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The soil-dwelling social amoeba Dictyostelium discoideum feeds on bacteria. Each 
meal is a potential infection because some bacteria have evolved mechanisms to resist 
predation. To survive such a hostile environment, D. discoideum has in turn evolved 
efficient antimicrobial responses that are intertwined with phagocytosis and autophagy, 
its nutrient acquisition pathways. The core machinery and antimicrobial functions of 
these pathways are conserved in the mononuclear phagocytes of mammals, which 
mediate the initial, innate-immune response to infection. In this review, we discuss 
the advantages and relevance of D. discoideum as a model phagocyte to study cell- 
autonomous defenses. We cover the antimicrobial functions of phagocytosis and auto-
phagy and describe the processes that create a microbicidal phagosome: acidification 
and delivery of lytic enzymes, generation of reactive oxygen species, and the regulation 
of Zn2+, Cu2+, and Fe2+ availability. High concentrations of metals poison microbes while 
metal sequestration inhibits their metabolic activity. We also describe microbial inter-
ference with these defenses and highlight observations made first in D. discoideum. 
Finally, we discuss galectins, TNF receptor-associated factors, tripartite motif-containing 
proteins, and signal transducers and activators of transcription, microbial restriction 
factors initially characterized in mammalian phagocytes that have either homologs or 
functional analogs in D. discoideum.

Keywords: Dictyostelium discoideum, cell-autonomous defense, phagocytosis, autophagy, metal poisoning, 
nutritional immunity, mononuclear phagocyte system, host–pathogen interactions

iNTRODUCTiON

The mononuclear phagocyte system (MPS), comprising monocytes, macrophages, and dendritic 
cells, is the first line of defense against infection. MPS cells monitor blood and tissue for the presence 
of microbes and respond to conserved molecules produced by and/or to damage caused by potential 
pathogens. These signals trigger innate-immune pathways that activate cell-autonomous defense 
mechanisms and secretion of intercellular signals that orchestrate inflammatory and subsequent 
adaptive immune responses.

Cell-autonomous defense mechanisms, which exist in MPS cells and also non-immune cells, 
provide a rapid antimicrobial response and evolved from the predator–prey relationship among 
the ancestors of current eukaryotes and prokaryotes (1, 2). In MPS cells, cell-autonomous 
defenses include phagocytosis and autophagy, processes that originated in ancient eukaryotes 
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for nutrient acquisition and reallocation. Indeed, the basic 
components of these pathways are conserved in immune cells 
of all metazoa and in bacterivorous and fungivorous single-
celled eukaryotes such as amoebae. Microbial mechanisms to 
subvert cell-autonomous defenses predate metazoa and likely 
originated as resistance to predation by single-celled eukary-
otes. Given this evolutionary context, amoebae are relevant 
surrogate phagocytes for the study of the conserved innate-
immune responses of MPS cells and of microbial mechanisms 
to resist killing. Although the infection of amoebae cannot 
completely recapitulate the complexities of host–pathogen 
interactions in metazoa, the innate defenses of MPS cells estab-
lish the critical initial immune response to microbes, and MPS 
cells are often the physical interface of host and intracellular 
pathogens. Valuable insight can thus be gained by studying the 
interactions between microbes and amoebae that rely solely on 
cell-autonomous defenses for survival.

In this review, we focus on the use of the soil dwelling, 
social amoeba Dictyostelium discoideum as a model phagocyte 
to study the interactions between intracellular pathogens and 
cell-autonomous defense mechanisms of MPS cells. We cover 
phagocytosis with an emphasis on phagosome maturation 
and the mechanisms used to create an antimicrobial environ-
ment within the phagosome. These mechanisms include the 
delivery of lytic enzymes, the generation of reactive oxygen 
species (ROS), and the manipulation of the concentrations 
of divalent metals to either poison microbes or inhibit their 
metabolic activity. We describe autophagy as a defense pathway 
that responds when phagocytosis is insufficient to eliminate 
infection. We also highlight microbial interference with these 
defense responses first elucidated using D. discoideum. Finally, 
we discuss microbial restriction factors, initially characterized 
in MPS cells, that have either sequence homologs or poten-
tially functional analogs in D. discoideum. Determining their 
contribution to cell-autonomous defense mechanisms in this 
amoeba will further strengthen its usefulness as a model for 
host–pathogen interactions.

PReDATiON ReSiSTANCe, viRULeNCe, 
AND CeLL-AUTONOMOUS DeFeNSeS

Given the complex interactions between pathogenic microorgan-
isms and their metazoan hosts, it is difficult to pinpoint the 
origins of microbial virulence. How would a naïve bacterium 
encountering an elaborate immune response for the first time 
persist long enough to evolve mechanisms to counteract anti-
microbial defenses? On the host side, why are such extensive 
immune responses in place? When did it all begin? An emerging 
concept in host–pathogen interactions is that microbial virulence 
evolved from selective forces in the environment such as the 
pressure to resist predation by amoebae and other protozoa (3–6).

In addition to competing for nutrients and adapting to 
variations in environmental conditions such as temperature and 
moisture, successful microbes avoid being a meal for predatory 
protozoa. These resistance mechanisms include avoidance of 
phagocytosis, e.g., masking of the microbial surface and biofilm 

formation, avoidance of digestion, e.g., inhibition of phagosome 
maturation, escape from the phagosome, the killing of the preda-
tor by toxin secretion pre- or post-phagocytosis, and the use of 
specialized secretion systems (3). On the predator side, the advent 
of resistance in turn selected for more robust strategies to kill 
bacteria and/or counteract this resistance. This ancient fight for 
survival among single-celled species with short generation times 
and large population sizes provided the context for the evolution 
of virulence and cell-autonomous defenses. As metazoa evolved 
and gained complexity, these defenses were conserved and also 
expanded (7, 8). Concurrently, some microbes evolved mecha-
nisms not just to avoid killing but to survive inside hosts and 
exploit them for resources.

The coevolution of host and microbes beginning at the single-
celled stage provides a plausible explanation for the conservation 
of cell-autonomous defenses. It is important to remember that 
single-celled eukaryotic predators continued to evolve and that 
successful cell-autonomous defense strategies are present in 
extant species such as D. discoideum. Bacteria must therefore 
contend with similar defense mechanisms in macrophages and 
amoebae; consequently, predation selects for bacterial survival 
strategies that are likely to resist killing by MPS cells (9–12). 
Another consequence of this conservation is that amoebae can 
select for and act as reservoirs of microbes that can infect humans, 
including Mycobacterium species, Legionella pneumophila, and 
Vibrio cholera (13–15). This evolutionary history makes amoebae 
ideal, relevant model phagocytes to study host–pathogen interac-
tions (16–19).

Dictyostelium discoideum

Dictyostelium discoideum belongs to the Amoebozoa phylum, 
which diverged from the Opisthokonts, the phylum to which 
the animals belong, after sharing a common ancestor with 
plants. During its growth phase, the amoeba replicates by binary 
fission and employs phagocytosis to kill and extract nutrients 
from bacteria in the soil. Upon nutrient depletion, starvation 
induces amoebae to undergo a developmental cycle in which 
approximately 100,000 cells aggregate by chemotaxing toward 
cyclic AMP, differentiate into multiple cell types, and transition 
through several multicellular stages to ultimately produce the 
fruiting body that comprises a spore-containing sorus resting 
upon a stalk of dead cells (Figure  1) (20–22). Depending on 
environmental conditions, the early multicellular stage continues 
to develop in place or transitions to a motile slug that migrates 
away from ammonia and toward heat, light, and oxygen before 
fruiting body culmination (20–25). When development is initi-
ated underground these cues guide the slug to the soil surface, 
where spore dispersion is more likely.

Due to its multicellular cycle, D. discoideum, referred to as a 
social amoeba, is used as a model to study aspects of development 
including intercellular signaling (27) [reviewed in Ref. (22)], quo-
rum sensing (28), cell–cell recognition (29), cell fate determina-
tion (30), tissue patterning (31), and even societal concepts such 
as cooperativity and altruism (32). It is also an established model 
for basic cell biological processes, including phagocytosis (33), 
macropinocytosis (34), chemotaxis (35), autophagy (36), and 
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FigURe 1 | The Dictyostelium discoideum life cycle includes multicellular stages. (A) During the growth phase of development, amoeboid cells feed on bacteria and 
replicate by binary fission. The development cycle is initiated upon resource depletion, and aggregation occurs when starving cells secrete cyclic AMP to recruit 
additional cells (B). The aggregating cells organize to form the mound stage enclosed within an extracellular matrix composed of cellulose and mucopolysaccharide 
(26) (C) and continue to develop into the standing slug (D). Depending on its environment, the standing slug either falls over to become a migrating slug that moves 
toward heat and light (e) or proceeds directly to the culmination stages (F) that ultimately produce the fruiting body, which consists of a spore-containing structure, 
the sorus, held aloft by a stalk of dead cells (g). Spores are released from the sorus and germinate into growing cells (H). Under optimal conditions, the 
developmental cycle takes around 24 h. If the slug forms underground, it migrates toward the surface to maximize spore dissemination. To protect itself from 
infection during migration, the slug possesses a rudimentary immune system comprising phagocytic sentinel cells. These cells move throughout the slug, take up 
bacteria and toxins, and are shed along with extracellular matrix as the slug moves (e). In response to bacteria, sentinel cells release extracellular traps, derived from 
mitochondrial DNA, via an unknown mechanism involving NADPH oxidase (NOX)-generated reactive oxygen species (ROS) and TirA, a soluble protein containing a 
toll/interleukin 1 receptor domain (i).
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oxygen sensing (37), and the functions of proteins implicated in 
human diseases including Alzheimer’s and Parkinson’s (38–41). 
Indeed, this amoeba has proven to be a versatile model organ-
ism and is gaining traction as an attractive alternative to animal 
models (42, 43).

Dictyostelium discoideum has been used as a host cell for  
L. pneumophila (44–47), Mycobacterium species (48–51), V. cholera  
(17), Francisella noatunensis (52, 53), Pseudomonas aeruginosa 
(16), Salmonella enterica (54), and other intracellular pathogens 
(55). Moreover, its genome encodes numerous homologs of 
proteins and protein domains involved in sensing and respond-
ing to microbes by macrophages (5) (http://dictybase.org). The 
conservation of macropinocytosis, chemotaxis, phagocytosis, 
and autophagy pathways in D. discoideum make it a model 
MPS cell. Here we focus on phagocytosis and autophagy within 
the context of cell-autonomous defenses. Macropinocytosis 
and chemotaxis are beyond the scope of this review and have 
been covered extensively elsewhere [for reviews on chemotaxis  
(56, 57); for reviews on macropinocytosis (58, 59)].

From a practical standpoint, its amenability to experimenta-
tion also makes D. discoideum an ideal model organism. It is 
easily cultivatable and can be grown axenically in liquid media, 
which enables analysis of mutant strains defective for growth 
on bacteria. Cultures can be readily scaled up for biochemical 
and cell biological techniques (43) as well as high-throughput 

genetic and drug discovery screens (60–62). It is also well suited 
for microscopy including live-cell imaging (63). An extensive 
molecular genetic toolkit has been developed for the genera-
tion of mutants and ectopic gene expression (64). The haploid 
genome of multiple strains and closely related species have been 
sequenced (65–68), and numerous RNAseq and transcriptomic 
analyses have been performed (69, 70). The community’s 
online resource, dictyBase, provides a central location to access 
sequence data, techniques, and available mutants and plasmids 
(71) (http://dictybase.org). Relevant its use as a model phago-
cyte, there are established protocols for infecting D. discoideum 
with various bacterial pathogens (63, 72, 73) and for monitoring 
and quantifying autophagy (74).

PHAgOCYTOSiS

Phagocytosis is the process that allows engulfment of particles 
larger than 200 nm and is used by MPS cells to ingest and kill 
pathogens as well as to activate the adaptive immune response 
through antigen presentation. The phagocytosis maturation 
pathway is highly conserved between MPS cells and D. discoi
deum, which uses the process for feeding (8). In a simplified 
view, the particle to ingest is recognized by surface receptors, 
and this interaction triggers a signaling cascade that stimulates 
polymerization of actin to deform the membrane around the 
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FigURe 2 | Non-pathogenic and pathogenic bacteria follow different fates in Dictyostelium discoideum. D. discoideum takes up bacteria by phagocytosis. 
Non-pathogenic food bacteria follow the normal phagosomal maturation pathway, whereby the phagosome acquires several components, including the vacuolar 
ATPase (V-ATPase), lysosomal enzymes, the NADPH oxidase (NOX) complex, and several metal transporters to create a microbicidal compartment that digests and 
kills bacteria. Intracellular pathogens, however, are able to manipulate the maturation program, by preventing the phagosome from becoming bactericidal, thus 
ensuring proliferation in a “friendly” compartment. In addition, certain pathogens can eventually escape the compartment. In this case, they can either be recaptured 
by autophagy, or exit the host cell by exocytosis, or by lytic or non-lytic processes.
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particle. After closure of the phagocytic cup, the newly formed 
phagosome undergoes maturation, a series of steps necessary to 
render the phagosome a highly acidic, degradative and oxidative 
compartment (Figure  2). Many pathogens, such as L. pneu
mophila, S. enterica, and Mycobacterium spp., have evolved ways 
to escape the phagosome or subvert its maturation to replicate 
within the host cell. In this section, we will briefly summarize 
the phagocytosis maturation steps in D. discoideum and how 
this model phagocyte has been used to extend our knowledge 
of several infectious diseases. It should be noted that studies 
using D. discoideum as a model phagocyte have mainly been 
performed with axenic laboratory strains. These strains are able 
to grow in the absence of bacteria due to a null mutation in the 
gene encoding the Ras-regulating neurofibromin, which results 
in enlarged macropinosomes that facilitate uptake of sufficient 
nutrients from liquid media to support growth and also enables 
the mutants to phagocytose larger particles than wild-type 
strains (75). Effects of this mutation on phagosome maturation 
have not been reported.

Particle Recognition and Phagocytosis 
initiation
Innate-immune cells can recognize several pathogen-associated 
molecular patterns (PAMPs) secreted or present at the bacterial 
cell wall via specific pathogen recognition receptors (PRRs). In 
mammals, these include toll-like receptors (TLRs), integrins, 
scavenger receptors, and C-type lectins (76). TLRs monitor 

the cell surface and endocytic compartments and activate cell-
autonomous defenses upon detection of PAMPs, while lectins, 
scavenger receptors, and integrins function as phagocytic 
receptors that bind to particles and are able to trigger uptake 
even in non-phagocytic cells (76). TLRs contain ligand-
binding leucine-rich repeats (LRRs) in the luminal/extracellular 
domains and a toll/interleukin 1 receptor (TIR) domain in the 
cytoplasmic tail that mediates protein–protein interactions.  
D. discoideum does not have TLRs, but two cytosolic proteins with 
TIR domains, TirA and TirB, have been identified. Depletion of 
TirA inhibits growth on a laboratory strain of Klebsiella used as 
a food bacterium, but not in media (77). How TirA is involved 
in sensing and/or induction of phagocytic uptake remains to 
be studied. The D. discoideum genome encodes >150 LRR-
containing proteins, but whether they function as PRRs remains 
to be determined (5).

In D. discoideum, only a few phagocytic receptors have been 
molecularly identified so far (5). The most studied are the integ-
rin-like Sib (similar to integrin-β) family of proteins, comprising 
five members (SibA-E). Like human integrins, they contain a 
von Willebrand factor type A and a glycine-rich transmembrane 
domain and can interact with the actin-binding protein talin 
(78). Two members of the family, SibA and SibC, are directly 
involved in adhesion to substrate and to particles (78). Phg1a, a 
member of the TM9 family, and SadA were previously identified 
as phagocytic receptors (79, 80); however, recent findings show 
that these two proteins are instead involved in regulating surface 
levels of SibA (81).
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Lectins and scavenger receptors might also function as pha-
gocytic receptors in D. discoideum. Three homologs of scavenger 
receptor class B proteins in mammals, LmpA, LmpB, and LmpC, 
are present in D. discoideum. LmpB is found on lipid rafts at 
the plasma membrane and in early phagocytic compartments 
and may function as a phagocytic receptor (82–84). It is thought 
that D. discoideum also possesses lectin-like receptors, as it was 
shown to be able to bind specifically to certain sugar derivatives 
(85, 86).

A well-studied chemoattractant and phagocytosis stimulator 
for D. discoideum is folate, a metabolite secreted by certain bac-
teria. Recently, Pan and colleagues identified fAR1, a G-protein 
coupled receptor for folic acid involved in signaling and initia-
tion of uptake but not binding of bacteria (87). Presumably, the 
cytoskeletal rearrangements downstream of fAR1 that facilitate 
chemotaxis can also initiate phagocytosis when a burst of fAR1 
activation occurs around a bacterium that is a concentrated 
source of folate. D. discoideum sensing of bacterial capsule 
independent of folate has also been described but not further 
characterized (88).

Actin Dynamics and Phosphatidylinositol 
Phosphates (PiPs)
After binding of ligands to their receptors, heterotrimeric G 
proteins are involved in downstream signaling to initiate phago-
cytosis through F-actin rearrangements. In D. discoideum, the 
G4αGβγ complex has been proposed to be activated by the 
fAR1 folate receptor, was shown to be implicated in particle 
uptake, and is therefore the most likely candidate involved in 
signaling from the phagocytic receptors to drive actin poly-
merization (87, 89). F-actin rearrangements occur at the uptake 
site to drive formation of pseudopods and the phagocytic 
cup. F-actin polymerization at the uptake site is driven by the 
Arp2/3 complex, an actin nucleation factor, and its activator, the 
SCAR/WAVE complex, in both macrophages and D. discoideum  
(90, 91). In addition, several other actin-binding proteins, such 
as profilins, cofilins, and Abp1, are present during the forma-
tion of the phagocytic cup [(92, 93), for a more detailed review 
on the phagocytic process in D. discoideum, see Ref. (94)]. 
Regulation of actin dynamics and subsequent trafficking events 
by Rho GTPases is also conserved in D. discoideum, with Rac1 
homologs (RacA, B, C, and G) thought to be the main regula-
tors of phagocytic uptake. Notably, Rac1 is involved in FcγR-
mediated phagocytosis in macrophages [for a comprehensive 
review on Rho signaling, see Ref. (95)].

Phosphatidylinositol phosphates are important players dur-
ing phagocytic uptake and maturation because they provide an 
identity to each compartment. PIP dynamics are well conserved 
between macrophages and D. discoideum. Briefly, phosphati-
dylinositol (4,5)-bisphosphate PI(4,5)P2 is the predominant 
PIP of the plasma membrane and is involved in recruiting and 
activating actin-binding proteins and nucleation-promoting 
factors. After receptor engagement, PI(4,5)P2 is phosphorylated 
into PI(3,4,5,)P3 by phosphatidylinositol 3-kinase and hydro-
lyzed into diacylglycerol and inositol (1,4,5)-trisphosphate, 
second messengers involved in calcium release and activation 

of further signaling cascades, by the phospholipase C kinase. 
Decrease of PI(4,5)P2 around the uptake site is necessary to 
then allow actin disassembly and closure of the phagocytic 
cup. In addition, closure of the phagocytic cup requires Dd5P4, 
the D. discoideum homolog of the phosphatase OCRL, which 
dephosphorylates PI(3,4,5)P3 into PI(3,4)P2 (96–98). Extensive 
recycling of plasma membrane components, including adhesion 
molecules, is a common feature shared by D. discoideum and 
macrophages in the early phases of phagosome formation, and 
in both organisms this step is regulated by the WASH complex, 
an Arp2/3 activator (99–101).

Phagosome Maturation
After closure of the phagocytic cup, the ingested particle is found 
in a closed compartment termed the phagosome. Extensive 
proteomic analyses as well as more recent live microscopy 
experiments have demonstrated the extraordinary plasticity of 
this organelle and the high degree of conservation of the phago-
some maturation pathway between mammals and D. discoideum 
(8, 84). Phagosome maturation is a well-orchestrated series of 
events, which ensures killing and digestion of ingested bacteria 
(Figure  3). In a simplified view, Rab GTPases, notably Rab5 
and Rab7, act as the masterminds of phagosome maturation by 
sequentially recruiting effectors involved in the various matu-
ration steps [for an extensive review, see Ref. (102)]. In mac-
rophages, Rab5 and its effectors are responsible for docking and 
fusion of endocytic compartments with the nascent phagosome 
and for acquisition of early phagosomal markers (103, 104). 
Subsequently, Rab7 ensures fusion with late-endosomal/lysoso-
mal compartments and thus delivery of the lysosomal digestive 
content into the phagosome (104, 105). Rab GTPases are highly 
conserved at the protein sequence level between mammals and 
D. discoideum; indeed, this amoeba has homologs of most mam-
malian Rab GTPases that have been reported to be associated 
with phagosomes (102). D. discoideum Rab7 is recruited as early 
as 1–3  min after phagosome closure and regulates delivery of 
lysosomal proteins (106, 107). The localization and function of 
D. discoideum Rab5 have not been reported.

Recruited within minutes to the phagosome, the H+-vacuolar 
ATPase (V-ATPase) is the main agent of acidification and pumps 
protons inside the phagosome thanks to ATP hydrolysis (108). 
By creating a proton gradient, the V-ATPase is a crucial complex 
not only for the killing and digestion of bacteria but also for the 
progression of the maturation program. Notably, the proton 
gradient is necessary for proper delivery and activity of lysosomal 
enzymes, as well as for the function of ion transporters, involved 
in poisoning by or deprivation of metals (detailed below). 
The V-ATPase has been shown to be delivered by fusion with 
lysosomal vesicles or tubules in D. discoideum and macrophages, 
respectively (108–110). Rapid acidification of the compartment 
ensues, with the lowest pH reached between 10 and 30 min after 
phagosome formation, depending on the measuring method 
(93, 111). In contrast to macrophages, whose phagosomes were 
reported to reach a pH of 4.5–5, D. discoideum phagosomes are 
more acidic, with a pH as low as 3.5–4 (111–113).

Although unprocessed antigens have been shown to be regur-
gitated from late-endosomal compartments in dendritic cells to 
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FigURe 3 | Phagosome maturation in Dictyostelium discoideum. Bacteria are recognized and sensed by various phagocytic and/or signaling receptors. This 
triggers signaling cascades that allow actin polymerization and deformation of the membrane to engulf the particle. After closure of the phagosome, bacteria are 
enclosed in an early phagosome, which gradually loses its actin coat and is characterized by the presence of Rab5. As early as 1 min after uptake, Rab7 is recruited 
to the phagosome, enabling fusion with lysosomes. Meanwhile, phagocytic receptors and plasma membrane proteins are recycled to the cell surface through actin 
polymerization induced by the WASH complex through Arp2/3 activation. The proton pump vacuolar ATPase (V-ATPase) is also acquired early in the maturation, 
ensuring rapid decrease of the luminal pH. Lysosomal enzymes, comprising proteases, are acquired in subsequent waves of delivery and function at low pH to 
degrade bacterial components. After about 40 min, the V-ATPase and lysosomal enzymes are recycled by the WASH complex in separate waves of recycling. 
Finally, non-digested bacterial remnants are expelled by exocytosis.
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allow antigen uptake by other MPS cells (114, 115), in general, 
the acidic phagosome of MPS cells is thought of as a dead-end 
for ingested bacteria. In contrast, the acidic D. discoideum phago-
some matures into a postlysosome. The V-ATPase and lysosomal 
enzymes were shown to be retrieved in several subsequent waves 
of recycling mediated by the WASH complex, which drives 
local actin polymerization (116, 117). The WASH complex is a 
nucleation-promoting factor necessary for the activation of the 
Arp2/3 complex and actin polymerization in both mammals and 
D. discoideum (99, 100, 117). During retrieval of the V-ATPase, 
the phagosome reaches its neutral pH, and progressively acqui-
res the postlysosomal markers vacuolin A and B, homologs of 
the mammalian lipid raft-associated flotillins (118–120). The 

postlysosome is also characterized by the presence of an actin 
coat and the actin-binding protein coronin (118). This compart-
ment then fuses with the plasma membrane in a mechanism akin 
to exocytosis to expel its non-digested materials. Interestingly, 
this process is reminiscent of exocytosis of secretory lysosomes in 
mammalian cytotoxic cells of the immune system (121). In mam-
mals, lysosomes were shown to fuse with the plasma membrane 
upon increase of cytosolic Ca2+ concentration. In D. discoideum, 
Ca2+ was also shown to be involved in exocytosis, with mucolipin, 
a Ca2+ transporter, involved in regulating this process. Mucolipin 
is thought to pump Ca2+ inside postlysosomes, thereby inhibit-
ing fusion with the plasma membrane by decreasing local Ca2+ 
concentration (122).
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Microbial Manipulation of D. discoideum 
Phagocytosis
Certain intracellular bacterial pathogens are known for sub-
verting phagosome maturation to prevent the formation of an 
unfriendly bactericidal compartment and to enable replication 
within the host cell. L. pneumophila, a Gram-negative bacte-
rium that causes Legionnaire’s disease, is able to arrest early 
phagosomal maturation. In fact, the V-ATPase and other early 
endocytic markers are not delivered to the Legionella-containing 
vacuole (LCV) in either D. discoideum or macrophages (123). 
The endoplasmic reticulum (ER) is recruited in proximity to and 
fuses with the LCV, which becomes enriched in ER markers such 
as calnexin and calreticulin. This enrichment of ER markers is 
a consequence of a major strategy used by L. pneumophila to 
proliferate inside the host cell, which is termed identity theft and 
consists of changing the identity of its compartment to resemble 
the ER by recruiting different GTPases and PIPs (124, 125). For 
example, thanks to several bacterial effectors secreted through 
its type 4 secretion system, this pathogen is able to change the 
PIP composition of the phagosome by notably acquiring PI(4)P, 
a PIP normally associated with the trans-Golgi, ER, and plasma 
membrane (47). Other proteins involved in PIP dynamics and 
phagosome maturation, such as phosphatidylinositol 3-kinase 
and Dd5P4 have been shown to restrict L. pneumophila growth 
in D. discoideum (45, 46). D. discoideum has been used success-
fully to isolate and characterize the proteome of LCVs (44, 126). 
These studies have highlighted the importance of ER/Golgi small 
GTPases, such as Arf1 and Rab1, in gradually modifying the 
identity of the LCV. Rab8, a trans-Golgi-associated Rab GTPase, 
has also been detected at the LCV membrane and been shown 
to play a role in the association of SidC, a bacterial effector that 
mediates ER recruitment (44). Interestingly, Hoffmann and 
colleagues compared the LCV proteomes purified from murine 
macrophages and D. discoideum and uncovered that, if only 
considering proteins with conserved roles in these two organ-
isms, about 50% of LCV-associated proteins were found in both 
organisms (126). These include the aforementioned Arf1, Rab8, 
and Rab1, as well as proteins involved in lipid metabolism, sug-
gesting that L. pneumophila uses similar mechanisms to replicate 
in D. discoideum and macrophages and further corroborating 
the case that D. discoideum is an excellent model to study  
L. pneumophila infection.

Like Legionella pneumophila, albeit with completely differ-
ent strategies, Mycobacterium spp. manipulate the phagosome 
maturation pathway. In fact, Mycobacterium tuberculosis, the 
causative agent of tuberculosis, and Mycobacterium marinum, 
a closely related mycobacterium that infects frogs and fish, 
prevent acquisition of the V-ATPase in macrophages (127). 
This was confirmed in D. discoideum, where it was shown that  
M. marinum is able to prevent accumulation of the V-ATPase 
and of cathepsin D (48). Recently, it was proposed that the 
WASH complex plays a role in preventing association of the 
V-ATPase with the mycobacteria-containing vacuole (MCV) by 
inducing polymerization of actin around the MCV, which prob-
ably prevents fusion with acidic vesicles. This mechanism was 
first studied in D. discoideum, but further confirmed in human 
macrophages with both M. tuberculosis and M. marinum (128). 

Of note, the mechanism of escape of cytosolic M. marinum from 
the host cell, termed ejection, and of cell-to-cell spreading has 
been well characterized and studied using D. discoideum as 
a host model [(49); reviewed in Ref. (129, 130)]. Interestingly,  
D. discoideum has also been extensively used as a model phago-
cyte to screen for new mycobacterial virulence factors (131–134).

MiCROBiCiDAL PHAgOSOMe

Dictyostelium discoideum and macrophages employ conserved 
strategies to kill bacteria. As discussed previously, the V-ATPase 
has a central role in phagosome acidification; however, a low 
pH is not sufficient per  se to kill bacteria. In fact, the phago-
some acquires a series of proteases, hydrolases, lysozymes, and 
antimicrobial peptides necessary to breakdown several bacterial 
components or disrupt membrane integrity. Moreover, microbes 
can be poisoned and killed by transport of certain metals or by 
the production of ROS inside the compartment. Furthermore, 
metals can be pumped out of the phagosome to prevent bacterial 
growth. These bacterial-control strategies will be described in 
this section.

Lysozymes and Lysosomal enzymes
Lysozymes, glycosidases that digest the peptidoglycan layer 
present in the cell wall of bacteria, belong to the Aly family in 
D. discoideum (135). Upregulation of lysozyme expression differs 
depending on the bacteria used as food. D. discoideum grown on 
Gram-positive bacteria upregulate AlyA, AlyB, AlyC, and AlyD 
whereas growth on Gram-negative bacteria leads to an increase 
in AlyL expression (136).

Lysosomal enzymes comprise several classes of enzymes 
involved in hydrolysis of sugar groups, such as mannosidases, 
or peptide bonds, such as proteases, and have been involved 
extensively in resistance to certain pathogens as well as bacterial 
killing in MPS cells. For instance, cysteine and serine cathepsins 
have been implicated in resistance to and killing of Staphylococcus 
aureus in neutrophils and macrophages (137, 138). More recently, 
M. tuberculosis was shown to downregulate expression and inhibit 
activity of cysteine proteases in macrophages, thus ensuring its 
replication (139). Cathepsin D, an aspartic protease, was also 
involved in resistance to Listeria monocytogenes, an intracellular 
food-borne pathogen (140).

Two main classes of lysosomal enzymes, bearing differ-
ent posttranslational modifications, have been characterized 
in D. discoideum. The first class includes α-mannosidase, 
β-glucosidase, and cathepsins and is modified with mannose-
6-phosphomethyldiester and/or mannose-6-sulfate, also known 
as common antigen-1 (141, 142). The second class of enzymes 
contains an N-acetylglucosamine-1-phosphate and comprises 
cysteine proteases (143). These different classes of enzymes reside 
in different vesicles at the steady state level and are recruited to 
phagosomes in a sequential manner, with first a wave of cysteine 
proteases followed by enzymes bearing the mannose-6-sulfate 
modification (84, 144).

Although lysosomal enzymes appear to be involved in bacte-
rial killing in D. discoideum as in macrophages, direct evidence 
is lacking. Deletion of the cathepsin D gene is not sufficient to 
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abolish growth on the food bacterium Klebsiella (142). Several 
D. discoideum mutants impaired in lysosomal enzyme trafficking 
and/or activity have been characterized including strains lacking 
WshA, a subunit of the WASH complex involved in lysosomal 
enzyme recycling (117), LvsB, a protein involved in restricting 
heterotypic fusion of early endosomes with postlysosomal 
compartments (145), and TM9 protein A, which is involved in 
the sorting of glycosidases, cathepsins, and lysozymes (146). 
Interestingly, these mutants exhibit growth defects specific 
to certain subsets of bacterial species (117, 145–148). These 
data suggest that different classes of lysosomal enzymes might 
play redundant roles, that they are not the sole killing strategy 
employed by D. discoideum, and that specific mechanisms may 
be used depending on the encountered bacteria.

Reactive Oxygen Species
Reactive oxygen species are key components of cell-autonomous 
defenses of MPS cells and function as antimicrobial effec-
tors (149) as well as signaling molecules that regulate NF-κB  
(150, 151), autophagy (152), cytokine secretion (153), inflamma-
some activation (154), and apoptosis (155). ROS are implicated 
in the regulation of pH within phagosomes and the production 
of antigenic peptides in dendritic cells (156–158). ROS have also 
been implicated in the regulation of cytoskeleton dynamics and 
chemotaxis (159, 160). The major source of ROS in MPS cells is the 
NADPH oxidase (NOX) 2. Depending on its localization, NOX2 
generates superoxide by transferring an electron from cytosolic 
NADPH to O2 in either the extracellular space or the lumen of 
the phagosome. Subsequent reactions convert superoxide into 
additional ROS. Superoxide dismutase catalyzes its conversion to 
hydrogen peroxide, which in turn reacts with Fe2+ in the Fenton 
reaction to generate hydroxyl radicals or with Cl− to produce 
hypochlorous acid via myeloperoxidase (161–163).

NOX2 is a heterodimer comprising the transmembrane 
proteins gp91phox/Nox2, the catalytic subunit, and p22phox, the 
regulatory subunit. NOX2 activation occurs downstream of 
extracellular receptors including integrins and Fc receptors 
and is coupled with phagocytosis. Activation requires three 
additional subunits, p67phox/neutrophil cytosol factor (Ncf) 2, 
p40phox/Ncf4, and p47phox/Ncf1, which form a ternary complex 
in the cytosol that is recruited to membrane-localized NOX2 
by the small GTPases Rac1 and 2 (161–163). Mutations in 
NOX2 subunits cause chronic granulomatous disease (CGD), 
a condition that makes patients susceptible to recurring bacte-
rial and fungal infections and demonstrates the importance of 
the NOX2-generated oxidative burst in the immune response  
(164, 165). Mitochondrial ROS production activated downstream 
of TLR signaling also contributes to antimicrobial mechanisms 
(166, 167).

Because ROS can damage host and microbe alike, ROS 
production and localization are tightly regulated, and MPS cells 
express ROS detoxifying enzymes such as superoxide dismutases 
(SODs), catalases, and peroxiredoxins to prevent self-damage. 
Microbes that persist inside the phagosome have mechanisms 
to minimize oxidative stress. These include expression of robust 
systems to maintain internal redox homeostasis (168), secretion 
of SODs and catalases to detoxify their compartment (149, 169), 

and deployment of effectors that inhibit NOX2 activation and/or 
delivery to the phagosome (170–173).

The D. discoideum genome encodes three catalytic NOX 
subunits: NoxA and NoxB, which are homologs of gp91phox/
Nox2, and NoxC, which is a homolog of Nox5 (174–176). It also 
encodes one homolog of p22phox, CybA, and NcfA, a homolog of 
the cytosolic activating factor p67phox/Ncf2 (174, 175). RNAseq 
data indicate that NoxA, CybA, and NcfA are expressed during 
growth while NoxB and NoxC are mainly expressed during deve-
lopment (69, 174). However, long-term growth on Klebsiella can 
cause upregulation of NoxB in growing cells (136). Interestingly, 
D. discoideum expresses multiple SOD and catalase homologs 
(177–179) and exhibits a high resistance to oxidative stress (180), 
which suggests that it encounters internally and/or externally 
generated ROS regularly.

Whether ROS contribute to cell-autonomous defenses during 
the growth phase of D. discoideum is not clear. Mutants lack-
ing noxA or both noxA and noxB exhibit no growth or killing 
defects when grown on Klebsiella (148, 174). This lack of a defect 
might be a consequence of redundant killing mechanisms or of 
challenge with a bacterium that is easily killed. Intriguingly, a 
D. discoideum mutant lacking the Xpf nuclease, a component 
of DNA damage repair machinery, accumulates more mutations 
when grown on a range of bacteria including Klebsiella than 
when grown axenically in media (181). One possible explanation 
is that Xpf is required to repair DNA damaged by ROS generated 
in response to bacteria.

Excessive ROS production in growing cells due to a deletion 
of a surface-localized SOD causes defects in chemotaxis and cell 
motility via sustained Ras activation (182, 183). The authors 
hypothesize that the chemotaxis defect prevents the inclusion of 
the cell in the multicellular stage and thus prevents propagation 
of the potentially mutagenized genome. It is tempting to speculate 
that excessive ROS production in response to a resistant microbe 
causes the same effect and inhibits the inclusion of an infected cell 
in the multicellular stages. Although the context is different, this 
“self-sacrifice” might be analogous to ROS-induced apoptosis of 
infected macrophages (155, 184).

Reactive oxygen species have functions during development. 
Extracellular ROS scavengers inhibit aggregation (185), and 
mutations in the individual NOX subunit genes, noxA, noxB, 
noxC, or cybA, or in the development stage-specific catalase gene, 
catB, cause defects in fruiting body formation when developed 
under axenic conditions (174, 186). These results indicate a sign-
aling role for ROS. When developed after feeding on bacteria, a 
noxABC− triple mutant exhibits increased bacterial contamina-
tion of fruiting bodies compared with wild type (187). Thus, ROS 
also have an immunity function.

One possible cause of the immunity defect in the noxABC− 
mutant is the abrogation of DNA extracellular trap (ET) forma-
tion (Figure  1). The slug stage can persist for multiple days, 
during which it migrates through a dangerous melange of infec-
tious bacteria and fungi that could decrease and/or prevent spore 
production. Phagocytic flux is limited in non-feeding developed 
cells (188). Protection from infection and intoxication appears to 
be mediated in part by a subpopulation of cells (<1%) that retain 
the capacity for phagocytosis (77). These so-called sentinel cells 
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(S cells) are motile within the slug and phagocytose bacteria and 
toxins until they are eventually shed. Compared with the other 
cell types in slugs, S cells are enriched for tirA mRNA, and S cells 
from tirA− mutants have a decreased capacity to kill bacteria (77). 
In response to bacteria or LPS, S cells secrete mitochondrially 
derived ETs via a mechanism that requires both TirA and NOX-
generated ROS, and increased contamination of fruiting bodies 
correlates with decreased ET production (187). Binding of the 
TLR2 TIR domain with Nox2 during M. tuberculosis infection 
of macrophages has been reported (189). How NOX and TirA 
fit into the pathway and whether they interact awaits further 
examination, as do the questions of whether S cells kill intracel-
lular bacteria and, if so, whether TirA and NOX are involved. ET 
formation during the growth phase of the D. discoideum life cycle 
has not been observed.

First discovered in neutrophils and named neutrophil extra-
cellular traps (NETs), ETs have been observed in numerous 
immune cell types including macrophages (190–193). ETs com-
prise antimicrobial peptides, proteases, and signaling molecules 
bound to a meshwork of DNA released from the nucleus or 
mitochondria [(190); reviewed in Ref. (194)]. The mechanisms 
by which ETs kill extracellular bacteria and/or prevent their 
dissemination are not well understood. Neutrophils from CGD 
patients fail to generate NETs (195), although NOX-independent 
mechanisms have also been described (196–199), some of which 
utilize ROS from mitochondria (200). ET production by S cells 
further illustrates the conservation of cell-autonomous defense 
mechanisms in D. discoideum, a precursor to the specialized 
phagocytes of the vertebrate immune system (201).

Divalent Metals
Maintaining the concentration of divalent trace metals such as 
iron, manganese, zinc, and copper is essential for every living 
organism to preserve metabolism and cell growth. Metalloproteins 
with trace metals as cofactors play a role in many important 
cellular functions such as signaling, respiration, transcription, 
translation, and cell division. Tight regulation of divalent metals 
is necessary: low levels of iron and manganese have detrimental 
metabolic effects, whereas zinc and copper are toxic at high 
concentrations.

For intracellular bacterial pathogens, trace metals are an 
important micronutrient resource with a role in many metabolic 
processes and are, as a consequence, essential for intracellular 
growth. Host cells such as macrophages have developed strate-
gies to control growth of intracellular bacteria by sequestering 
metals such as iron and manganese (i.e., metal deprivation 
or nutritional immunity) or by pumping toxic metals inside 
the pathogen-containing compartment [i.e., metal poisoning; 
reviewed in Ref. (202–204)]. Bacteria have established ways to 
counteract metal deprivation or poisoning by expressing sidero-
phores (i.e., small molecules with high affinity for the relevant 
metal) and uptake systems or by upregulating efflux systems such 
as P-type ATPases (203).

Consequently, the phagosomal concentration of essential 
trace metals varies during phagocytosis and infection with 
bacterial pathogens. Wagner et al. elegantly measured the metal 
concentration in the phagosome upon macrophage activation 

with inflammatory cytokines and upon infection with M. tuber
culosis or Mycobacterium avium [(205); reviewed in Ref. (206)]. 
At 1-h post infection (hpi), the early phagosome was shown to 
be enriched in sulfur and chloride and depleted of calcium and 
potassium. At a later stage (24 hpi), the MCV harbored zinc, 
iron, and calcium at high concentrations. In addition, activa-
tion of infected macrophages with cytokines leads to a large 
increase in zinc and copper and a depletion of iron and chloride 
(205). Importantly, the metal concentration in the phagosome 
is very likely coupled to the proton gradient. Acidification of 
the phagosome is achieved by the combined actions of the 
V-ATPase and the Hv1 H+-channel (207). To counter-balance 
the electrogenic H+-gradient across the phagosomal mem-
brane, Cl− is imported into the phagosome by transporters of 
the CFTR (208) and CLC family [(209); reviewed in Ref. (210)], 
respectively [reviewed in Ref. (206)]. Lysosomal acidification is 
also facilitated by the efflux of cations (211).

Metal Poisoning
Zinc serves as a cofactor for more than 3,000 metalloproteins 
and is consequently the second most abundant trace element 
after iron. Zinc is redox neutral and has many roles in various 
biological processes as structural, catalytic and signaling com-
ponent [reviewed in Ref. (212)]. It is essential for macrophage 
antimicrobial functions and controls among other processes 
monocyte chemotaxis, phagocytosis, and cytokine produc-
tion [reviewed in Ref. (204)]. Intracellular zinc homeostasis 
is tightly regulated. 50% of zinc is present in the cytoplasm, 
whereas 30–40% can be found inside the nucleus and 10% 
is bound to membranes [reviewed in Ref. (212)]. To keep 
the cytosolic concentration of free zinc low (i.e., in the low 
nanomolar range), it is either bound to metalloproteins or met-
allothioneins or sequestered into membrane-bound organelles. 
Zinc is transported through biological membranes by various 
zinc transport proteins that are classified as zinc transporters 
(ZnTs, also cation diffusion facilitators) or Zrt-, Irt-related 
proteins (ZIPs) [reviewed in Ref. (212)]. Whereas ZnTs mediate 
the zinc transport from the cytosol to either organelles or the 
extracellular space, the ZIP family mediates transport into the 
cytosol from the extracellular space or organelles [reviewed 
in Ref. (212)]. Besides ZnT and ZIP transporters, various 
other proteins have been shown to mediate zinc transport, 
such as calcium channels (213), mucolipin-1 in interaction 
with TMEM163 (214), and members of the NRAMP family 
[reviewed in Ref. (215)].

Eleven putative zinc transporters have been previously identi-
fied in D. discoideum and categorized by functional analogy to 
mammalian zinc transporters into different subgroups (216). 
Three of the 11 were classified as members of a “ZIP subfamily” 
and 4 as members of an “LZT-like subfamily” (216). These two sub-
families correspond to the combined ZIP I and ZIP II subfamilies 
and the LIV-1 subfamily of mammalian ZIPs, respectively (212). 
Importantly, the members of the LZT-like family were named 
ZntA–ZntD even though they were classified as ZIP transport-
ers, and four potential ZnT transporter homologs encoded in the  
D. discoideum genome were grouped by the authors as the “Cation 
efflux subfamily” (216).
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To demonstrate that the proteins initially named ZntA–ZntD 
belong to the ZIP family of zinc transporters and are not ZnTs, 
we generated two simplified phylogenetic trees comparing the 
sequences of various D. discoideum zinc transport proteins with 
zinc transporters of other taxonomic groups such as amoebozoa, 
fungi, plantae, and metazoa. These taxonomic groups were 
chosen based on previously published phylogenetic studies 
(176, 217). According to our phylogenetic tree of ZIP trans-
porters (Figure  4) an unequivocal classification of the seven  
D. discoideum ZIP-like proteins (Zpl) into ZIP I, ZIP II, and LIV-1 
subgroups by analogy to the human classification, as was done 
previously (216), is not possible. Three of the seven ZIP trans-
porters are more similar to each other and cluster in one group 
(ZplA–C) that is more related to the ZIP transporters of fungi and 
ZIP II transporters of mammals. The three proteins ZplD–ZplF 
are more similar to proteins of Amoebozoa, Stramenopiles,  
and Plantae. ZplG is more related to the human ZIP I subfamily.

Similarly, our phylogenetic tree of ZnT transporters clearly 
shows that the four proposed D. discoideum zinc transporters 
identified based on their homology to ZnTs indeed belong to 
this family (Figure 5). Consequently, we propose renaming the 
various transporters as outlined in Table  1 according to their 
respective family names (Zpl or ZnT). The D. discoideum proteins 
ZntC and ZntD are likely homologs of the human proteins ZNT6 
and ZNT7, which are located in the early secretory pathway and 
contribute to the activation of zinc-containing enzymes (220). 
Whereas ZntA does not have a close mammalian homolog, the 
closest human relatives of ZntB are the early endosomal protein 
ZNT10 and the plasma membrane protein ZNT1 (212).

At the host–pathogen interface, zinc deprivation (221) or zinc 
poisoning are strategies of mammalian professional phagocytes 
to restrict intracellular bacteria growth. Both processes are prob-
ably highly dependent on zinc transporter proteins (222, 223) 
During M. tuberculosis infection, it was proposed that free zinc 
is released from metallothioneins via the oxidative burst that is 
induced upon infection and, consequently, zinc poisoning was 
proposed as “a new chapter in the host–microbe arms race” 
(224). The contributions of zinc transporters to cell-autonomous 
defenses of macrophages and D. discoideum await elucidation.

In contrast to zinc, copper is redox active and cycles under 
physiological conditions between the two oxidative states Cu+ 
(i.e., cuprous) and Cu2+ (i.e., cupric). Consequently, copper serves 
as an ideal cofactor for electron transfer and redox reactions 
such as respiration and detoxification of free radicals [reviewed 
in Ref. (225)]. Proteins involved in copper uptake, sequestra-
tion, and trafficking regulate copper homeostasis in eukaryotic 
cells [reviewed in Ref. (226)]. Copper uptake into the cytosol is 
mediated by the copper permease CTR1 [reviewed in Ref. (227)]. 
Similar to zinc, copper belongs to the so-called “death metals” and 
is toxic at high concentrations. Therefore, by analogy to zinc, low 
copper concentrations in the cytosol are maintained by metal-
lothioneins. Directly after its uptake, chaperones such as ATOX1, 
CCS, and COX17 are involved in copper trafficking inside the 
cytoplasm (228).

Copper is imported into the trans-Golgi network by the 
action of two P-type ATPases: ATP7A and ATP7B. ATP7A is also 
located at the plasma membrane, where it mediates copper efflux 

from the cytosol to the extracellular space, and at the phagosomal 
membrane, where it imports copper from the cytosol into the 
phagosomal lumen [reviewed in Ref. (226, 228)].

Copper has many antimicrobial properties. Its ability to 
switch between two oxidation states supports the production of 
hydroxyl radicals via the Fenton- and the Haber–Weiss reactions 
[reviewed in Ref. (229)]. In addition, copper is able to disrupt the 
structure of proteins, and Cu2+ might be able to disrupt Fe–S clus-
ters. In macrophages, copper transport proteins such as ATP7A 
that mediate Cu2+ import into the phagosome are induced upon 
infection and stimulation with inflammatory cytokines (230). 
Bacteria have evolved strategies to overcome high copper con-
centrations. For instance, a multi-copper oxidase is required for 
copper resistance of M. tuberculosis, probably by oxidizing toxic 
Cu2+ in the periplasm (231).

The D. discoideum genome encodes one Ctr-type copper 
permease (i.e., p80) that, by analogy to mammalian cells, should 
mediate copper uptake into the cytosol, and three putative copper-
translocating P-type ATPases that were annotated as atp1 (DDB_
G0273675), atp2, the ortholog of ATP7A (DDB_G0284141), 
and atp3 (DDB_G0269590) (232, 233). ATP1 was induced 
upon incubation of D. discoideum with copper salts, leading to 
the conclusion that ATP1 is responsible for copper tolerance in  
D. discoideum (233). Expression of ATP7A and ATP3 was 
increased upon bacteria ingestion and decreased when bacteria 
and copper salts were added together, arguing for a possible role 
in copper trafficking during phagocytosis and killing of bacteria. 
The increased expression of p80 only upon incubation with 
bacteria suggests that copper is needed for bacterial killing (233).

Nutritional Immunity
In contrary to metal poisoning, nutritional immunity does not 
kill the bacteria but restricts its intracellular growth. During 
infection, pathogens need to acquire essential nutrients from the 
host such as amino acids, lipids, sugars, and, importantly, transi-
tion metals. Thus, to restrict their availability to the pathogen, 
these metals are depleted from the phagosome. The best studied 
metals that are sequestered by the host are iron and manganese 
(206, 234–236).

Nutritional immunity of transition metals is controlled in 
part by the Natural Resistance-Associated Macrophage Protein 
(i.e., NRAMP) family of divalent-metal transmembrane trans-
porters (237–239). The NRAMP family is widely represented 
from bacteria to mammals (240, 241), as well as in plants (242) 
and yeast (243). The family members play an important role in 
intracellular metal-ion homeostasis and are able to transport a 
broad range of transition metals (215, 244).

In mammals, two NRAMP members have been identified: 
NRAMP1 [(SLC11A1) (237)] and NRAMP2 [(SLC11A2, DMT1, 
or DCT1) (241)]. Between these proteins, 63% of residues are 
identical and 15% are highly conservative substitutions, and they 
share very similar secondary structures with hydrophobic cores 
of 10 transmembrane segments (245). Regarding divalent-metal 
affinity, NRAMP1 has a clear preference for Mn2+, Fe2+, and Co2+ 
(246), whereas NRAMP2 transports those three metals and also 
Zn2+, Cd2+, Cu2+, Ni2+, and Pb2+ (241). NRAMP1 expression is 
restricted to late endocytic compartments (i.e., endo-lysosomes) 
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of professional phagocytes such as macrophages and neutrophils 
(247). NRAMP2 is ubiquitously expressed in all mammalian 
cells and is located at the plasma membrane (248). In addition, 
NRAMP2 was observed at the apical membrane of enterocytes as 
well in recycling endosomes (249). Mutations in nramp2 lead to 
severe microcytic anemia related to an iron absorption deficiency 
(250, 251). Both NRAMP1 and NRAMP2 might be involved 
in neurodegenerative diseases such as Parkinson’s (252, 253). 
NRAMP1 contributes to the resistance to intracellular bacterial 
infection. Indeed, depletion of NRAMP1 leads to an increased 
susceptibility of mice to several intracellular pathogens such as 

Mycobacterium species, Leishmania donovani, and Salmonella 
species (237, 254–259) by impairing phagosomal acidification 
and reducing fusion with the lysosomes (260). In human, nramp1 
polymorphic variants are associated with susceptibility to tuber-
culosis (261, 262) or leprosy (263).

Although it is accepted that NRAMPs depend on a V-ATPase-
generated proton gradient to drive metal transport (264), the 
direction of metal transport at the phagosomal membrane 
remains controversial. Whether NRAMP1 is an antiporter or 
a symporter and whether NRAMP1 imports or depletes met-
als from the phagosome are unclear. On the one hand, some 
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TABLe 1 | Proposed nomenclature of zinc transporters in Dictyostelium 
discoideum.

gene iD gene product Proposed 
name

DDB_G0281921 Zrt-, Irt-related protein (ZIP) zinc  
transporter protein, zinc/iron permease

zplA  
(ZIP-like A)

DDB_G0271672 ZIP zinc transporter protein, zinc/iron 
permease

zplB

DDB_G0273091 ZIP zinc transporter protein, zinc/iron 
permease (there is a gene duplication in  
AX3 and AX4, but not in AX2)

zplC1 and 2

DDB_G0269326 
(previously zntD)

Zinc/iron permease, zinc transporter zplD

DDB_G0286049 
(previously zntC)

Zinc/iron permease, zinc transporter zplE

DDB_G0286345 
(previously zntB)

Zinc/iron permease, zinc transporter zplF

DDB_G0268426 
(previously zntA)

Zinc/iron permease, zinc transporter zplG

DDB_G0283629 Putative zinc transporter, cation  
diffusion facilitator (CDF) family protein

zntA (zinc 
transporter A)

DDB_G0282067 Putative zinc transporter, CDF family protein zntB
DDB_G0269332 Putative zinc transporter, CDF family protein zntC
DDB_G0291141 Putative zinc transporter, CDF family protein zntD
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authors suggest that NRAMP1 acts as an antiporter of protons 
and delivers cation metals into the phagosome, contributing to 
the generation and accumulation of toxic free radicals involved 
in bacteria killing (265–268). On the other hand, the hypothesis 
that NRAMP1 operates as a symporter of protons to efflux met-
als from the phagosome to the cytosol is better supported by 
the literature and is consistent with the function of its paralog 
NRAMP2. This is in line with the current hypothesis of nutri-
tional immunity in which pathogen access to metals is restricted 
(246, 269). These two different scenarios are nicely described in 
previous reviews (215, 244, 270).

The D. discoideum genome encodes two NRAMP pro-
teins called NRAMP1 (DDB_G0276973) and NRAMPB 
(DDB_G0275815, formerly NRAMP2). NRAMP1 is an 
archetypical NRAMP protein, orthologous to NRAMP1 in 
mammals, whereas NRAMPB is not the ortholog of NRAMP2 
in mammals but rather is more closely related to the prototypical 
NRAMP from bacteria (271). Both transporters are in differ-
ent subcellular compartments; however, they both co-localize 
with the V-ATPase. NRAMP1 localizes to macropinosomes and 
phagosomes with the V-ATPase, and NRAMP1 also localizes 
to the Golgi region (272). NRAMPB is exclusively found in 
the membrane of the contractile vacuole (CV) (273), which is 
enriched for the V-ATPase (108, 274) but has a neutral pH. Single 
nramp1 or B null mutants exhibit slower growth than wild type 
under conditions of iron depletion while a double nramp1 and B 
mutant, but not single mutants, is more resistant than wild type 
to iron overload (273). These results suggest that NRAMPB and 
NRAMP1 act non-redundantly to regulate iron homeostasis and 
that the CV serves as a transient storage compartment for metal 
cations (Figure 6). During infection, an nramp1 mutant strain 
is more permissive for intracellular growth of Mycobacterium 
species and L. pneumophila (272), and nrampB null or 
nramp1 and B double null mutants are more permissive for L. 

pneumophila growth (effects of nrampB deletion on the growth of 
Mycobacterium species have not been reported) (273). Moreover, 
L. pneumophila inhibits the recruitment of the V-ATPase, which 
attenuates the antimicrobial effects of NRAMP1 by prevent-
ing its proton-driven iron transport activity (46). A recent 
study demonstrates that, in addition to having an impact on 
phagosomal iron concentration, both NRAMP1 and NRAMPB 
influence the translocation efficiency of F. noatunensis from the 
bacteria-containing compartment into the cytosol, possibly due 
to alterations in phagosome maturation (53). This new insight 
into NRAMP function is in line with the results obtained for M. 
tuberculosis infection in macrophages, in which nramp1 deletion 
induced a higher level of escape from its vacuole (275).

As described earlier, the directionality of the metal trans-
port mediated by NRAMP1 is still poorly understood. Studies 
in D. discoideum suggest transport into the cytosol. In assays 
with purified phagosomes, iron export was NRAMP1- and 
ATP dependent (272). This observation is consistent with 
NRAMP1 acting as a symporter that uses a V-ATPase-generated 
proton gradient to transport iron out of the phagosome. Using 
the iron-chelating fluorochrome calcein, it was shown that 
NRAMP1 mediates iron efflux from macropinosomes in  vivo 
(271). In addition, to obtain better insight into the ion selectiv-
ity of NRAMP1, the authors used Xenopus oocytes expressing 
NRAMP1, NRAMPB, or rat DMT1/NRAMP2 (used as an 
internal control). Interestingly, it was shown that NRAMP1 
and DMT1 are able to transport Fe2+ and Mn2+ but not Fe3+ or 
Cu2+ in an electrogenic and proton-dependent manner, whereas 
NRAMPB transports only Fe2+, and this in a non-electrogenic 
manner independently from protons (271) (Figure 6).

AUTOPHAgY

As described earlier, phagocytosis is the major mechanism by 
which D. discoideum digests intracellular bacteria with the pur-
pose of nutrient acquisition. However, pathogenic microbes have 
evolved mechanisms to escape degradation within phagosomes 
(276). In D. discoideum, as in other eukaryotic phagocytes, bacte-
rial escape from the phagosome triggers a more stringent catabolic 
pathway named autophagy, which serves as an additional defense 
mechanism for the infected amoeba [a comprehensive review 
on autophagy in D. discoideum can be found in Ref. (277)]. The 
autophagic process by which intracellular pathogens and/or their 
damaged phagosomes are specifically recognized and digested is 
termed xenophagy.

The autophagy pathway consists of the formation, upon 
induction by various stresses such as oxidation, nutrient starva-
tion, or microbial infection, of a double-membrane cisterna, the 
phagophore, at multiple sites on the ER (36). During xenophagy, 
the membranes of the phagophore expand around the cytosolic 
bacterium and/or its damaged compartment to finally engulf 
them in a closed vacuole called the autophagosome, which, upon 
fusion with lysosomes, forms an acidic and degradative compart-
ment, the autolysosome, where bacterium and membranes are 
digested (Figure 7). Many of the proteins involved in the process 
of autophagosome formation (for instance, proteins forming 
part of the TORC1, the ULK/Atg1 and the phosphatidylinositol 
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FigURe 7 | Pathogenic bacteria are captured and digested by xenophagy. The autophagic machinery of Dictyostelium discoideum recognizes and captures 
cytosolic bacteria and/or their damaged phagosomes in autophagosomes, where they are digested upon fusion with lysosomes.

FigURe 6 | “Nutritional immunity” and homeostasis of transitional metals orchestrated by NRAMP transporters in Dictyostelium discoideum. NRAMP1 is localized at 
macropinosomes, phagosomes, and the Golgi network whereas NRAMPB is exclusively found in the membrane of the contractile vacuole. Both co-localize with the 
vacuolar ATPase (V-ATPase), but only NRAMP1 is dependent on the H+-gradient to efflux metals from the phagosome to the cytosol to restrict metal availability to 
the pathogen in the process referred to as “nutritional immunity.” NRAMPB, together with NRAMP1, contributes to iron homeostasis and regulates osmolarity inside 
the cell independent of the H+-gradient. Although the literature supports it as similar to the symporter NRAMP1, its role as symporter or antiporter still remains to be 
clearly defined.
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3-kinase complexes) are conserved between mammalian cells 
and D. discoideum (278). Interestingly, certain autophagy proteins 
conserved in both humans and D. discoideum are actually absent 
in Saccharomyces cerevisiae, making their study in this amoeba a 
perfect complement to those already performed in yeasts (279).

Specific receptor proteins are in charge of recruiting the 
phagophore membranes to the bacterial cargos or the remnants 
of the bacteria-containing compartment, which are tagged with 
ubiquitin for degradation. These receptors contain a ubiquitin-
binding domain, which recognizes the ubiquitinated material, 
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and an LC3-interacting region, which binds the phagophore 
membrane through interaction with LC3/Atg8, the main 
autophagosomal marker (280). In D. discoideum, the only selec-
tive autophagy receptor identified so far is p62/SQSTM1 (278), 
which has been shown to recognize the intracellular pathogens 
F. noatunensis and M. marinum (51, 52, 130). In addition, 
the mRNA levels of p62/sqstm1 increase upon infection of  
D. discoideum with both bacterial pathogens, which, in the 
case of M. marinum, has been demonstrated to be dependent 
on the membrane damage caused by the bacterium. However,  
M. marinum avoids its xenophagic killing by presumably 
blocking lysosomal fusion (51), a mechanism of intracellular 
mycobacterial survival that was previously proposed to occur 
in human dendritic cells during infection with M. tuberculosis 
(281). Other bacteria known to be captured and digested by 
xenophagy in this amoeba are S. enterica and S. aureus (54, 282).

In addition to pathogenic bacteria, D. discoideum xenophagy 
also fights against various S. cerevisiae strains (283). Mutant 
amoebae lacking the autophagy proteins Atg5, Atg6, Atg7, or 
Atg8 have a decreased capability of preying on this fungus. 
However, in atg1- amoebae, which cannot produce autophago-
somes, S. cerevisiae, Candida albicans, and Candida glabrata 
are surprisingly killed more efficiently. Koller and collaborators 
suggest, among other hypotheses, that the autophagic machin-
ery might be used by these yeasts to escape D. discoideum in a 
non-lytic manner, as already shown for M. marinum. During 
ejection from the D. discoideum cytosol, the wound generated 
by the egress of this bacterium through the plasma membrane 
is sealed with phagophores (130). One might speculate that the 
yeasts could egress from D. discoideum by autophagosome exo-
cytosis, a process already shown to occur in this amoeba during 
secretion of the spore differentiation factor 2 precursor AcbA 
(284). During this unconventional exocytosis, yeasts would be 
engulfed by autophagic membranes, which would then fuse 
with multivesicular endosomes before fusing with the plasma 
membrane to release the yeast. Amoebae lacking Atg1 might 
be unable to exocytose the yeast efficiently, thus trapping them 
and facilitating their death. Further investigations are required 
to validate this hypothesis.

CONSeRveD MiCROBiAL ReSTRiCTiON 
FACTORS: LeSSONS FROM MPS CeLLS

Studies conducted in MPS cells have identified numerous fac-
tors that are involved in the successful restriction of intracellular 
pathogens. Among these proteins are the glycan-binding galec-
tins, TNF receptor-associated factors (TRAFs), and tripartite 
motif-containing proteins (TRIMs), which are E3 ubiquitin 
ligases, the guanylate-binding proteins (GBPs), a family of 
cytokine-induced large GTPases, and finally the signal transduc-
ers and activators of transcription (STAT) proteins. D. discoideum 
expresses a family of lectins, the discoidins, that might function 
analogously to galectins. Its genome also encodes homologs of 
TRAFs, TRIMs, GBPs, and STATs. Based on their counterparts 
in MPS cells, the D. discoideum versions of these restriction fac-
tors are likely to have immune functions (Figure 8).

Discoidins
The galectins compose a family of 15 mammalian lectins with 
affinity for β-galactoside sugars that share a characteristic 
carbohydrate recognition domain (285). They have been clas-
sified into three groups according to their overall structure: 
the “prototype,” the “tandem-repeat,” and the “chimera-type.” 
Galectins are present in the cytosol (286) and nucleus (287) of 
cells but are also secreted extracellularly via an unconventional 
secretion mechanism that has remained elusive for decades 
(288). Galectins play a role in multiple biological processes, 
including angiogenesis (289), tumor growth (289), and inflam-
mation (290), due to their ubiquitous localization as well as the 
high diversity of self and non-self glycoconjugates that they rec-
ognize [for a review, see Ref. (291)]. Importantly, extracellular 
lectins bind to the complex glycocalyx coat at the cell surface, 
which enables the formation of specific microdomains known 
as the galectin lattice (292). The galectin lattice restricts the 
mobility of glycoconjugates in the plasma membrane and has 
important functions in signaling and endocytosis (293). Some 
galectins recognize the surface of various pathogens (294–297) 
and have been proposed to have a direct antibacterial effect 
(298, 299). These interactions involve galectin binding to spe-
cific bacterial species or clades according to the carbohydrates 
displayed on their cell wall or capsules. In addition to their roles 
in the extracellular milieu, galectins have recently emerged 
as general innate-immune factors against a wide range of 
intracellular infections. This newly described function appears 
not to involve the binding of cytosolic galectins directly to the 
surface of intracellular pathogens but rather to result from 
the recognition of self glycans present on the luminal leaflet 
of pathogen-containing vacuoles. These glycans become acces-
sible to the cytosolic lectins when membrane damage occurs, 
as shown during infection with S. enterica, L. pneumophila, and 
Yersinia pseudotuberculosis (300, 301). This process leads to the 
recruitment of the autophagy machinery (300) or of GBPs (301) 
to the compartment.

Although D. discoideum lacks galectin homologs, discoidins 
share molecular and biological characteristics with galectins. 
They form a family of four β-galactoside-binding and β-N-
acetylgalactosamine-binding lectins with two carbohydrate 
binding domains (302, 303), and recent genome analyses iden-
tified three potential discoidin-like proteins in D. discoideum 
(http://dictybase.org). Discoidins are expressed throughout 
the D. discoideum life cycle (69, 70). They are highly abundant 
in the cytosol and are also secreted despite their lack of a 
signal peptide (304). Early reports suggested a possible role 
in self-recognition during the multicellular cycle of D. discoi
deum (305), but it was later observed that mutants with much 
reduced expression of discoidins (1–2% of wild type) were able 
to form apparently normal fruiting bodies (306). In addition, 
subsequent studies were unable to confirm surface localization 
of discoidins (307, 308). Consequently, the role of dis coidins 
in self-recognition and adhesion during D. discoideum deve-
lopment has remained controversial for several decades. 
Whether discoidins bind bacteria and/or have a role in cell-
autonomous defenses similar to that of galectins is currently 
under investigation.
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FigURe 8 | Working model of TNF receptor-associated factor (TRAF), tripartite motif-containing protein (TRIM), guanylate-binding protein (GBP), and signal 
transducers and activators of transcription (STAT) proteins in Dictyostelium discoideum. Lessons learned from studies in macrophages allow us to envision a model 
according to which, upon bacterium uptake by D. discoideum, pathogen-associated molecular patterns (PAMPs), or danger-associated molecular patterns, shared 
by a broad range of microbes, are detected by membrane or cytosolic receptors. The perception of pathogens leads to the activation of transcription factors from 
the STAT family, which are translocated to the nucleus, where they bind the promoters of innate-immunity-related target genes encoding galectins, GBPs, NADPH 
oxidases, SQSTM1, TRIMs, and NDP52. In addition, membrane damage of the pathogen-containing vacuole (PCV) exposes pathogens to the cytosol and permits 
their decoration with K63-linked polyubiquitin chains deposited by members of the TRAF E3-ligase family. The K63-linked polyubiquitination chains serve as a cue 
for recruitment of the autophagy machinery via autophagy cargo receptors, for instance, SQSTM1 (p62 in D. discoideum). Moreover, K63 ubiquitin-tagged 
membranes also promote the recruitment of GBP oligomers to the pathogen surface and/or PCV membrane, which facilitates bacteria killing and clearance. 
Furthermore, members of the TRIM E3-ligase family are able to detect and bind directly to the invading pathogen and mediate its degradation by autophagy. The 
aforementioned factors are likely to function in an interrelated manner in human macrophages, and it remains to be explored whether the D. discoideum versions are 
involved in its cell-autonomous defenses.
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Ubiquitination
The significance of ubiquitination in the regulation of various 
aspects of mammalian immunity has been increasingly rec-
ognized in recent years. Ubiquitination is an omnipresent 
posttranslational modification in which the 76-amino acid 
ubiquitin is covalently linked to lysine (K) residues of substrate 
proteins. The stepwise enzymatic cascade of ubiquitination 

involves following three proteins: ubiquitin-activating enzyme 
(E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase 
(E3). Their activity results in the attachment of one ubiquitin 
to the substrate protein linked by an isopeptide bond between 
the ubiquitin C-terminus and the NH2 group of the substrate 
K residue. This is referred to as monoubiquitination. Repeated 
ubiquitination leads to the generation of a polyubiquitin chain, 
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FigURe 9 | Theoretical phylogenetic relations of TNF receptor-associated factor (TRAF) proteins. The sequence of human TRAF6 was used to search for TRAF 
homologs among the non-redundant sequences in selected organisms using NCBI PSI-BLAST. A score of 2 × 10−5 was used as a threshold. Similarities of the 
selected sequences were determined using BLOSUM62 matrix and E-INS-i strategy (219). Sequences were manually curated using AliView software [(218); http://
ormbunkar.se/aliview/], and the resulting final alignment was used to generate a neighbor joining phylogenetic tree (NJ, bootstrap 1,000×).
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known also as polyubiquitination. Ubiquitin contains seven K 
residues (K6, K11, K27, K29, K33, K48, and K63). Typically, the 
attachment of K48-linked polyubiquitin chains to substrate pro-
teins serves as a signal for their degradation by the proteasome. 
However, the other linkages and the C- or N-terminal linear 
linkage of ubiquitin moieties play roles in almost all aspects of 
plant and animal biology, such as growth, development, stress 
responses, and immunity. In mammals, K63-linked polyubiq-
uitination has been associated with a broad range of immunity-
related processes and particularly the activation of the NF-κB 
pathway, xenophagy and apoptosis (309). D. discoideum has 13 
genes encoding ubiquitin, and the TRAFs and TRIMs respon-
sible for K63-linked polyubiquitination are conserved from  
D. discoideum to mammals.

TNF Receptor-Associated Factors
TNF receptor-associated factors are a family of proteins primarily 
involved in the regulation of inflammation, antiviral responses, 
and apoptosis (309, 310). Currently, seven TRAF proteins have 
been characterized in humans: TRAF1–7. Typically, the TRAF 
proteins comprise an N-terminal RING domain that mediates 
the interaction between an E2 ligase and the substrate, followed 
by a zinc-finger domain, which may play a role in DNA, RNA, 
protein, and/or lipid binding, and a C-terminal TRAF homology 
(MATH) domain. The TRAF/MATH domain has an N-terminal 
TRAF region that mediates homo- and hetero-oligomerization 
between TRAF members and a C-terminal region that is impor-
tant for interactions with receptors and adaptor proteins (310).

TNF receptor-associated factor 6, perhaps the most ancient 
mammalian TRAF, is a RING-type E3-ligase that ubiquitinates 
via the K63-linkage (311–313). It is required for mTORC1 

translocation to the lysosome, and TRAF6-catalyzed K63 poly-
ubiquitination modulates mTORC1 amino acid sensing capacity 
(314). Moreover, in macrophages, TRAF6 is responsible for the 
decoration of pathogens and pathogen-containing vacuoles with 
polyubiquitin chains, which serve as a cue for GBP recruitment 
and as a recognition signal for the autophagy cargo receptor p62 
(313, 315).

BLAST analyses predict that TRAF-like proteins are also 
present in several social amoeba species. More than 40 TRAF-
like proteins in D. discoideum are predicted, of which 16 contain 
the RING, zinc-finger and TRAF domains present in mamma-
lian TRAF2, TRAF3, TRAF5, and TRAF6 (Figure  9; Table  2). 
Despite the fact that human and D. discoideum TRAF proteins 
show significant similarities with respect to their major domains, 
their evolutionary divergence precludes ortholog assignment. 
Determining whether D. discoideum TRAFs regulate nutrient 
sensing and/or ubiquitinate pathogens will expand our under-
standing of their roles in infection.

Tripartite Motif-Containing Proteins
The TRIM superfamily is remarkably conserved among metazo-
ans and, perhaps as a result of an expansion during vertebrate 
evolution, is represented by more than 80 members in humans. 
TRIMs typically comprise an N-terminal RING domain, a B-box 
domain containing several zinc-binding motifs, a coiled-coil 
domain, and a considerably diverse C-terminal domain impor-
tant for substrate binding (316).

Tripartite motif-containing proteins are important for many 
aspects of immunity resistance to pathogens. Recent studies in 
mouse macrophages demonstrate that various TRIM proteins 
are induced upon infection with influenza virus or activation of 
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FigURe 10 | Theoretical phylogenetic relations of tripartite motif-containing protein (TRIM) proteins. The sequence of human TRIM37 was used to search for TRIM 
homologs among the non-redundant sequences in selected organisms using NCBI PSI-BLAST. A score of 2 × 10−5 was used as a threshold. Similarities of the 
selected sequences were determined using BLOSUM62 matrix and E-INS-i strategy (219). Sequences were manually curated using AliView software [(218); http://
ormbunkar.se/aliview/], and the resulting final alignment was used to generate a neighbor joining phylogenetic tree (NJ, bootstrap 1,000×). TRIM39 was used as an 
outgroup.

TABLe 2 | Pairwise comparisons of the human TNF receptor-associated factor 
(TRAF) 6, tripartite motif-containing protein (TRIM) 37, guanylate-binding protein 
(GBP) 3, and signal transducers and activators of transcription (STAT) 2 with their 
putative Dictyostelium discoideum homologs.

D. discoideum Homo 
sapiens

Bit 
score

e-value identity 
(%)

Proposed 
name

dstD STAT2 57.4 4e−12 26 NA
dstA STAT2 77.4 4e−12 29 NA
dstC STAT2 56.2 2e−11 25 NA
dstB STAT2 71.6 1e−09 28 NA
DDB_G0281639 GBP3 137 3e−38 26 DdGBP
DDB_G0272454 TRAF6 152 1e−15 22 DdTRAFa
DDB_G0285149 TRAF6 79.7 1e−19 20 DdTRAFb
DDB_G0290883 TRAF6 70.1 2e−16 22 DdTRAFc
DDB_G0290961 TRAF6 75.9 2e−18 21 DdTRAFd
DDB_G0290971 TRAF6 73.5 9e−12 26 DdTRAFe
DDB_G0277243 TRAF6 84.7 1e−20 21 DdTRAFf
DDB_G0272340 TRAF6 80.1 4e−19 21 DdTRAFg
DDB_G0293202 TRAF6 72.0 1e−16 23 DdTRAFh
DDB_G0272348 TRAF6 92.8 1e−15 23 DdTRAFi
DDB_G0273433 TRAF6 68.6 2e−15 23 DdTRAFj
DDB_G0273509 TRAF6 68.6 2e−15 23 DdTRAFk
DDB_G0290931 TRAF6 97.0 2e−15 23 DdTRAFl
DDB_G0290965 TRAF6 65.5 2e−14 25 DdTRAFm
DDB_G0268444 TRAF6 61.6 3e−13 20 DdTRAFn
DDB_G0291023 TRAF6 79.7 2e−10 26 DdTRAFo
DDB_G0272098 TRAF6 70.1 7e−10 22 DdTRAFp
DDB_G0273381 TRIM37 188 1e−46 28 DdTRIM

The BLOSUM62 pairwise alignment was performed with NCBI BLASTp suite-2 
sequences. This table shows the similarity scores with these D. discoideum homologs 
and their proposed name.
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TLRs in a type-I-interferon (IFN)-dependent manner (317, 318).  
TRIMs are involved in restriction of HIV replication and activa-
tion of NF-κB downstream of TLRs (318). Moreover, they play a 
dual role as receptors and regulators of autophagy. As regulators, 
TRIMs serve as platforms for the assembly of the core autophagy 
initiators ULK1 (Atg1 in yeast and D. discoideum) and Beclin1 
(Atg6 in yeast and D. discoideum) (319). In macrophages, 
autophagy cargo receptors recognize and bind K63-linked poly-
ubiquitin chains and galectins, which serve as “eat-me” signals 
and mediate the binding of the cargo to phagophore-conjugated 
LC3. As receptors, TRIMs are able to recognize endogenous and 
exogenous (e.g., bacteria) cargo intended for autoloysosomes 
via binding of their diverse C-terminal domains to the cargo in 
a ubiquitin-independent manner and mediate delivery to the 
phagophore by also binding LC3 (320, 321).

Tripartite motif-containing protein homologs are found in 
multiple social amoeba species, and a single TRIM has been 
identified in D. discoideum, DdTRIM, which is an ortholog of 
human TRIM37 (Figure  10; Table  2) (http://dictybase.org). 
According to an accumulating amount of evidence, human 
TRIMs are emerging as critical regulators of cell-autonomous 
defenses. Particularly, human TRIM37 has been shown to restrict 
HIV-1 replication (322). At present, the role of DdTRIM remains 
unknown, and the presence of a single member of the TRIM 
superfamily early in evolution makes D. discoideum an interest-
ing model to explore the primordial role of TRIM proteins before 
their expansion.
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guanylate-Binding Proteins
The GBP proteins are IFN-gamma-inducible, immunity-related 
GTPases. Generally, the GBP proteins comprise a globular 
N-terminal domain and a C-terminal alpha-helical baculovirus 
inhibitor of apoptosis repeat (BIR) domain. Both the globular 
N-terminal domain, which confers GTPase activity, and the 
C-terminal BIR domain mediate protein–protein and protein– 
lipid interactions and contribute to nucleotide-dependent 
homo typic and heterotypic GBP protein assembly (323). In 
addition, BIR domains have been reported to act as caspase 
regulators and mediators of homotypic interactions (324). GTP 
binding to the GTPase activity domain allows dimer formation, 
and its hydrolysis enables conformational changes resulting 
in GBP tetramer formation. In vertebrates, the GBPs proteins 
have been linked to a multitude of innate immunity-related 
responses such as inflammasome activation and xenophagy 
(325). Essential for their function is their ability to oligomerize 
and to bind target endomembranes (323, 326, 327). In mouse 
macrophages, GBP2 recruitment to Chlamydia trachomatis- and 
Toxoplasma gondii-containing vacuoles correlates with their 
host-mediated lysis, underlying the importance of these large 
GTPases in the successful immune response against intracel-
lular invaders (313, 328).

Multiple social amoeba species have homologs of GBPs, and 
a single GBP homolog has been identified in D. discoideum, 
DdGBP (Figure 11; Table 2). Its role remains to be elucidated. As 
a single GBP representative, it may allow a better understanding 
of the primordial and conserved role that GBPs play in MPS cells.

FigURe 11 | Theoretical phylogenetic relations of guanylate-binding proteins (GBPs). The sequences of human GBPs were used to search for GBP homologs 
among the non-redundant sequences in selected organisms using NCBI PSI-BLAST. A score of 2 × 10−5 was used as a threshold. Similarities of the selected 
sequences were determined using BLOSUM62 matrix and E-INS-i strategy (219). Sequences were manually curated using AliView software [(218); http://ormbunkar.
se/aliview/], and the resulting final alignment was used to generate a neighbor joining phylogenetic tree (NJ, bootstrap 1,000×).

Signal Transducers and Activators of 
Transcription
In humans, there are seven STATs, which have a unique N-terminus 
important for nuclear translocation and protein–protein interac-
tions. This region is followed by a coiled-coil domain involved 
in nuclear export and regulation of tyrosine phosphorylation, a 
DNA-binding domain that mediates the recognition of sequences 
related to TTCN3–4GAA in the promoters of responsive genes, 
and an Src-homology (SH2) domain, which allows for specific 
recognition and docking to phosphotyrosines on cytokine 
receptors, Janus kinases (JAKs), and other STAT molecules. The 
C-terminus contains a divergent transactivator domain, which 
mediates STAT transcription factor transactivation via various 
cofactors (329).

Signal transducers and activators of transcription proteins 
are activated mainly by cytokines and growth factors. Binding 
of these signaling molecules to their receptors triggers receptor 
dimerization, allowing transphosphorylation and activation 
of receptor-associated JAKs. The JAKs also phosphorylate the 
cytoplasmic tails of the receptors, which promotes recruitment 
of the STAT proteins through their SH2 domain. The subsequent 
tyrosine phosphorylation of STATs results in the formation of 
homodimers and/or heterodimers and nuclear translocation, 
whereupon they bind to the promoter regions and initiate tran-
scription of various immunity-related genes such as galectins, 
GBPs, NOXs, SQSTM1, TRIMs, and NDP52 (330). As part of 
their functional cycle, STATs shuttle between the cytosol and the 
nucleus (329). Mammalian STAT proteins act in a tissue-specific 
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FigURe 12 | Theoretical phylogenetic relations of signal transducers and activators of transcription (STAT) family proteins. The sequence of the human STAT3 was 
used to search for STAT homologs among the non-redundant sequences in selected organisms using NCBI PSI-BLAST. A score of 2 × 10−5 was used as a threshold. 
Similarities of the selected sequences were determined using BLOSUM62 matrix and E-INS-i strategy (219). Sequences were manually curated using AliView software 
[(218); http://ormbunkar.se/aliview/], and the resulting final alignment was used to generate a neighbor joining phylogenetic tree (NJ, bootstrap 1,000×).

manner to regulate growth and development, various immunity-
related processes, and cellular stress responses (331, 332). Gain- 
or loss-of-function mutations in components of the JAK–STAT 
signaling pathway have been associated with a broad range of 
innate-immune deficiencies and autoimmune diseases (333).

Multiple social amoeba species have STAT homologs, and 
four D. discoideum homologs of STATs have been identified, 
DstA, DstB, DstC, and DstD [reviewed in Ref. (334)] (Figure 12; 
Table 2). These proteins have a predicted SH2 domain (335), and 
their activity is regulated in part by tyrosine kinases (336, 337)  
and phosphatases (338, 339). Like mammalian STATs, D. dis
coideum STATs regulate growth and development in response 
to extracellular signaling molecules (335, 340–342) and are 
activated by cellular stresses (339, 343). Whether they also con-
tribute to antimicrobial responses in D. discoideum is unknown, 
and addressing this question will provide insight into their pos-
sible roles in cell-autonomous defenses.

CONCLUSiON AND PeRSPeCTiveS

Dictyostelium discoideum is a natural predator of bacteria and 
must contend with the fact that every meal is a potential infection. 
To survive this situation, it has evolved multiple mechanisms 
to generate a microbicidal environment within phagosomes 
and thus, phagocytosis, its means of nutrient acquisition, is 
simul taneously a major component of its defenses against 

infec tion. Autophagy, a pathway of nutrient reallocation, has 
also been incorporated into its defenses and is activated when 
microbes disrupt the phagosome and/or escape into the cytosol. 
Importantly, core components of these pathways are conserved 
in the specialized phagocytes of metazoans such as MPS cells. 
Consequently, D. discoideum is a relevant model to study the 
role of cell-autonomous defenses in the response of MPS cells 
to infection. Indeed, it has been used successfully to identify 
bacterial virulence factors and mechanisms by which bacteria 
interfere with phagosome maturation and autophagy.

Although one might question the need for model organisms 
in the CRISPR era of genomic editing, the use of D. discoideum 
has many advantages and is far from over. The generation of 
unbiased D. discoideum mutant libraries requires fewer financial 
and technical resources than creating a library of CRISPR-edited 
macrophages, and cultivation of this amoeba requires no special 
growth factors or cytokines. Moreover, growing D. discoideum 
cells respond to and phagocytose microbes without the need for 
prior activation. High-throughput mutant screens are thus more 
feasible and more accessible to laboratories with fewer financial 
resources. Similarly, the functions of individual bacterial or 
host factors in infection can be more readily and thoroughly 
assessed in D. discoideum due to its amenability to numerous 
research techniques. The knowledge gained can then be used to 
pose specific questions that can be answered by targeted studies 
in MPS cells. Primary macrophages or dendritic cells are often 
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