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Abstract

Background: Colorectal cancer is mainly attributed to diet, but the role exerted by foods remains unclear because involved
factors are extremely complex. Geography substantially impacts on foods. Correlations between international variation in
colorectal cancer-associated mutation patterns and food availabilities could highlight the influence of foods on colorectal
mutagenesis.

Methodology: To test such hypothesis, we applied techniques based on hierarchical clustering, feature extraction and
selection, and statistical pattern recognition to the analysis of 2,572 colorectal cancer-associated TP53 mutations from 12
countries/geographic areas. For food availabilities, we relied on data extracted from the Food Balance Sheets of the Food
and Agriculture Organization of the United Nations. Dendrograms for mutation sites, mutation types and food patterns
were constructed through Ward’s hierarchical clustering algorithm and their stability was assessed evaluating silhouette
values. Feature selection used entropy-based measures for similarity between clusterings, combined with principal
component analysis by exhaustive and heuristic approaches.

Conclusion/Significance: Mutations clustered in two major geographic groups, one including only Western countries, the
other Asia and parts of Europe. This was determined by variation in the frequency of transitions at CpGs, the most common
mutation type. Higher frequencies of transitions at CpGs in the cluster that included only Western countries mainly reflected
higher frequencies of mutations at CpG codons 175, 248 and 273, the three major TP53 hotspots. Pearson’s correlation
scores, computed between the principal components of the datamatrices for mutation types, food availability and mutation
sites, demonstrated statistically significant correlations between transitions at CpGs and both mutation sites and
availabilities of meat, milk, sweeteners and animal fats, the energy-dense foods at the basis of ‘‘Western’’ diets. This is best
explainable by differential exposure to nitrosative DNA damage due to foods that promote metabolic stress and chronic
inflammation.

Citation: Verginelli F, Bishehsari F, Napolitano F, Mahdavinia M, Cama A, et al. (2009) Transitions at CpG Dinucleotides, Geographic Clustering of TP53 Mutations
and Food Availability Patterns in Colorectal Cancer. PLoS ONE 4(8): e6824. doi:10.1371/journal.pone.0006824

Editor: Irene Oi-Lin Ng, The University of Hong Kong, Hong Kong

Received May 20, 2009; Accepted July 14, 2009; Published August 31, 2009

Copyright: � 2009 Verginelli et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The study was funded by the Italian Ministry of Education, University and Research (Ministero dell’Istruzione, dell’Università e della Ricerca, MIUR) and
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Introduction

The TP53 gene (OMIM no. 191117), which encodes a tumor-

suppressor protein that drives multiple cellular responses to stress,

including cell-cycle arrest, DNA repair, apoptosis, metabolism and

autophagy, is frequently mutated in cancer [1,2,3,4,5,6]. TP53

mutations are mostly missense and cluster in exons 5–8, the

evolutionarily-conserved region of the DNA-binding domain that

contains <90% of the known mutations and all mutation hotspots at

CpG dinucleotides [7,8,9,10,11]. Laboratory models and data from

tumors with established environmental risk factors show that TP53

mutation patterns reflect primary mutagenic signatures of DNA

damage by carcinogens, vulnerability of nucleotide positions in DNA

secondary structure, efficiency of repair processing, and selection for

loss of trans-activation properties [10,11,12,13,14,15,16].

Colorectal cancer (CRC), worldwide one of the most common

malignancies, is mainly attributed to dietary risk factors

[17,18,19,20,21,22,23,24]. TP53 mutations are found in 50-60%

of all CRCs and are thought to originate in precancerous lesions,

where aberrantly proliferating colonocyte progenitors are directly

exposed to dietary residue [25,26]. Nevertheless the TP53

mutation pattern typical of CRC cannot be easily correlated to
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diet, because it is characterized by a striking preponderance of

G:C.A:T transitions [9,13,16]. These are the most frequent base

substitutions induced by reactive oxygen species, byproducts of

normal aerobic metabolism generated at high levels in all

inflammatory processes and after exposure to a wide variety of

carcinogens and toxicants [27,28,29,30,31,32,33,34]. Furthermore

CRC development appears to depend on whole-life nutrition

pattern [23], and TP53 mutations may occur years before CRC

diagnosis [25,35]. Thus the time-frame for the estimation of diet

may not fully capture the period relevant for mutagenesis and

carcinogenesis. This is complicated by the relatively limited

variation in dietary habits within single populations, by biases in

reporting and recording dietary intakes and by the problematic

assessment of exposures to food-borne carcinogens and toxicants,

natural and generated in foods production, processing, preserva-

tion, and preparation [17,23,36,37,38,39,40,41,42]. Adding to

complexity, intestinal mutagenesis may be modified by nutrient/

nutrient, nutrient/microflora, nutrient/cell metabolism, nutrient/

gene and nutrient/DNA repair interactions, and affected by

epigenetic modifications, transit time of dietary residue, inflam-

matory and endocrine responses, body mass and energy

consumption through physical activity [23,40,43,44,45,46,47,48].

Geography strongly impacts on the ecological, cultural and

economic factors that determine food systems and diets. CRCs from

patients embedded in geographically diverse populations and cultures

reflect substantially different dietary exposures, extended over the

whole-life course and unbiased by estimation errors [17,21,23]. Thus

food-related mutational signatures could be highlighted through the

analysis of geographic variation in CRC-associated TP53 mutations.

To test such hypothesis, we analyzed 2,572 TP53 mutations

associated with primary CRCs from 12 countries or geographic

areas. The mutations (Database S1) were extracted from the TP53

database of the International Agency for Research on Cancer (IARC)

(R10 update, July – 2005, http://www-p53.iarc.fr/Somatic.html),

with the addition of an Iranian series [11,49]. To investigate

correlations between geographic clustering of TP53 mutations and

foods, we relied on the food balance sheets (FBS) of the Food and

Agriculture Organization of the United Nations (FAO, http://

faostat.fao.org/site/368/DesktopDefault.aspx?PageID = 368), that

provide unique comprehensive pictures of the patterns of national

food supply, useful for international comparisons [50,51,52]. Food

availability patterns (FPs) for the countries/geographic areas in the

TP53 database were derived from the mean per caput supplies, in

percent of the total caloric value, of each major food group available

for human consumption during the reference year 1990 [17] (Dataset

S1). The datamatrices generated for mutation sites (MS), mutation

types (MT) and FP (Datamatrices S1) were investigated for

geographic variation by hierarchical clustering (HC). Factors

underlying HC were defined by feature analysis (FA) through

principal component analysis (PCA). Pearson’s correlation scores

were computed between the principal components of the mutation

type, food availability pattern and mutation site datamatrices. These

analyses demonstrated significant correlations between transitions at

CpGs and both mutation sites as well as availabilities of meat, milk,

sweeteners and animal fats. Our results could be best explainable with

differential exposure to nitrosative DNA damage due to the

consumption of energy-dense foods that promote metabolic stress

and chronic low-grade inflammation.

Results

Geographic variation in mutation site and type
Panels A–B and C–D of Figure 1 respectively show hierarchical

clustering (HC) by country/geographic area for TP53 mutation sites

(MS), based on 2,542 exonic mutations, and types (MT), based on

2,572 mutations in exons and intron-exon boundaries. The MS and

MT trees showed similar structures, each with two major

geographic clusters, one including only Western countries (I-MS,

I-MT), the other Asia and parts of Europe (II-MS, II-MT). The

main difference consisted in the position of West and Central

Europe in II-MS and I-MT, respectively. Stability of clusters was

assessed by silhouette values. Silhouette plots for different

thresholds, applied to each dendrogram, were compared to assess

the reliability of the clustering solutions. In both cases the tree

structure showed two stable clusters. The low silhouette value of MT

was related to the poor stability of the ‘‘Spain’’ branch, attributable

to either I-MT or II-MT. The MS and MT tree structures were

correlated by two-tailed Mantel test (r = 0.581, P = 0.001) (Figure 2).

By multivariate FA we next investigated the factors that

determined clustering for MS (i.e., codons) and MT (i.e., mutation

types), respectively using heuristic or exhaustive approaches. Feature

selection aimed at identifying the minimum subset of features

necessary to generate the clustering structure obtained using all the

features. Sequential forward feature selection with two different

rankings, respectively based on the number of mutations recorded for

each codon (feature) and on the PC coefficients of each feature, was

used to analyze the MS datamatrix by heuristic approach (Figure 3).

Stable MS clustering was obtained with 23 weight-ranked or 22

PCA-ranked codons, in both cases including the five TP53

mutation hotspots (i.e., CpG codons 175, 245, 248, 273, 282)

[9,13,16], out of 173 mutated codons in the datamatrix. The

variance contributed by the PCs of the MS datamatrix and their

eigenvalues are shown in panels A and D of Figure 4, respectively.

Total MS variance was explained by 11 components. Four

components contributed 80% of the variance, and the first

component, which accounted for 31%, had highly significant PC

coefficients for the features corresponding to the five CpG

hotspots, as detailed in File S1 and in Figure S1, panel A.

Exhaustive multivariate FA of the MT datamatrix is reported in

Tables 1 and 2. In decreasing order, the most relevant features

were G:C.A:T at CpGs, followed by A:T.C:G, G:C.A:T and

G:C.C:G. The variance contributed by each PC of the MT

datamatrix and their eigenvalues are shown in panels B and E of

Figures 4 respectively. Total MT variance was explained by 4

components, the first of which accounted for 65%, and, as detailed

in File S1 and in Figure S1, panel D, the highest PC feature

loading among the 8 mutation types corresponded to transitions at

CpGs. Other mutations, including transitions at non-CpGs, were

associated to minor fractions of variance.

The frequency box-plots of the mutations at the 19 codons

with highest weights and highest PCA variance coefficients in

Figure 5, panel A, showed higher mutation frequencies at the

three major hotspot codons 175, 248, and, particularly, 273, in I-

MS versus II-MS. This reflected higher frequencies of transitions

at CpGs in I-MT (range: 46.1–61.2%) versus II-MT (range:

41.2–43.3%) in the frequency box-plots of the 8 mutation types in

Figure 5, panel B. Such most relevant features were used to

geographically visualize MS and MT variation (Figure 6, panels

A–B). Highlighted groupings of countries/geographic areas were

similar to the MS and MT clusters in Figure 1, obtained by HC

using all the features. Overall these results indicate that in CRC

TP53 transition mutagenesis at CpGs is modulated by geography-

related factors. This might reflect differences in exposure(s) to specific

food-associated mutagenic process(es) [53].

Geographic variation in food supply patterns
To address this issue, we analyzed the FP datamatrix by HC

and FA through PCA. HC for FP was based on the mean per caput

TP53 in Colorectal Cancer

PLoS ONE | www.plosone.org 2 August 2009 | Volume 4 | Issue 8 | e6824



Figure 1. Hierarchical clusterings for TP53 mutation sites, TP53 mutation types and food patterns. Hierarchical clusterings (HC) by
country/geographic area and silhouette plots for: A–B, TP53 mutation sites (MS); C–D, TP53 mutation types (MT); E–F, food patterns (FP).
doi:10.1371/journal.pone.0006824.g001
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supply values, in percent of total available calories, of each major

food group in the relevant countries/geographic areas during the

reference year 1990 [17]. HC yielded two major clusters, I-FP,

with Western countries and Japan, and II-FP, with South and East

Asia plus Iran (Figure 1, panels E–F). The clusterization of Japan

in I-FP had a low silhouette value and contrasted with the previous

assignments of Japan to clusters II-MS and II-MT. To verify

Japan’s assignment, we generated all the possible subsets of the 13

FP features (food groups), i.e., 8,192 subsets. HC trees, cut to

obtain two clusters, were then generated based on each of these

subsets. Dendrograms were classified as A or B when Japan

clusterized respectively in II-FP or I-FP, and as C, when different

from A and B. Overall 2,405 clusterings, classified as A, assigned

Japan to cluster II-FP with Iran and South and East Asia; 4,178,

classified as B, assigned Japan to cluster I-FP, with Western

countries; and 1,609 were classified as C, being different from A

and B. The histograms in Figure S2, panels A–B, that visualize the

number of times that each of the 13 features was present when

type A or B clusterings respectively were obtained, readily show

that feature cereals was almost always absent in type A clusterings

and almost always present in type B clusterings. Thus Japan joined

I-FP only because of the low availability of cereals.

Tables 3 and 4 show the results of exhaustive FA of the FP

datamatrix. In decreasing order, the most relevant features were

cereals, milk, and meat. PCA showed that total FP variance was

explained by 3 components, the first of which accounted for a

major fraction of 87.3% (Figure 4, panels C and F). The variance

of this component, which, in loading order, included the features

cereals, meat, milk, sweeteners, animal fats (File S1 and Figure S1,

panel G), explained the tree structure, determined by lower cereals

and higher meat, milk, sweeteners and animal fats in I-FP relative

to II-FP, as shown in panels C and F of Figure 4.

Correlations between mutation pattern and food supply
pattern

The data from the MS, MT and FP datamatrices were

projected on the 1-dimensional space spanned by their respective

PCs. Pairwise Pearson correlations were then computed for the

three datamatrices in all the projected spaces. Tables 5 to 7 show

the correlation scores, and the corresponding P-values, obtained

for the first 3 PCs of each datamatrix, that, except for MS,

accounted for most of the variance. Pearson’s correlation between

the PCs for MT and for FP (Table 5) showed that the first PC for

MT was correlated with the first PC for FP, with r = 20.60

(P = 0.039). Availabilities of meat, milk, sweeteners and animal fats

were directly correlated to transitions at CpGs, availability of

cereals to transitions at non-CpGs (File S1 and Figure S1, panels D

and G). As detailed in File S1 and in Figure S1, other less

important correlations involved second and third PCs that

accounted for minor fractions of variance. With the same analysis,

the first PCs for MS and for MT resulted again strongly correlated,

with r = 20.87 (P = 0.0002, Table 6), which supported Mantel’s

test results (Figure 2). However, in spite of the correlation between

MT and FP, there were no significant correlations between the

PCs of MS and FP (Table 7).

Scatter plots with superimposed linear regression showing the

global trend of correlations were built for the countries/

geographic areas as projected on the 2-dimensional spaces

spanned by the first PCs of MS and MT (Figure 7) and of MT

and FP (Figure 8). As shown in Figure 7, Italy, Iran, South and

East Asia and West and Central Europe had relatively lower

frequencies of mutations at CpG hotspot codons, compensated by

higher frequencies of mutations at all other sites (see also box-plots

in Figure 2). Mutation frequencies at CpG hotspots increased in

other countries, with highest frequencies in Australia and UK. As

shown in Figure 8, transitions at CpGs correlated with countries/

geographic areas characterized by higher availabilities of energy-

dense, Western-style foods, while South and East Asia, Iran, Japan

and, to a lesser extent, Italy, where cereals were higher and meat,

milk, sweeteners and animal fats lower, had lower frequencies of

such mutations.

Overall, variation in the frequency of transitions at CpGs

reflected variation in the availabilities of the energy-dense foods

that form the basis of ‘‘Western-style’’ diets and that are linked to

overweight and obesity [18,20,21,22,23]. Transitions at non-CpGs

balanced decreases in transitions at CpGs in the countries/

geographic areas where cereals compensated for lower availabil-

ities of such foods.

Discussion

Several studies addressed the issue of CpG transition mutagen-

esis in cancer, with particular regard to TP53 mutations in CRC.

Being exonic CpGs constitutively hyper-methylated, C to T

mutations at coding CpGs in TP53 should be scored as direct

transitions from hypermutable 5-methylcytosine to thymine

[54,55,56,57,58,59]. Dietary folate is a defined environmental

determinant of genomic methylation [23,60,61]. Laboratory

models and data on CRCs in patients carrying a germline

methylenetetrahydrofolate reductase (MTHFR) gene variant that

results in reduced plasma and serum folate suggest that low folate,

by inducing global hypomethylation, may decrease TP53 transi-

tion mutagenesis at CpGs [62,63,64]. Folate-rich foods include

fresh vegetables, pulses (legumes) and relatively unprocessed

cereals [65,66]. Little is known about DNA methylation variation

among individuals and populations [67], [68]. We did not find any

correlation between availability of vegetables or pulses and TP53

mutation pattern, while cereals, relatively unprocessed in most

Asian countries [69,70], inversely correlated with transitions at

CpGs. Thus folate availability may not account for our results.

This conclusion agrees with studies showing that, in absence of

interacting genetic effects, folate alone does not influence TP53

mutation patterns in CRC (although it may affect TP53 protein

expression) [44,71,72].

The hypermutability of endogenous 5-methylcytosine does not

per se explain the unique role of transitions at CpGs in geographic

Figure 2. Mantel test correlation between TP53 mutation sites
and TP53 mutation types. Mantel test shows correlation between
the distance matrices of mutation sites (MS) and mutation types (MT),
with regression line parameter: r = 0.581, c = 0.015; R2 = 0.338, P = 0.001
after 10,000 permutations.
doi:10.1371/journal.pone.0006824.g002
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clustering of TP53 mutations [57,58,59]. However transitions at

CpGs in TP53 are efficiently induced by nitrosative DNA damage

[31,58,59], [73,74,75]. Nitric oxide (NO), a critical signalling

molecule implicated in the regulation of peristalsis, gut vasomotor

functions and mucosal inflammation, may contribute to transition

mutagenesis at CpGs acting directly at 5-methylcytosines, by

nitrosative deamination in oxidizing environments, and, indirectly,

at guanines, by base alkylation after conversion to nitrate, bacterial

reduction to nitrite and endogenous formation of N-nitroso

compounds [73,74,75,76,77,78,79,80,81,82]. Mutagenesis at

CpGs may be facilitated by NO-induced inhibition of DNA

repair [75,80]. Furthermore, NO promotes apoptosis via TP53

and therefore exerts a critical selective pressure for TP53 mutation

[83,84,85,86].

NO is produced at mutagenic concentrations by inducible NO

synthase (iNOS), the widespread enzyme isoform upregulated by

inflammatory cytokines [76,82,87]. It has already been suggested

that the excess of TP53 transitions at CpGs found in cancers

Figure 3. Feature selection by heuristic approach for the mutation sites data. Similarity values are on the y axis; number of features (i.e.,
codons) on the x axis, respectively ranked in decreasing order of weight (number of mutations, panel A), and decreasing order of the first 11 PC
coefficients of each feature (where 11 was the number of PCs contributing 100% of the data variance, panel B). Panel C lists (in order of number) the
codons (features) with highest variance in the mutation sites (MS) data, selected by weight ranking (23/173 codons) and by PC coefficients ranking
(22/173 codons). Overall 19 codons, including the five TP53 mutation hotspots (highlighted in yellow), were selected by both methods.
doi:10.1371/journal.pone.0006824.g003
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arising on a chronic inflammatory background, such as CRC in

ulcerative colitis and bladder cancer associated with Schistosomiasis,

results from nitrosative stress [74,88]. Moreover transitions at

CpGs are strongly related to iNOS expression in both CRC and

adenocarcinoma of Barrett’s esophagus [89,90]. Arginine, the

substrate for NO synthesis and a potential CRC-related dietary

factor [87,91,92,93], is contained in a variety of protein-rich foods

of animal and vegetable origin [65,66] and may not per se explain

why variation in the frequency of transitions at CpGs correlated

with variation in the availabilities of meat, milk, sweeteners and

Figure 4. Scree and Kaiser’s tests applied to the analysis of variance by PCA of the datamatrices for mutation sites, mutation types
and food patterns. Results obtained using Scree test are shown in panels A–C. Total mutation sites (MS) variance (panel A) is explained by 11
components, of which only 9 are visualized, being the Scree test cut at the 98% level. Four components contribute 80% of the MS variance, the first
accounting for 31%. Total mutation types (MT) variance (B) is explained by 4 components, the first of which, by far the most relevant, contributes 65%
of variance. Total food patterns (FP) variance (C) is explained by 3 components, the first of which contributes 87.3% of variance. Results obtained
using Kaiser’s test are shown in panels D–F. The first 11 PCs for mutation sites (MS) (A), the first 3 PCs for mutation types (MT) (B) and the first 4 PCs for
food patterns (FP) (C) have eigenvalues above 1 (red line).
doi:10.1371/journal.pone.0006824.g004

Table 1. Worst-case exhaustive feature analysis of the mutation types datamatrix.

|S| = number of selected features (j) 1 2 3 4 5 6 7 8

Feature (i)

1. A:T.C:G 0.42 0.39 0.32 0.38 0.31 0.38 0.38 1.00

2. A:T.G:C 0.49 0.44 0.34 0.39 0.31 0.39 0.38 1.00

3. A:T.T:A 0.44 0.40 0.32 0.40 0.38 0.38 0.38 1.00

4. FS 0.50 0.40 0.34 0.33 0.31 0.38 0.38 1.00

5. G:C.A:T 0.42 0.40 0.37 0.33 0.38 0.38 0.38 1.00

6. G:C.A:T at CpG 0.92 0.80 0.80 0.79 0.77 0.80 0.81 1.00

7. G:C.C:G 0.36 0.37 0.32 0.33 0.31 0.38 0.38 1.00

8. G:C.T:A 0.51 0.37 0.37 0.33 0.31 0.38 0.38 1.00

Worst similarity values for each subset S of the MT features, including the selected feature in the left column, are computed using the exhaustive multivariate feature
analysis. Bold characters highlight the worst similarity values of the features that most influence cluster structure. Entry (i,j) reports the minimum similarity value
obtained using the i-th feature together with any other j-1 features. For example, feature A:T.C:G gives a similarity value that is at least 0.38 when coupled with any 6 of
the features in the left column.
doi:10.1371/journal.pone.0006824.t001
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animal fats. However it is known that these energy-dense foods

promote a pro-inflammatory milieu that increases iNOS expres-

sion and NO production [23,78,94,95,96,97,98,99,100], [101]. In

addition red meat is a major exogenous source of nitrogen

compounds and haem, which contribute to N-nitrosation in the

intestinal environment [23,102,103,104,105,106,107,108]. Such

considerations are supported by the fact that our data point to a

key role of the ubiquitously methylated major TP53 hotspot

codons 175, 248 and 273 in geographic clustering. In fact, the vast

majority of the mutations at these 3 codons reported in human

cancer are compatible with nitrosative deamination

[9,11,32,54,74,109]. Moreover, transitions at codon 248 were

experimentally induced with an NO-releasing compound [110]

while mutations at codon 273 were found to be strongly associated

with diets high in red meat and fat [44].

In conclusion, we recognize the difficulties inherent in

interpreting causes and mechanisms responsible for CRC-

associated TP53 mutations, which are the end result of complex

cascades of events. It is important to keep in mind the limitations

of our analyses, based on a single, albeit large, database of

mutations. Furthermore FAO FBS, the only standardized

comprehensive food data available for international comparisons,

approximate food supply patterns. Nevertheless, geographic

variation in CRC-associated TP53 mutation patterns appears to

be due to transitions at CpGs and mainly related to differential

mutation frequencies at the major TP53 hotspots. This could be

explainable by differential exposure to nitrosative DNA damage,

linked to the consumption of foods promoting metabolic stress and

chronic low-grade inflammation.

Materials and Methods

Databases, Datasets and Datamatrices
We analyzed 2,572 mutations in TP53 exons 5–8 retrieved from

primary CRCs, including 2,475 from 12 countries or geographic

areas, extracted from the TP53 database of the International

Agency for Research on Cancer (IARC) (R10 update, July 2005,

http://www-p53.iarc.fr/Somatic.html), and 97 from Iran [11,49].

Mutations in adenomas, metastatic CRC and cell lines were

excluded, as their spectrum could differ from that of primary CRC

[111]. Analyses were based on 2,542 mutations in coding regions

for MS, and on 2,572 (i.e., all) mutations for MT (Database S1).

Mutations were grouped according to country or geographic area,

the latter including geographically and ethnically related countries

with low mutation numbers. Countries and number of mutations

for MS and MT, were: Australia (including 6 mutations from New

Zealand), MS:302, MT:302; USA, MS:233, MT:237; France,

MS:215, MT:221; Italy, MS:181, MT:182; Spain, MS:181,

MT:182; UK (including 3 mutations from Ireland), MS:131,

MT:134; Iran, MS:94, MT:97; Japan, MS:323, MT:326.

Geographic areas were: West and Central Europe (Germany,

Austria, Switzerland, The Netherlands, Luxembourg), MS:174,

MT:178; South and East Asia (China, Hong Kong, Taiwan,

Singapore), MS:315, MT:318; Norway-Denmark, MS:162,

MT:162; Sweden-Finland, MS:231, MT:233. Mutations from

Brazil, Chile, Israel, Turkey, Korea and Eastern European

countries listed in the R10 update of the IARC TP53 database

were excluded because of low numbers.

The FP dataset (Dataset S1) was extracted from the FAO FBS

[50,51] compiled for the reference year 1990 (http://faostat.fao.

org/site/368/DesktopDefault.aspx?PageID = 368), as used in

reference [17]. Year selection tended to exclude the most recent

and current international variations in food availabilities and

nutrition, as CRC develops over several years and is mostly

diagnosed in patients aged 65 years or older [112], while the

IARC TP53 database compiles mutations since 1989 [11]. The FP

dataset included the following major food groups: animal fats,

animal products, cereals, fish/seafood, fruit, meat, milk, oilcrops,

pulses (legumes), starchy roots, sweeteners, vegetable oils and

vegetables. For the purpose of this study alcohol was excluded,

being much of the data on average availability of alcoholic drinks

not informative and potentially confounding, due to large inter-

individual variability [23]. Spices and stimulants, which account

for low percentages of the total available daily energy supply, were

also excluded. Statistical analyses were therefore conducted using

the estimated percent (%) contribution of each considered food

group to mean per caput daily energy availability [17]. Weighted

average availabilities were calculated for geographic areas by

adjusting for the 1990 population size of each included country.

The MS, MT and FP datamatrices were normalized converting

absolute numbers into frequencies (Datamatrices S1).

All standard techniques, including hierarchical clustering (HC),

principal components analysis (PCA), Pearson correlation and

linear regression, were used in their implementations from Matlab

(2007b, The Mathworks and Matlab Statistics Toolbox).

Statistical Pattern Recognition
Statistical pattern recognition allowed the integrated analysis

of the MS, MT, and FP datamatrices to investigate relations

between TP53 mutation sites, TP53 mutation types, and food

supply patterns. The first analytical step consisted in clustering

the 12 analyzed coutries/geographic areas by HC with respect to

the data contained in the MS, MT and FP datamatrices. The

stability of the obtained clusterings was assessed using the

silhouette values. The similarities between the obtained cluster-

ing solutions, represented by dendrograms, were assessed using

an entropy-based similarity measure. Feature analysis and

selection, which is the process of studying the contribution of

single features, or subsets of features, to dataset properties, was

the next relevant processing step. Exact feature analysis can be

performed testing the ability of each single subset of features to

maintain a chosen property. In practice, this is feasible only when

Table 2. Best-case exhaustive feature analysis of the
mutation types datamatrix.

Column 1
(Feature)

Column 2 (Features that paired with feature in
column 1 give the same clustering obtained with
all features)

A:T.C:G G:C.A:T at CpG

A:T.G:C none

A:T.T:A none

FS none

G:C.A:T G:C.A:T at CpG

G:C.A:T at CpG A:T.C:G and/or G:C.A:T and/or G:C.C:G

G:C.C:G G:C.A:T at CpG

G:C.T:A none

Exhaustive multivariate feature analysis is used to highlight pairs of MT features
giving similarity value equal to 1. Features in column 1 give similarity 1 if and
only if coupled with one of the features in column 2. For example, feature
A:T.C:G gives a similarity value 1 when coupled with G:C.A:T at CpGs.
Relevance of individual features in column 1 is based on the number of other
features in column 2 with which it can yield unitary value after pairing. The
most relevant feature is G:C.A:T at CpGs, followed by A:T.C:G, G:C.A:T and
G:C.C:G.
doi:10.1371/journal.pone.0006824.t002
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Figure 5. Box-plots of feature relevance for mutation sites, mutation types and food patterns. In each panel, box plots pertaining to
clusters I versus II of mutation sites (MS), mutation types (MT) and food patterns (FP) obtained by hierarchical clustering are color-coded in red
(cluster I) and blue (cluster II), respectively. Panel A: frequency box-plots of mutations at the 19 codons with highest weights and highest PCA
variance coefficients (identified in Figure 4). Higher mutation frequencies at the three major CpG hotspot codons 175, 248, and 273 in I-MS versus II-
MS are evident. Panel B: frequency box-plots of the 8 mutation types, showing higher frequencies of transitions at CpGs in I-MT (range: 46.1–61.2%)
versus II-MT (range: 41.2–43.3%). Panel C: box-plots of the mean percent of the total available caloric value from each major food group in the
relevant countries/geographic areas, showing lower cereals for the countries/geographic areas in I-FP versus those in II-FP, balanced by higher meat,
milk, sweeteners and animal fats.
doi:10.1371/journal.pone.0006824.g005
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Figure 6. Geographic visualization of the most relevant features evidenced in the box-plots. Selected features of the mutation sites (MS,
A), mutation types (MT, B) and food availability patterns (FP, C) datamatrices were mutations at the three major TP53 hotspot codons 175, 248, and
273 for MS; G:C.A:T mutations at CpGs for MT; meat/milk/sweeteners/animal fats (added), cereals (subtracted) for FP. Feature frequencies were
summed and projected in yellow to red color range onto the geographic profiles of the relevant countries/geographic areas.
doi:10.1371/journal.pone.0006824.g006
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the number of features is low. In comparing the MT and FP

datasets, because of the relatively low number of features, such

exhaustive analysis could be carried out. With regard to the MS

dataset, the number of possible subsets of features was too high,

and therefore a heuristic approach, i.e., sequential forward

selection, was used to select feature subsets. The principal

components and the relative weights of the features were used as

ranking criteria. Results were visualized on geographic maps with

the relevant areas colored according to the most relevant

features. Finally, multivariate correlations between the datasets

were computed exploiting their PC projections. All these

analytical steps are detailed below.

Table 3. Worst-case exhaustive feature analysis of the food patterns datamatrix.

|S| = number of selected features (j) 1 2 3 4 5 6 7 8 9 10 11 12 13

Feature (i)

1. Animal fats 0.53 0.43 0.43 0.45 0.54 0.54 0.54 0.54 0.54 0.71 1.00 1.00 1.00

2. Animal products 1.00 0.51 0.51 0.51 0.51 0.53 0.53 0.54 0.54 0.71 1.00 1.00 1.00

3. Cereals 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4. Fish/seafood 0.47 0.34 0.32 0.36 0.40 0.53 0.53 0.54 0.54 0.71 1.00 1.00 1.00

5. Fruit 0.65 0.52 0.52 0.51 0.49 0.53 0.53 0.54 0.54 0.71 1.00 1.00 1.00

6. Meat 0.71 0.71 0.71 0.71 0.71 0.71 0.72 0.72 0.72 0.80 1.00 1.00 1.00

7. Milk 1.00 0.80 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 1.00 1.00 1.00

8. Oilcrops 0.55 0.37 0.39 0.36 0.40 0.53 0.53 0.54 0.54 0.71 1.00 1.00 1.00

9. Pulses 0.40 0.40 0.35 0.36 0.40 0.53 0.53 0.54 0.54 0.71 1.00 1.00 1.00

10. Starchy roots 0.40 0.31 0.32 0.36 0.40 0.53 0.53 0.54 0.54 0.71 1.00 1.00 1.00

11. Sweeteners 0.58 0.56 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.71 1.00 1.00 1.00

12. Vegetable oils 0.51 0.51 0.51 0.51 0.51 0.54 0.54 0.70 0.70 1.00 1.00 1.00 1.00

13. Vegetables 0.35 0.31 0.32 0.49 0.40 0.53 0.53 0.54 0.54 0.71 1.00 1.00 1.00

Worst similarity values for each subset S of the FP features, including the selected feature in the left column, are computed using the exhaustive multivariate feature
analysis. Bold characters highlight the worst similarity values of the features that most influence cluster structure (cereals). Entry (i,j) reports the minimum similarity
value obtained using the i-th feature together with any other j-1 features. For example, feature ‘‘animal products’’ (i = 2) gives a similarity at least equal to 0.71 combined
with any other remaining 9 features (j = 10).
doi:10.1371/journal.pone.0006824.t003

Table 4. Best-case exhaustive feature analysis of the food
patterns datamatrix.

Column 1
(Feature)

Column 2 (Features that paired with feature in column
1 give the same clustering obtained with all features)

Animal fats Cereals, Meat, Milk

Animal products Cereals, Meat, Oilcrops, Vegetable Oils

Cereals All

Fish/Seafood Cereals, Meat,Milk

Fruit Cereals, Milk

Meat Animal fats, Cereals, Fish/Seafood, Milk, Oilcrops, Starchy
roots, Vegetable oils

Milk All but Sweeteners

Oilcrops Animal Products, Cereals, Meat, Milk

Pulses Cereals, Milk

Starchy roots Cereals, Meat, Milk

Sweeteners Cereals

Vegetable oils Cereals, Meat, Milk

Vegetables Animal products, Cereals, Milk

Exhaustive multivariate feature analysis is used to highlight pairs of FP features
giving similarity value equal to 1. Features in column 1 give similarity equal to 1
if and only if coupled with one of the features in column 2. For example, feature
cereals (i = 3) gives a similarity that is always equal to 1 alone or together with
any set of other features. Relevance of individual features in column 1 is based
on the number of other features in column 2 with which it can yield unitary
value after pairing. The most relevant features are cereals, milk, and meat.
doi:10.1371/journal.pone.0006824.t004

Table 5. Pearson’s correlation scores between the PCs of
mutation types and food patterns.

PCs 1th PC (MT) 2nd PC (MT) 3rd PC (MT)

1th PC (FP) 20.6003* [0.0391] 0.2534 [0.4268] 0.6194* [0.0317]

2nd PC (FP) 20.6021* [0.0383] 20.1735 [0.5897] 20.4654 [0.1273]

3rd PC (FP) 0.1724 [0.5921] 0.6050* [0.0371] 20.1058 [0.7434]

Pearson’s correlation scores computed between the principal components (PC)
of mutation types (MT) and food availability patterns (FP), with the
corresponding P-values (square brackets). Significant correlations are
highlighted in bold and the corresponding r-coefficient values are marked with
an asterisk (*).
doi:10.1371/journal.pone.0006824.t005

Table 6. Pearson’s correlation scores between the PCs of
mutation types and mutation sites.

PCs 1th PC (MT) 2nd PC (MT) 3rd PC (MT)

1th PC (MS) 20.8742* [0.0002] 20.0908 [0.7790] 20.0118 [0.9709]

2nd PC (MS) 0.0975 [0.7630] 20.1414 [0.6612] 20.0568 [0.8609]

3rd PC (MS) 20.0069 [0.9830] 0.2340 [0.4642] 0.3828 [0.2194]

Pearson’s correlation scores computed between the principal components (PC)
of mutation types (MT) and mutation sites (MS), with the corresponding P-
values (square brackets). Significant correlations are highlighted in bold and the
corresponding r-coefficient values are marked with an asterisk (*).
doi:10.1371/journal.pone.0006824.t006
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Hierarchical clustering
Distance matrices for MS, MT and FP were computed by

pairwise comparison between TP53 countries/geographic areas

using the squared Euclidean distance. Dendrograms were

constructed through Ward’s hierarchical clustering algorithm

[113]. Stability of clusters was assessed evaluating the silhouette

values [114] that measure how close each point in one cluster is to

the points in the neighboring clusters. This measure ranges from

+1, indicating points very distant from neighboring clusters,

through 0, indicating points not distinctly in one cluster or

another, to 21, indicating points probably assigned to the wrong

cluster.

Matrices for MS, MT and FP were tested for correlation by

Mantel’s test [115]. The program Mantel version 3.1 was used to

estimate Pearson correlation coefficients. Significance was assessed

by 10,000 random permutations.

Feature selection
Feature selection involved the use of a similarity measure

between hierarchical clusterings, visualized as dendrograms,

respectively built on the entire feature set and on the feature

subset(s) to be tested. The higher the similarity, the higher the rank

of the chosen feature subset. The entropy-based similarity measure

used is defined below.

Two clusterings are identical if there is one-to-one correspon-

dence between their clusters. The more a cluster of one clustering

is filled with objects from different clusters of the other clustering

(disorder), the less is the concordance between clusterings. All the

information needed to summarize this phenomenon is the

corresponding confusion matrix. Given two clusterings, A and

B, where A is made of n clusters and B of m clusters, the confusion

matrix M between A and B is an n|m matrix, in which the entry

i,jð Þ reports the number of objects in the cluster i of A falling into

the cluster j of B. Entropy is the obvious tool to measure such

disorder. If Ri is the i-th row of M and Cj is the j-th column of M,

then H Rið Þ measures the disorder of the i-th cluster of A with

respect to B, and H Cj

� �
measures the disorder of the j-th cluster

of B with respect to A.

A way to compute the similarity between B and A is the mean

entropy of the clusters of B versus A, where the a priori probability

of a cluster X , p Xð Þ, can be approximated as number

{of {objects{in{X=total{number{of {objects, giving the

formula:

S Mð Þ~
X

i

p Xið Þ:H Rið Þ

Table 7. Pearson’s correlation scores between the PCs of
mutation sites and food patterns.

PCs 1th PC (MS) 2nd PC (MS) 3rd PC (MS)

1th PC (FP) 0.4176 [0.1767] 20.4246 [0.1688] 0.4168 [0.1777]

2nd PC (FP) 0.3858 [0.2155] 0.1226 [0.7042] 20.2474 [0.4382]

3rd PC (FP) 20.2826 [0.3735] 20.4014 [0.1960] 20.1824 [0.5705]

Pearson’s correlation scores computed between the principal components (PC)
of mutation sites (MS) and food availability patterns (FP), with the
corresponding P-values (square brackets). Significant correlations are
highlighted in bold and the corresponding r-coefficient values are marked with
an asterisk (*).
doi:10.1371/journal.pone.0006824.t007

Figure 7. Scatter plot of the correlation between mutation sites
and types according to countries/geographic areas. Scatter plot
of the countries/geographic areas in the TP53 database projected on
the 2-dimensional space spanned by the first principal components of
mutation sites (Mutation Site PC2) and mutation types (Mutation Type
PC1). Italy, Iran, South and East Asia and West and Central Europe have
relatively lower frequencies of mutations at CpG hotspot codons,
compensated by higher frequencies of mutations at all other sites (see
also box-plots in Figure 5). Mutation frequencies at CpG hotspots
increase in other countries, with highest frequencies in Australia and
UK. A linear regression shows the global trend of the correlation
(r = 20.8742).
doi:10.1371/journal.pone.0006824.g007

Figure 8. Scatter plot of the correlation between mutation
types and food patterns according to countries/geographic
areas. Scatter plot of the countries/geographic areas in the TP53
database projected on the 2-dimensional space spanned by the highest
coefficient features of the first principal component (PC) of food
availability pattern (FP), i.e., cereals, meat, milk, sweeteners, animal fats,
and of the first PC of mutation type (MT), i.e., G:C.A:T at CpGs. A linear
regression shows the global correlation trend.
doi:10.1371/journal.pone.0006824.g008
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expressing the similarity of B versus A, while the similarity of A
versus B can be obtained with the analogue formula on Cj , which

turns to be S MTð Þ. The measure of similarity between clusterings

is in the trade-off between S Mð Þ and S MTð Þ. We define the final

similarity measure:

Sa Mð Þ~S Mð Þza:S MT
� �

where a, 0ƒaƒ1, can be used to set the acceptable level of ‘sub-

clusteringness’ of B with respect to A. When a~0, no importance is

given to the fragmentation level of the clusters in B. When a~1 only

exact matching between A and B will produce a maximum for Sa.

Basing on such similarity measure between clusterings, useful

comparisons between dendrograms can be easily performed.

Given a solution obtained from a dendrogram (the target solution),

it is possible to assess how much such solution can be

approximated by another dendrogram.

Given a dendrogram D, let d Dð Þ be the clustering solution

obtained applying a cutting threshold d to D. We define complete

threshold set for a dendrogram any minimal set of threshold values,

applying which all the possible clusterings for the dendrogram can

be obtained. We indicate any such set for a dendrogram D by

D Dð Þ. It can be easily shown that D Dð Þj j~N Dð Þz1, where N Dð Þ
is the number of nodes in D.

Given a dendrogram D0, a target solution T can be derived

applying a cutting threshold. The similarity between D0 and

another dendrogram, D, can be approximated using the

dendrogram similarity procedure.

Dendrogram similarity procedure T ,D,að Þ

i/1

for each d in D Dð Þ
Build M, the confusion matrix between T and d Dð Þ

S ið Þ/Sa Mð Þ

i/iz1

return min Sð Þ

Exhaustive approach to feature selection for the MT and
FP datamatrices

Feature analysis studies the properties of single features or

subsets of features of the analyzed data. Exact feature analysis can

be performed testing the properties of each possible subset of

features. In this study, the property of interest was the ability to

maintain the groups obtained in the clustering analysis phase.

Such exhaustive approach was successfully performed on the MT

and FP datamatrices.

Given a set of features F and a scoring function f : 2 Fð Þ?<,

the exhaustive feature analysis approach consists in computing

f Að Þ, VA [ 2 Fð Þ. We performed this analysis using the features of

the MT and FP datamatrices in turn for F and

dendrogramSimilarity T , D Að Þ, 1ð Þ for f Að Þ, where T is the

solution obtained in the clustering analysis phase of the data and

D Að Þ is the dendrogram built using the features subset A(F .

The results of exhaustive feature analysis are reported in

Tables 1 and 2 for the MT datamatrix and in Tables 3 and 4 for

the FP datamatrix. In Tables 1 and 3 the entry i, j reports the

worst score obtained using A~ xi|Bf g, where xi [ F and Bj j~i.
In Tables 2 and 4 the i-th entry reports the set of features C such

that f i,jf gð Þ~1, Vj [ C.

Heuristic approach to feature selection for the MS
datamatrix

Being the number of MS feature subsets equal to 2173, we used

the sequential forward selection approach for MS feature selection.

A filter method was used.

Given a feature set F and a scoring function f : x?<, x [ F ,

a ranking of features can be obtained computing and sor-

ting f xð Þ, Vx [ Ff g. Let such ordered set be: xi1
,xi2 , . . . ,xin

� �
,

f xi1ð Þ§f xi2ð Þ§ . . . §f xinð Þ,xij [ F .

Instead of producing all possible subsets of F , we produce the

sets S1, . . . Sn such that:

S1~ xi1f g

Sk~Sk{1| xikf g,k~2, . . . ,n:

Substituting 2 Fð Þ with S1, . . . ,Snf g in the exhaustive approach

completes the definition of the heuristic approach.

We used this method with two different rankings, respectively

based on the number of mutations recorded for each codon

(feature); and on the sum of the first 11 Principal Components

(PCs) coefficients of each feature (where 11 was the number of PCs

contributing 100% of the data variance). Panels A and B of

Figure 3 report the f values obtained for the two different ranking

functions. Panel C of the same Figure compares the best feature

sets (minimal stable subsets giving f ~1).

Geographic visualization of feature relevance
Geographic visualizations of the most relevant features of the

MS, MT and FP datamatrices were obtained by respectively

summing feature frequencies (for MS and MT) and per caput supply

of each food group expressed as % of the total available calories, as

detailed above [50,17] (for FP). Resulting values were projected

into yellow to red color range onto the geographic profiles of the

countries and geographic areas contributing to the TP53 mutation

database.

Correlation analyses
To perform a multivariate correlation analysis between the PCs

of MS, MT and FP, we exploited their projections on the

respective PCs. Both the Scree and the Kaiser [116] tests provided

clear support for extracting the first 11 components for MS. When

applied to MT, these tests supported the extraction of 4 and 3 PCs

respectively, being the eigenvalue of the fourth PC near the lower

limit value (i.e., 0.9). For FP the Scree and Kaiser tests indicated 3

and 4 PCs, respectively. Pairwise Pearson correlations were then

computed between the PCs in all the projected spaces.

Supporting Information

File S1 Coefficient loadings of the three most relevant PCs of

mutation sites (MS), mutation types (MT) and food patterns (FP)

and Pearson’s correlation scores computed between the PCs of

MS, MT and FP.

Found at: doi:10.1371/journal.pone.0006824.s001 (0.04 MB

DOC)
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Figure S1 Coefficient loadings of the first three PCs of the

mutation sites, mutation types and food patterns datamatrices.

Coefficient loadings of the three most relevant principal

components (PCs) of the mutation sites (MS, A–C), mutation

types (MT, D–F) and food availability patterns (FP, G–I)

datamatrices are projected on their 1-dimensional space (see File

S1 for discussion).

Found at: doi:10.1371/journal.pone.0006824.s002 (0.71 MB TIF)

Figure S2 Assignment of Japan to clusters I or II in cluster

analysis for food availability patterns. The food category ‘‘cereals’’

determined clusterization of Japan with Western countries for food

availability patterns. Histograms visualize the number of times that

each of the 13 features was present in the 2,405 clusterings

classified as type A, i.e, where Japan joined Iran and South and

East Asia in cluster II-FP (A), or in the 4,178 clusterings classified

as type B, i.e, where Japan joined Western countries in cluster I-FP

(B). It is readily evident that feature 3 (cereals) was almost always

absent in type A clusterings and almost always present in type B

clusterings. This reflects the estimated low mean per caput supply

of cereals available for human consumption in Japan, compared to

the countries/geographic areas in the II-FP cluster (i.e., Iran and

South and East Asia). Features 1 to 13 represent the following food

categories: 1, animal fats; 2, animal products; 3, cereals; 4, fish/

seafood; 5, fruit; 6, meat; 7, milk; 8, oilcrops; 9, pulses (legumes);

10, starchy roots; 11, sweeteners; 12, vegetable oils; 13, vegetables.

Found at: doi:10.1371/journal.pone.0006824.s003 (0.15 MB TIF)

Dataset S1 1990 Food Balance Sheet data - Estimated mean

per caput supply of each major food group available for human

consumption in the TP53 database countries, as extracted from

the Food Balance Sheets (FBS) of the Food and Agriculture

Organization of the United Nations (FAO), year 1990.

Found at: doi:10.1371/journal.pone.0006824.s004 (0.02 MB

XLS)

Datamatrices S1 Normalized datamatrix for TP53 mutation

sites (MS) and mutation types (MT) assigned to 12 countries/

geographic areas and normalized datamatrix for the estimated

food availability patterns (FP) of the 12 countries/geographic areas

in the TP53 database. Data from 2,572 TP53 exons 5–8 mutations

associated with primary CRCs were retrieved from the TP53

database of the International Agency for Research on Cancer

(IARC), R10 update, July - 2005, and from Mahdavinia et al., J

Cell Physiol. 2008; 216(2):543–550.

Found at: doi:10.1371/journal.pone.0006824.s005 (0.07 MB

XLS)

Database S1 List of 2,572 TP53 exons 5–8 mutations reported

in association with primary colorectal cancers, including 2,475

from 11 countries/geographic areas, extracted from the TP53

database of the International Agency for Research on Cancer

(IARC), R10 update, July 2005, and 97 from Iran (Mahdavinia et

al., J Cell Physiol. 2008;216:543–550).

Found at: doi:10.1371/journal.pone.0006824.s006 (0.61 MB

XLS)
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