
NeuroImage: Clinical 34 (2022) 102975

Available online 28 February 2022
2213-1582/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

The relationships between subclinical OCD symptoms, beta/gamma-band 
power, and the rate of evidence integration during perceptual 
decision making 

Alec Solway a,b,*, Isabella Schneider a, Yuqing Lei a 

a Department of Psychology, University of Maryland-College Park, United States 
b Program in Neuroscience and Cognitive Science, University of Maryland-College Park, United States   

A R T I C L E  I N F O   

Keywords: 
Beta 
Gamma 
Decision making 
Obsessive-compulsive disorder 
Computational modeling 
Drift-diffusion model 

A B S T R A C T   

Previous studies have demonstrated that the rate of evidence integration during perceptual decision making, a 
specific computationally defined parameter, is negatively correlated with both subclinical symptoms of OCD 
measured on a continuum and categorically diagnosed patient status. However, the neural mechanisms under
lying this deficit are unknown. Separate work has shown that both gamma and beta-band power are related to 
evidence integration, and differences in beta-band power in particular have been hypothesized to hinder flexible 
behavioral control. We sought to unify these two disparate literatures, one on OCD-related information pro
cessing differences constrained by behavioral data alone, and the other on the neural correlates of evidence 
integration. Using computational modeling and scalp EEG, we tested (N = 67) the relationships between sub
clinical symptom scores, drift rate, and gamma/beta-band activity during perceptual decision making. We 
replicated both prior work showing deficits in evidence integration as a function of OCD symptoms, and work 
showing a relationship between evidence integration and gamma and beta-band power. As predicted, the slope of 
beta-band power was correlated with OCD symptoms. However, the relationships between OCD symptoms and 
drift rate and the slopes of gamma and beta-band power and drift rate remained unchanged when simultaneously 
accounting for all variables, speaking against the hypothesis that differences in band-band power explain drift 
rate deficits.   

1. Introduction 

A number of previous studies have identified a specific computa
tionally defined deficit in perceptual decision making that is associated 
with both subclinical symptoms of OCD measured on a continuum and 
categorical patient status (Banca et al., 2015; Erhan et al., 2017; Hauser 
et al., 2017; Marton et al., 2019). These studies made use of the dot 
motion task and the drift-diffusion model. In the dot motion task, sub
jects view moving dots and are asked to determine in which direction (e. 
g. left/right) the dots are displaced on average (Newsome et al., 1989; 
Ratcliff and McKoon, 2008). Difficulty can be varied by changing the 
level of coherence—the proportion of dots moving in unison. Informa
tion processing in this task is well-explained by the drift-diffusion model, 
which provides a unifying account of how decisions between two op
tions evolve within multiple domains and tasks (Mormann et al., 2010; 
Ratcliff, 1978; Ratcliff and McKoon, 2008). In the model, the relative 

amount of evidence for one option versus the other undergoes a noisy 
trajectory during deliberation, with its mean velocity represented by a 
free parameter called drift rate. A decision is made when the relative 
amount of evidence reaches one of two decision boundaries, repre
senting the options under consideration. A smaller distance between the 
boundaries indicates the subject requires less evidence to reach a deci
sion, and vice versa. A pre-existing preference for one of the options, 
before seeing the stimulus, is represented by a concordant change in the 
amount of relative evidence at the start of the decision. Finally, a fourth 
free parameter codes the time taken for non-decision aspects of each 
trial. The studies noted above showed that OCD symptoms were nega
tively correlated with drift rate, the average amount of perceptual evi
dence integrated per unit time, in the dot motion decision task. 
Furthermore, these impairments were larger for easier (higher coher
ence) decisions, and were absent for the hardest decisions (Banca et al., 
2015; Marton et al., 2019). In contrast, perhaps surprisingly, the 
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majority of these studies did not find that OCD symptoms were related to 
less impulsive and more deliberate decision making (i.e. wider decision 
boundaries). 

Although the drift rate finding has been replicated multiple times by 
independent groups, the neural correlates of this deficit have not been 
studied. The use of the drift-diffusion model in this context, in addition 
to providing a formal and explicit description of decision making, allows 
us to link this developing literature to the larger literature on basic de
cision neuroscience. In the case of the dot motion task, a number of 
studies have shown that moment-by-moment decision evidence is rep
resented by area MT, and is passed to downstream areas in frontal and 
parietal cortex to be integrated in a fashion similar to that described by 
the drift-diffusion model (Gold and Shadlen, 2000; Gold and Shadlen, 
2007; Heekeren et al., 2004; Huk and Shadlen, 2005). Studies using non- 
invasive recording techniques in humans, although suffering from 
poorer spatial resolution, have also uncovered neural signatures of ev
idence integration using more varied perceptual tasks, helping link 
specific aspects of the model and the model’s parameters to neural data 
(Donner et al., 2009; Polanía et al., 2014; Philiastides et al., 2014). MEG 
(magnetoencephalography) and EEG (electroencephalography) are of 
particular interest here because although their spatial resolution is poor, 
their temporal resolution allows for the tracking of evidence integration 
at the timescale at which it unfolds. 

Studies focusing on spectral properties have found consistent evi
dence that both gamma and beta-band power is correlated with evidence 
integration ((Donner et al., 2009; Polanía et al., 2014); though see also 
(van Vugt et al., 2012)). Donner et al. (2009) asked participants to 
perform a variant of the dot motion task in which the decisions were 
about the absence or presence of a signal (trials with 0% or positive 
coherence) while recording MEG activity. They found that: gamma-band 
(64–100 Hz) power in premotor and motor cortex ramped up during 
decision making in a fashion analogous to the process described by the 
drift-diffusion model, that it could be used to predict decisions before a 
response was issued, and that motor cortex activity reflected the integral 
of gamma-band power in area MT. Similarly, Polanía et al. (2014) asked 
participants to perform both a perceptual task in which they made a 
judgment about which stimulus covered a larger area of the screen, and 
a reward-based task where they decided which of two foods they would 
rather have. EEG-measured gamma-band power (46–66 Hz) ramped up 
during the course of both perceptual and reward-based decision making 
as predicted by an evidence integration model very similar to the drift- 
diffusion model. In addition, both studies found that beta-band power 
negatively correlated with evidence integration (12–36 Hz in Donner 
et al. (2009) and 18–20 Hz in Polanía et al. (2014), although this was 
true only for the reward-based task in the latter study). 

Given the relationships between changes in gamma and beta-band 
power and evidence integration, the slope of power in each band is a 
candidate mediator of the previously reported association between OCD 
symptoms and drift rate. While previous work directly connecting power 
in each band to OCD symptoms is more limited, beta-band power has 
been suggested to reflect the maintenance of the current cognitive state 
or ‘status quo’ (Engel and Fries, 2010). The same authors further hy
pothesized that abnormally high levels of beta-band power would 
hinder flexible behavioral control and be associated with OCD symp
toms. While their prediction was not about slope per se but about ab
solute levels of beta-band power, in the present context using the same 
reasoning we might expect that a smaller change (a less negative slope) 
would be associated with OCD symptoms. Combining all of the above
—the negative correlation between drift rate and OCD symptoms, the 
relationships between changes in gamma and beta-band power and 
evidence integration, and the hypothesis that differences in beta-band 
power in particular may be related to OCD symptoms—the present 
work aimed to test whether beta (and for completeness gamma) band 
power was a neural mediator of the drift rate/OCD relationship. We note 
however that these are not the only candidate M/EEG-based mediators. 
For example, the centro-parietal positivity has also been shown to be 

related to evidence integration and specifically drift rate ((O’Connell 
et al., 2012; van Vugt et al., 2019); see also (Philiastides et al., 2006; 
Philiastides et al., 2014)), and our focus on particular spectral features in 
the current work is not meant to suggest that other EEG features should 
be ruled out a priori. 

Participants were recruited based on a dimensional approach to 
measuring psychopathology, covering a wide range of symptom severity 
from the low to the high-end (Burns et al., 1996). Symptoms of worry 
(Meyer et al., 1990), a primary characteristic of generalized anxiety 
disorder (American Psychiatric Association, 2013), were also measured 
to test the specificity of the results. Participants performed the standard 
dot motion task in tandem with EEG data recording. We asked first 
whether we could again replicate the negative relationship between 
OCD symptoms and drift rate, and whether these deficits were larger for 
easier decisions. Second, we tested whether the dynamics of beta and 
gamma-band power during deliberation were related to evidence inte
gration. We did this in two ways: 1) we examined whether power in each 
band gradually changed during the course of decision making (ramping 
up or down) and whether ramps were steeper during easier decisions, 
and 2) in addition, across subjects, we asked whether the slope of 
evolving beta and gamma-band power was related to drift rate measured 
using behavioral data alone. Third, we tested the relationship between 
OCD score and the slope of power in each band. Finally, we tested 
whether the relationship between OCD score and drift rate was reduced 
when also accounting for beta and gamma-band power. 

2. Methods 

Participants. All experimental procedures were approved by the 
Institutional Review Board at the University of Maryland-College Park. 
Informed consent was obtained in accordance with the approved pro
cedures. Participants were drawn from the campus and the surrounding 
community. In all, 67 participants took part in the study. Potential 
participants were pre-screened in attempt to evenly cover a range of 
Padua Inventory scores (Burns et al., 1996), with the following bin 
boundaries: 0–16, 17–33, 34–50, 51+. The Padua Inventory is a stan
dard instrument also used in prior work looking at the relationship be
tween dimensional OCD symptom scores and perceptual deficits (Hauser 
et al., 2017). While we advocate a dimensional approach, for reference 
previous work has shown patients scoring 55 on average, versus 22 for 
controls (Burns et al., 1996). Participants also completed the Padua 
Inventory on the day of the experiment. SI Fig.S1 displays the rela
tionship between pre-screen and same day scores. Same day scores were 
used in all analyses. Despite some changes between the two testing 
sessions (as expected), we had a good balance among the a priori defined 
bins, with 19, 18, 15, and 15 participants respectively in the four groups. 
Bins were used for pre-screening to ensure coverage of a range of scores, 
but the Padua Inventory is a continuous measure and all analyses treated 
it as such. We tested whether results were specific to OCD symptoms by 
controlling for and asking the same questions about symptoms of worry 
measured using the Penn State Worry Questionnaire collected on the day 
of the experiment (Meyer et al., 1990). While as above we advocate a 
dimensional approach, for reference prior work has suggested cutoff 
scores of 62–65 for diagnosing generalized anxiety disorder using this 
measure (Behar et al., 2003; Fresco et al., 2003). SI Fig.S2 plots the 
distribution of scores from both questionnaires. There was evidence of 
some skew in the worry scores towards the upper range. Participants 
were not screened for categorically defined current or past disorders. 
Unfortunately, demographic information was lost for 20 participants. Of 
the remaining participants, 11 were male and 36 were female, with age 
ranging from 18–25 (one participant did not give their age). The 
restricted age range and unbalanced gender composition of the sample 
are limitations of the study. 

Dot motion task. The dot motion task was programmed in Matlab 
(The MathWorks, Inc.) using Psychtoolbox (Brainard, 1997), based on 
publicly available code from Michael Shadlen’s laboratory (Shadlen Lab, 
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2018). We utilized six different coherence (difficulty) levels based on a 
previous study looking at perceptual deficits in OCD (Banca et al., 2015): 
0.025, 0.05, 0.15, 0.25, 0.45, and 0.7. On average, the corresponding 
percentage of dots moved coherently right or left (selected randomly on 
each trial) while the remaining dots appeared at random. In addition to 
specifying the direction of motion, participants simultaneously rated the 
confidence in their response as “Very Certain”, “Certain”, or “Somewhat 
Certain”. Participants gave a “left” response using the Q, W, and E keys 
(corresponding to the respective confidence categories), and a “right” 
response using the P, O, and I keys. Participants completed a demo and 
practiced positioning their hands before starting the main portion of the 
experiment. There were 120 trials for each coherence level randomly 
intermixed throughout the experiment. A break was offered every 120 
trials. For analysis, trials with reaction times faster than 250 ms and 
slower than 10s were removed. This resulted in 3 out of 402 participant/ 
condition combinations having less than 100 valid trials (53, 77, and 90, 
all associated with the two hardest conditions); all other participant/ 
condition combinations had 100 or more valid trials. 

EEG methods. EEG data were recorded using actiCAP electrode 
caps, the actiCHamp amplifier, and Pycorder recording software, all 
from Brain Products. We recorded 64 channels, with a 500 Hz sampling 

rate, using electrode FCz as the reference. Data were analyzed using 
FieldTrip (Oostenveld et al., 2011) in Matlab. During pre-processing, 
data were re-referenced to the average of channels T7 and T8. Eye- 
blinks were removed using independent component analysis. The 
scalp current density was computed using the spline method imple
mented in the ft_scalpcurrentdensity function. Time-frequency analysis 
was performed using multitapers (mtmconvol method in ft_freqanalysis, 
with the default dpss for the taper type). For gamma, frequencies of in
terest were 32–100 in increments of 4 Hz. For beta, frequencies of in
terest were 12–28, also in increments of 4 Hz. A 250 ms time window 
and ±8Hz of smoothing was used. Power was log-transformed and 
normalized on a per-subject/per-condition/per-channel/per-frequency 
basis by subtracting the mean and dividing by the standard deviation 
of power during the 200 ms period preceding each stimulus onset. 
Normalized power was then averaged across frequencies within each 
band. 

Whole-brain measure of evidence integration. Based on prior 
work, we derived an aggregate whole-brain neural measure of evidence 
integration (Philiastides and Sajda, 2006; Philiastides et al., 2014), 
although some of the details have been modified. We used multi-level 
Bayesian logistic regression to predict trial difficulty (grouping 0.025 

Fig. 4. A-B. Mean aggregate whole brain gamma and beta-band power for each condition aligned to the start of the decision. The weight of each electrode was 
estimated using a multi-level regression predicting easy (0.45 and 0.7 coherence) vs hard (0.025 and 0.05) trials, based on power at the median reaction time for hard 
trials for each participant. The weights were then applied to the data for all trials and time points. Note that based on how it is defined using logistic regression, the 
aggregate measure is positive when the magnitude of power at individual electrodes is overall greater for easier decisions, regardless of whether the difference is 
positive or negative (and the aggregate measure would be negative if the magnitude was greater for harder decisions). C-D. Projection back to the scalp computed by 
correlating the aggregate measure with power at individual electrodes (C. γ power, D. β power). 
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and 0.05 coherence trials as “hard”/0 and 0.45 and 0.7 trials as “easy”/ 
1) from band-specific power at all electrode sites, using the median re
action time for hard trials as the time point of interest. We fit the model 
using Markov chain Monte Carlo implemented in rstanarm (Goodrich 
et al., 2020) v2.21.1, using the default weakly informative priors for the 
coefficients (centered and biased towards 0). In addition to the use of 
regularizing priors, this general framework allowed us to constrain the 
fits through partial pooling as in all standard multi-level models: 
Regression coefficients for participants were assumed to arise from a 
common group-level Gaussian distribution, thus constraining each 
other’s fit in a data driven manner (Gelman et al., 2013). We ran four 
chains and used 1,000 samples for warmup and 3,000 samples for 
inference for each chain. The R̂ statistic was < 1.05 for all variables. 
After fitting the model, the entire distribution of coefficients was used to 
weigh the data for each electrode, trial, and time point. 

To compute the plots shown in Fig. 4, aggregate weighted power was 
averaged (sample by sample, for each sample from the Markov chain 
Monte Carlo procedure estimating the Bayesian logistic regression 
model) separately for each condition and time point first within subject 
across trials, and then across subjects. The medians of the resulting 
marginal distributions were used for display purposes. To compute the 
slope of the aggregate measure (Fig. 5), after averaging within subject 
for each condition, we computed differences in 50 ms increments 
spanning the 500 ms period from 300 to 800 ms, took their mean, and 
then the mean across subjects. For the analysis of individual differences 
(described below), the median of the marginal distribution for each 
subject was used. Note that the overall analysis is only approximately 
Bayesian. A fully Bayesian analysis would perform these computations 
together with the drift-diffusion and regression model fits within a single 
overarching model, although this proved computationally infeasible. 

To project aggregate power back to the scalp, we first computed for 
each subject: XY, where X is a channels x time matrix of power at each 
individual channel and time point, and Y is a time x samples matrix 

representing aggregate power (Philiastides and Sajda, 2006; Philiastides 
et al., 2014). Each column (sample), j, in the resulting matrix was then 
normalized by YT

⋅,jY⋅,j. The mean was taken across subjects, and finally 
the median was extracted across samples for each channel. 

Drift-diffusion modeling. A multi-level Bayesian framework 
implemented in Stan (Stan Development Team) was also used to fit the 
drift-diffusion model. We fit the simple form of the model without 
variance in parameters across trials. Although this version cannot 
explain differences in reaction time between correct and error trials 
(Ratcliff and McKoon, 2008), simulation work has shown that it can 
provide more robust parameter recovery than the full version, and is 
useful if the variance parameters are not of interest (Lerche and Voss, 
2016). As above, we ran four chains and used 1,000 samples for warmup 
and 3,000 samples for inference in all analyses. The R̂ statistic was ⩽ 
1.05 for all variables. Broad uninformative priors were used at the group 
level. Priors are described below following the description of the 
regression models. 

Regression models. Regression models were fit together with the 
drift-diffusion model in Stan. The final full regression was defined as 
follows for subject s and condition c: 

drifts,c = driftc + drifts+

driftc,padua⋅paduas + driftc,worry⋅worrys+

driftc,γ⋅γs,c + driftc,β⋅βs,c.

(1) 

paduas and worrys are z-scored symptom scores, and γs,c and βs,c are 
the subject and condition specific slopes of aggregate band-specific 
power, z-scored for each condition. The boundary was similarly 
defined. The two reduced sets of regressions had a similar form, one 
without the symptom regressors and one without the neural regressors. 
Another pair of regressions tested the relationship between the slope of 
aggregate power in each band and OCD and worry scores: 

neurals,c = bc,0 + bc,padua⋅paduas + bc,worry⋅worrys + ∊s,c, (2) 

Fig. 5. The slope of aggregate gamma and beta-band power estimated between 300 and 800 ms (see Methods) for each condition, and differences between conditions. 
Plots are marginal posterior distributions with medians and 95% credible intervals noted. 
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where neurals,c is one of γs,c or βs,c, and ∊s,c is Gaussian noise. 
Priors for fitting the drift-diffusion and regression models. The 

priors for all parameters were broad and uninformative. For the non- 
decision time parameter, the group-level mean had a N(0.5,1) prior 
(the second number in all such labels is SD), and the group-level stan
dard deviation had a N(0, 1) prior. The subject-specific non-decision 
parameters had a Gaussian prior with the aforementioned group-level 
parameters. The starting point parameter was fixed to 0.5 (halfway 
between the two options) for all analyses, as each of the 720 trials had a 
50/50 probability of the underlying motion being either left- or 
rightward. 

As noted above, regression models involving drift-diffusion model 
parameters were fit simultaneously with the drift-diffusion model. In 
order to reduce correlation in the sampled posterior, we sampled 
modified parameters driftc′ where driftc=1 = driftc′ =1, driftc=2 =

driftc′ =1 + driftc′ =2, driftc=3 = driftc′ =1 + driftc′ =3, and so on, and simi
larly for the drift rate regression coefficients and boundary separation 
parameters. All reported parameters are the original parameters (e.g. 
driftc). The priors for driftc′ , driftc′ ,padua, driftc′ ,worry, driftc′ ,γ, driftc′ ,β,

boundaryc′ ∕=1, boundaryc′ ,padua, boundaryc′ ,worry, boundaryc′ ,γ , and 
boundaryc′ ,β were N(0, 20). The prior for boundaryc′ =1 was N(1, 20), 
biased positive because the boundary separation must be positive, but 
with a large standard deviation that does not overwhelm the data. The 
priors for drifts and boundarys were hierarchically defined, N(0, σdrift)

and N(0,σboundary), with the priors for σdrift and σboundary set to N(0,20). 
The priors for bc,padua,bc,worry, and the standard deviation of ∊s,c were 

similarly N(0,20). The intercept bc,0 was hierarchically defined, with the 
prior for bc,0 set to N(bμ0 , bσ0 ), and the priors for bμ0 and bσ0 set to N(0,
20). 

3. Results 

Basic behavioral results. As a basic check of our experiment, Fig. 1 
displays the mean accuracy and reaction time for each condition. Ac
curacy increased (F(5,330)=694.4, p<2e-16) and reaction time 
decreased (F(5,330)=178, p<2e-16, computed after taking the log due 
to the skew inherent to reaction time distributions) for easier (larger 
coherence) trials. Rather than focus on raw behavior, we modeled the 
data using the drift-diffusion model, which has been extensively studied 
and validated in the context of the dot motion task (Gold and Shadlen, 
2007; Ratcliff and McKoon, 2008). This allowed us to analyze accuracy 
and reaction time in tandem, and ask about specific components of in
formation processing. Model fitting was performed using a multi-level 
Bayesian framework. In the following, we plot the marginal posterior 
probability distributions of the parameters of interest, and report the 
central 95% credible intervals. As is common, we treat an effect as 
“significant” if there is more than a 95% probability that it is larger (or 

smaller depending on the prediction) than 0, although we encourage 
taking the entire posterior distribution and the uncertainty in mea
surement into account. All Bayesian statistical estimates are displayed in 
the figures rather than the text for compactness. 

As expected, drift rate increased as a function of coherence (Fig. 2A; 
the difference between conditions is displayed in SI Fig.S3A). We also fit 
a separate boundary separation parameter for each condition. Note that 
although it is often assumed that boundary separation does not vary as a 
function of difficulty, and this constraint is enforced as part of the model 
fitting procedure, studies measuring OCD-related impairments that have 
allowed this parameter to vary have found differences across conditions 
(Banca et al., 2015; Marton et al., 2019). Consistent with these studies, 
there was some evidence that boundary separation was smaller for 
easier decisions, although this was not true for all conditions (Fig. 2B 
and SI Fig.S3B). 

Evidence integration was impaired as a function of OCD symp
toms, but not worry. Replicating prior work (Banca et al., 2015; Erhan 
et al., 2017; Hauser et al., 2017; Marton et al., 2019), OCD score was 
negatively associated with drift rate during easier decisions, with 
significantly larger effects for easier compared to harder conditions 
(Fig. 3). The displayed effects were computed while simultaneously 
controlling for worry, with the reduction in drift rate specific to OCD 
score. There was some evidence that drift rate was actually larger as a 
function of worry, although only in some conditions (SI Fig.S4A-B). 
Importantly, the differences between the effects of OCD score and worry 
on drift rate were significant for all conditions where OCD score was 
related to drift rate (SI Fig.S4C). Boundary separation did not vary either 
as a function of OCD score (SI Fig.S5) or worry (SI Fig.S6). 

Changes in both gamma and beta-band power were related to 
evidence integration. Prior studies describing the relationship between 
gamma and beta-band power and evidence integration reported results 
in somewhat idiosyncratic frequencies (Donner et al., 2009; Polanía 
et al., 2014). We first sought to replicate this work using a broader range 
of frequencies within each band: 32–100 Hz for the gamma band and 
12–28 Hz for the beta band (Engel and Fries, 2010; Gluth et al., 2013; 
Long et al., 2014). We used an approach from a complementary set of 
studies to calculate an aggregate whole-brain measure of power over 
time for each band of interest (Philiastides and Sajda, 2006; Philiastides 
et al., 2014), and this formed the basis for our main statistical questions. 
We also projected this measure back to sensor space to study its gross 
spatial distribution, as described below. 

To calculate this measure, we computed average power within each 
respective range and used multi-level Bayesian logistic regression to 
predict trial difficulty (grouping 0.025 and 0.05 coherence trials as 
“hard”/0 and 0.45 and 0.7 trials as “easy”/1) from power at all electrode 
sites. This analysis was performed at the median reaction time for hard 
trials (see Methods). We then used the fitted regression coefficients to 
weigh each electrode and compute an aggregate measure of power for 

Fig. 1. Accuracy and reaction time (for correct trials) for each difficulty condition.  
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all conditions (including now the medium difficulty conditions) and all 
time points (not just the single time point corresponding to the median 
reaction time for hard trials). Note that because of how it is defined 
based on logistic regression, the aggregate measure is positive when the 
magnitude of power at individual electrodes is overall greater for easier 
decisions, regardless of whether the difference is positive or negative 
(and the aggregate measure would be negative if the magnitude was 
greater for harder decisions). 

Fig. 4A-B displays the mean of the aggregate measure separately for 
each band and condition as the decision unfolded. In line with previous 
EEG and MEG work (Donner et al., 2009; Polanía et al., 2014), and 
remarkably similar to the pattern seen in the firing rate of neurons in 
animal studies (Gold and Shadlen, 2007), the aggregate measure for 
both bands gradually increased during decision making. The rate of 
increase was higher for higher coherence (easier) trials (Fig. 5). We 
projected the aggregate measure back to sensor space by correlating it 
with power at each individual channel (Philiastides and Sajda, 2006; 
Philiastides et al., 2014). In addition to visualizing the spatial distribu
tion of the measure, this analysis reveals the direction (positive or 
negative) of the ramps at each electrode. Gamma-band ramps were 

mostly positive and concentrated at posterior and lateral electrode sites, 
while beta-band ramps were mostly negative and concentrated at 
parieto-occipital electrode sites (Fig. 4C-D). There were also smaller 
effects in the opposite direction in each band at more frontal electrodes. 
Finally, we looked across participants, extracting the slope of the 
aggregate measure for each condition, participant, and band, and 
regressing drift rate on the slope of both bands simultaneously. Drift rate 
was independently correlated with the slope of the aggregate measure 
for gamma power in all conditions, and for beta power in five out of six 
conditions (Fig. 6A,C). 

Slope of beta but not gamma power was correlated with OCD 
score. Next, we tested the relationship between the slope of aggregate 
power in each band and OCD score, again controlling for worry. The 
slope of gamma-band power was unrelated to both OCD (Fig. 7B) and 
worry (except a likely false positive in a single condition, SI Fig.S7A-B) 
scores. However, the slope of aggregate beta-band power was negatively 
correlated with OCD score in five out of six conditions (with a trend in 
the remaining condition; Fig. 7C). These effects were generally stronger 
than (non-significant) effects of worry (SI Fig.S7C,F). 

When simultaneously accounting for all variables, there was no 

Fig. 2. Estimated drift rate and boundary separation for each condition. Plots are marginal posterior distributions with medians and 95% credible intervals noted.  

Fig. 3. Effect of OCD score on drift rate, simultaneously controlling for worry, for each condition and the difference between conditions. Plots are marginal posterior 
distributions with medians and 95% credible intervals noted. 

A. Solway et al.                                                                                                                                                                                                                                 



NeuroImage: Clinical 34 (2022) 102975

7

Fig. 6. Effect of the slope of aggregate γ and β power on drift rate across subjects, each while controlling for the other, for each condition and differences between 
conditions. Plots are marginal posterior distributions with medians and 95% credible intervals noted. 

Fig. 7. Effect of OCD score on the slope of aggregate γ and β power across subjects, controlling for worry, for each condition and the differences between conditions. 
Plots are marginal posterior distributions with medians and 95% credible intervals noted. 
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reduction the effect of OCD score or the slope of aggregate power in 
either band on drift rate. If the relationship between OCD score and 
the slope of aggregate beta-power accounts for the association between 
OCD score and drift rate, we should see a reduction in the effect of OCD 
score when drift rate is simultaneously regressed on both variables. We 
also controlled for the slope of aggregate gamma-band power and worry 
as in prior analyses. Neither the effect of OCD score (Fig. 8A) nor the 
slope of aggregate power in either band (Fig. 8B-C) significantly 
changed compared to the reduced models. 

Confounding from saccadic activity. Saccades are known to elicit 
gamma-band responses, although computing the scalp current density 
attenuates this effect, at least at non-frontal electrodes (Keren et al., 
2010). All of the described analyses were performed after computing the 
scalp current density (Perrin et al., 1989). In addition, we repeated all 
analyses after excluding the frontal electrodes (Fp1, Fp2, AF7, AF3, AFz, 
AF4, AF8, F7, F5, F3, F1, Fz, F2, F4, F6, F8). The results were qualita
tively similar with these electrodes removed. 

4. Discussion 

We sought to synthesize the previously disparate literatures on the 
relationship between OCD symptoms and evidence integration (drift 
rate) during perceptual decision making, and the relationship between 
evidence integration and gamma and beta-band neural activity. 
Consistent with previous work, we found a negative relationship be
tween OCD symptoms and drift rate, and this effect was larger for easier 
decisions (Banca et al., 2015; Erhan et al., 2017; Hauser et al., 2017; 
Marton et al., 2019). We did not find evidence of a relationship between 
decision boundary separation and OCD score. Although this may seem 
surprising, our findings are consistent with the literature, where only 2 
out of 5 studies reported increases in boundary separation as a function 
of OCD (Banca et al., 2015; Erhan and Balci, 2017; Erhan et al., 2017; 
Hauser et al., 2017; Marton et al., 2019). 

A larger impairment for easier decisions in the current context is 
partly aligned with real-world behavior, where common OCD manifes
tations include uncertainty about simple perceptual events such as 
whether a lock is turned the correct way, a stove is off, or the individual 
caused physical harm to another person. On the surface this appears at 
odds with work suggesting that OCD is characterized by inflexible 
enhanced error monitoring (Endrass et al., 2010; Riesel et al., 2019). 
These studies found that the error-related negativity was larger in 

individuals with OCD when errors were less important, including when 
speed was emphasized over accuracy and when mistakes were not 
penalized. It would seem that inflexible monitoring should then also 
apply to easier decisions, where errors are not expected to occur, and 
perhaps result in increased rather than decreased performance. How
ever, additional error monitoring does not necessarily translate into the 
successful use of additional information, and while monitoring may be 
enhanced, OCD symptoms appear to also be associated with impair
ments in at least some circumstances. Indeed, these complementary 
differences are suggestive of a different hypothesis: true (but potentially 
subtle) performance impairments may be overgeneralized and result in 
increased monitoring for errors across a variety of domains and cir
cumstances, in turn also driving “not just right” experiences (Coles et al., 
2003) and feelings of “incompleteness” (Summerfeldt et al., 2004). 
While such impairments appear not to always be accompanied by 
increased caution, reductions in drift rate can contribute to slower 
responding, and this may be perceived as a form of perseveration during 
real world behavior. 

We found that changes in aggregate gamma and beta-band power 
were steeper for easier decisions, and moreover, the slope of aggregate 
power in each band was independently associated across subjects with 
drift rate measured based on behavioral data alone—for all conditions 
for the gamma band, and for five out of six conditions for the beta band. 
In line with expectation, the slope of aggregate beta-band power was 
negatively correlated with OCD score in five out of six conditions, with a 
trending effect in the remaining condition. However, the relationship 
between OCD score and drift rate could not be explained by this latter 
association. 

Increases in gamma-band power were strongest at posterior and 
lateral electrode sites, while decreases in beta-band band power were 
strongest at parieto-occipital electrode sites. We also found smaller ef
fects in the opposite direction in each band at more frontal electrodes. 
This contrasts with Polanía et al. (2014), where parietal electrodes were 
the source of positive ramping gamma-band effects during a perceptual 
decision task, and there were no electrodes showing negative changes. 
In addition, their study did not find a relationship between beta-band 
power and evidence integration during perceptual decision making, 
but reported decreases in beta-band power at frontal electrodes during 
an analogous reward-based task. It should be noted however that the 
perceptual task used by Polanía et al. (2014) differed from the current 
study, and involved making a size judgment based on a static stimulus 

Fig. 8. A. Change in the effect of OCD score on drift rate when controlling for aggregate γ and β slopes in addition to worry. B-C. Changes in the effects of aggregate γ 
and β slopes on drift rate when controlling for OCD score and worry. Plots are marginal posterior distributions with medians and 95% credible intervals noted. 
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instead of a motion judgment based on a dynamic stimulus. While 
overlapping, the two tasks also likely index different neural systems. 
Donner et al. (2009) used MEG for improved spatial resolution and a 
motion task very similar to the one used here, and found a priori defined 
localized signatures of evidence integration in both bands in premotor 
and motor cortex. MEG can likewise be used in the current context to 
separate beta-band activity originating from disparate neural sources. 
This would allow testing whether a more localized measure of beta-band 
power can better explain the relationship between drift rate and OCD 
symptoms compared to the more diffuse activity captured in the EEG. 

Beta and gamma band power are also not the only candidate EEG- 
based neural mechanisms for explaining OCD-related evidence inte
gration deficits. For example, multiple studies have shown that the 
centro-parietal positivity is related to evidence integration, as well as to 
estimates of drift rate based on behavioral data (O’Connell et al., 2012; 
van Vugt et al., 2019). It is also possible that EEG, and even MEG, are too 
coarse to tease out a neural signature of this relationship. At present, the 
search for a neural mechanism explaining these data is only loosely 
constrained. While the drift-diffusion model provides a formal descrip
tion of deliberation, it operates at a level of abstraction that does not 
make detailed contact with neural mechanisms. Additional constraints 
may be derived through more biophysically realistic modeling of OCD- 
related perceptual deficits. For example, Wang and colleagues have 
investigated one class of models for solving the type of binary choice 
motion discrimination task used here which may be useful toward this 
end (Wang, 2002; Wong and Wang, 2006). Although the implementa
tion details have differed between different instantiations, different 
versions have shared common important core features, including slow 
NMDA mediated recurrent excitation, properly tuned absolute and 
relative levels of excitation and inhibition throughout the decision, and 
a properly calibrated AMPA:NMDA receptor ratio. The structure and 
parameters of such models could be investigated to determine which 
changes could give rise to the pattern of data observed in relation to OCD 
symptoms. Similar features are also important for working memory 
maintenance, and a related model has been used to better understand 
working memory deficits in schizophrenia, which interestingly shares 
enhanced comorbidity with OCD (Buckley et al., 2009; Wang, 2006). 

In summary, we replicated the link seen in prior work between OCD 
symptoms and computationally defined perceptual decision making 
deficits, and between gamma and beta-band power and perceptual ev
idence integration. Seeking to unify these disparate literatures, as pre
dicted, we found a relationship between the slope of beta-band power 
and OCD symptoms. Although this relationship did not explain OCD- 
related drift rate impairments, our work provides additional con
straints on the potential neural mechanisms underlying this deficit. 
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