaryotic genomes. Bioessays 28:1040–1050.

Buschiazzo E, Gemmell NJ. 2009. Evolution and phylogenetic significance

of platypus microsatellites conserved in mammalian and other verte-

brate genomes. Aust J Zoology. 57:175–184.

Buschiazzo E, Gemmell NJ. 2010. Conservation of human microsatellites

across 450 million years of evolution. Genome Biol Evol. 2:153–165.

Calabrese PP, Durrett RT, Aquadro CF. 2001. Dynamics of microsatellite

divergence under stepwise mutation and proportional slippage/point

mutation models. Genetics 159:839–852.

Chen HY, et al. 2011. Haplotype effect in the IGF1 promoter accounts for

the association between microsatellite and serum IGF1 concentration.

Clin Endocrinol. 74:520–527.

Cohen O, Pupko T. 2010. Inference and characterization of horizontally

transferred gene families using stochastic mapping. Mol Biol Evol. 27:

703–713.

Curi R, Oliveira H, Silveira A, Lopes C. 2005. Effects of polymorphic mi-

crosatellites in the regulatory region of IGF1 and GHR on growth and

carcass traits in beef cattle. Animal Genet. 36:58–62.

Donaldson-Matasci M, Bergstrom C, Lachmann M. 2010. The fitness value

of information. Oikos 119:219–230.

Edwards S, Sirito M, Krahe R, Sinden R. 2009. A Z-DNA sequence re-

duces slipped-strand structure formation in the myotonic dystrophy

type 2 (CCTG) x (CAGG) repeat. Proc Nat Acad Sci U S A. 106:

3270–3275.

Ellegren H. 2004. Microsatellites: simple sequences with complex evolu-

tion. Nat Rev Genet. 5:435–445.

Estany J, et al. 2007. Association of CA repeat polymorphism at intron 1 of

insulin-like growth factor (IGF-I) gene with circulating IGF-I concentra-

tion, growth, and fatness in swine. Physiol Genomics 31:236–243.

Faux NG, et al. 2007. RCPdb: an evolutionary classification and codon

usage database for repeat-containing proteins. Genome Res. 17:

1118–1127.

Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum

likelihood approach. J Mol Evol. 17:368–376.

Felsenstein J. 1992. Phylogenies from restriction sites: a maximum-

likelihood approach. Evolution 46:159–173.

Fondon JW, Hammock EA, Hannan AJ, King DG. 2008. Simple sequence

repeats: genetic modulators of brain function and behavior. Trends

Neurosci. 31:328–334.

Fondon J, Garner H. 2004. Molecular origins of rapid and continuous

morphological evolution. Proc Nat Acad Sci U S A. 101:18058–18063.

Gemayel R, Vinces MD, Legendre M, Verstrepen KJ. 2010. Variable

tandem repeats accelerate evolution of coding and regulatory se-

quences. Ann Rev Genet. 44:445–477.

Guttman M, et al. 2009. Chromatin signature reveals over a thousand

highly conserved large non-coding RNAs in mammals. Nature 458:

223–227.

Hammock E, Young L. 2004. Functional microsatellite polymorphism as-

sociated with divergent social structure in vole species. Mol Biol Evol.

21:1057–1063.

Hannan A. 2010. Tandem repeat polymorphisms: modulators of disease

susceptibility and candidates for ‘missing heritability’. Trends Genet.

26:59–65.

Hardison RC, et al. 2003. Covariation in frequencies of substitution, dele-

tion, transposition, and recombination during eutherian evolution.

Genome Res. 13:13–26.

Huang D, Sherman B, Lempicki R. 2009. Bioinformatics enrichment tools:

paths toward the comprehensive functional analysis of large gene lists.

Nucleic Acids Res. 37:1–13.

Kashi Y, King D, Soller M. 1997. Simple sequence repeats as a source of

quantitative genetic variation. Trends Genet. 13:74–78.

Kelkar YD, Eckert KA, Chiaromonte F, Makova KD. 2011. A matter of life

or death: how microsatellites emerge in and vanish from the human

genome. Genome Res., Advance Access published October 12, 2011,

doi:10.1101/gr.122937.111.

Kelkar Y, Tyekucheva S, Chiaromonte F, Makova K. 2008. The

genome-wide determinants of human and chimpanzee microsatellite

evolution. Genome Res. 18:30–38.

Kofler R, Schlotterer C, Lelley T. 2007. SciRoKo: a new tool for whole

genome microsatellite search and investigation. Bioinformatics 23:

1683–1685.

Kozlowski P, de Mezer M, Krzyzosiak WJ. 2010. Trinucleotide re-

peats in human genome and exome. Nucleic Acids Res. 38:

4027–4039.

Leclercq S, Rivals E, Jarne P. 2010. DNA slippage occurs at microsatellite

loci without minimal threshold length in humans: a comparative ge-

nomic approach. Genome Biol Evol. 2:325–335.

Li Y, Korol A, Fahima T, Nevo E. 2004. Microsatellites within genes: struc-

ture, function, and evolution. Mol Biol Evol. 21:991–1007.

Liu H, Mulholland N, Fu H, Zhao K. 2006. Cooperative activity of BRG1 and

Z-DNA formation in chromatin remodeling. Mol Cell Biol. 26:

2550–2559.

McLean CY, et al. 2010. GREAT improves functional interpretation of

cis-regulatory regions. Nat Biotechnol. 28:495–501.

Sawaya et al. GBE

758 Genome Biol. Evol. 4(6):748–759. doi:10.1093/gbe/evs050 Advance Access publication May 16, 2012

http://gbe.oxfordjournals.org/cgi/content/full/evs050/DC1
http://gbe.oxfordjournals.org/cgi/content/full/evs050/DC1
www.stat.washington.edu/vminin/sawaya2011_supp/
www.stat.washington.edu/vminin/sawaya2011_supp/
https://github.com/dnlennonpu01/mcsmac
https://github.com/dnlennonpu01/mcsmac


Meng Z, Jackson N, Shcherbakov O, Choi H, Blume S. 2010. The human

IGF1R IRES likely operates through a Shine-Dalgarno-like interaction

with the G961 loop (E-site) of the 18S rRNA and is kinetically modu-

lated by a naturally polymorphic polyU loop. J Cell Biochem. 110:

531–544.

Miller W, et al. 2007. 28-way vertebrate alignment and conservation

track in the UCSC Genome Browser. Genome Res. 17:1797–1808.

Mularoni L, Ledda A, Toll-Riera M, Alba M. 2010. Natural selection drives

the accumulation of amino acid tandem repeats in human proteins.

Genome Res. 20:745–754.

Prakash A, Tompa M. 2007. Measuring the accuracy of genome-size mul-

tiple alignments. Genome Biol. 8:R124.

R Development Core Team. 2011. R: A Language and Environment for

Statistical Computing. Vienna, Austria: R Foundation for Statistical

Computing.

Rando O, Verstrepen K. 2007. Timescales of genetic and epigenetic inher-

itance. Cell 128:655–668.

Rietveld I, et al. 2004. A polymorphic CA repeat in the IGF-I gene is asso-

ciated with gender-specific differences in body height, but has no

effect on the secular trend in body height. Clin Endocrinol. 61:

195–203.

Riley DE, Krieger JN. 2009. UTR dinucleotide simple sequence repeat evo-

lution exhibits recurring patterns including regulatory sequence motif

replacements. Gene 429:80–86.

Rothenburg S, Koch-Nolte F, Haag F. 2001. DNA methylation and Z-DNA

formation as mediators of quantitative differences in the expression of

alleles. Immunol Rev. 184:286–298.

Siepel A, et al. 2005. Evolutionarily conserved elements in vertebrate, in-

sect, worm, and yeast genomes. Genome Res. 15:1034–1050.

Simon M, Hancock J. 2009. Tandem and cryptic amino acid repeats ac-

cumulate in disordered regions of proteins. Genome Biol. 10:R59.

Strimmer K. 2008. A unified approach to false discovery rate estimation.

BMC Bioinformatics 9:303.

Sweeney C, et al. 2005. Insulin-like growth factor pathway polymorphisms

associated with body size in Hispanic and non-Hispanic white women.

Cancer Epidemiol Biomarkers Prev. 14:1802–1809.

Tavazoie S, Hughes J, Campbell M, Cho R, Church G. 1999. Systematic

determination of genetic network architecture. Nat Genet. 22:

281–285.

Taylor J, Durkin J, Breden F. 1999. The death of a microsatellite: a phylo-

genetic perspective on microsatellite interruptions. Mol Biol Evol. 16:

567–572.

Varela MA, Amos W. 2009. Evidence for nonindependent evolution of

adjacent microsatellites in the human genome. J Mol Evol. 68:

160–170.

Vinces MD, Legendre M, Caldara M, Hagihara M, Verstrepen KJ. 2009.

Unstable tandem repeats in promoters confer transcriptional evolva-

bility. Science 324:1213–1216.

Warren WC, et al. 2008. Genome analysis of the platypus reveals unique

signatures of evolution. Nature 453:175–183.

Xu YZ, Thuraisingam T, Marino R, Radzioch D. 2011. Recruitment of SWI/

SNF complex is required for transcriptional activation of SLC11A1 gene

during macrophage differentiation of HL-60 cells. J Biol Chem. 286:

12839–12849.

Yang Z. 1994. Maximum likelihood phylogenetic estimation from DNA

sequences with variable rates over sites: approximate methods.

J Mol Evol. 39:306–314.

Yang Z, Wong WSW, Nielsen R. 2005. Bayes empirical Bayes inference

of amino acid sites under positive selection. Mol Biol Evol. 22:

1107–1118.

Zhang J, et al. 2006. BRG1 interacts with Nrf2 to selectively mediate

HO-1 induction in response to oxidative stress. Mol Cell Biol. 26:

7942–7952.

Associate editor: Kateryna Makova

Measuring Microsatellite Conservation GBE

Genome Biol. Evol. 4(6):748–759. doi:10.1093/gbe/evs050 Advance Access publication May 16, 2012 759


