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ABSTRACT

APOBEC3 cytidine deaminases are largely known for
their innate immune protection from viral infections.
Recently, members of the family have been associ-
ated with a distinct mutational activity in some can-
cer types. We report a pan-tissue, pan-cancer analy-
sis of RNA-seq data specific to the APOBEC3 genes
in 8,951 tumours, 786 cancer cell lines and 6,119
normal tissues. By deconvolution of levels of dif-
ferent cell types in tumour admixtures, we demon-
strate that APOBEC3B (A3B), the primary candidate
as a cancer mutagen, shows little association with
immune cell types compared to its paralogues. We
present a pipeline called RESPECTEx (REconstitut-
ing SPecific Cell-Type Expression) and use it to de-
convolute cell-type specific expression levels in a
given cohort of tumour samples. We functionally an-
notate APOBEC3 co-expressing genes, and create
an interactive visualization tool which ‘barcodes’ the
functional enrichment (http://fraternalilab.kcl.ac.uk/
apobec-barcodes/). These analyses reveal that A3B
expression correlates with cell cycle and DNA repair
genes, whereas the other APOBEC3 members dis-
play specificity for immune processes and immune
cell populations. We offer molecular insights into the
functions of individual APOBEC3 proteins in antivi-
ral and proliferative contexts, and demonstrate the
diversification this family of enzymes displays at the
transcriptomic level, despite their high similarity in
protein sequences and structures.

INTRODUCTION

Human APOBEC3 (apolipoprotein B mRNA editing cat-
alytic polypeptide-like 3) proteins are a family of seven
cytidine deaminases capable of causing cytidine-to-uridine
(C>U) mutations on single-stranded DNA molecules.
Though described as restriction factors that impede repli-
cation of many viruses such as HIV-1 (human immunod-
eficiency virus-1) (1, 2), this family of enzymes has also
been associated with a distinct mutational signature in the
genomes of many cancers, particularly those which local-
ize to the breast, lung, bladder, cervix and head and neck,
amongst other organs (3–5). APOBEC3-signature muta-
tions have been thought to contribute to subclonal diver-
sity in tumours (6), thereby potentially promoting drug re-
sistance (7–9). In vitro work has demonstrated that overex-
pression of the APOBEC3B (A3B) gene results in extensive
C>T mutagenesis and an increase in genomic uracil level
(10). A3B overexpression has been documented in breast
cancer cell lines and many other tumours, and shows a weak
correlation with the level of APOBEC3-signature mutations
(5, 10). However, little has been done to unravel the bio-
logical basis of APOBEC3 activation in vivo, the regula-
tion of their expression and functions of the different fam-
ily members, or the mechanisms under which the enzyme
interacts with and mutates human genomic DNA. Multi-
ple APOBEC3 proteins, including APOBEC3A (A3A) (11)
and haplotype I of APOBEC3H (A3H) (12), have been im-
plicated as the genomic mutators in cancer, alongside A3B.
Human APOBEC3 proteins are remarkably similar to each
other, as their pairwise sequence identity can exceed 80%
(13). Moreover, all of them induce mutations on retroviral
genomes, and all (except APOBEC3G, or A3G) deaminate
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the same single-stranded DNA (ssDNA) substrate (5’-TC,
where C denotes the deaminated cytosine) (14–17). There-
fore, the analysis of DNA sequencing data alone is inade-
quate to pinpoint the exact APOBEC3 member(s) respon-
sible for generating these somatic mutations.

Here, we look at other dimensions of molecular data
from cancer samples that could offer insights on the in-
volvement of different APOBEC3 members in creating
these mutational signatures. One such example is gene ex-
pression: this has been studied by quantitative reverse-
transcription polymerase chain reaction (qRT-PCR) in dif-
ferent organs (18) and, particularly, among haematopoietic
cell subsets (19). The ever-growing repository of RNA se-
quencing (RNA-seq) expression data from human tumours,
cancer cell lines and normal tissues enables us to study this
subject in far greater depth by employing computational
approaches. Transcriptome-wide profiling now enables a
relatively unbiased comparison of the expression levels of
the APOBEC3 genes. Moreover, it also permits analyses of
their co-expression patterns with other genes, which could
suggest differential involvement in biological pathways spe-
cific to each APOBEC3 gene. We analyse here gene expres-
sion patterns and the functional annotation of these co-
expressing genes, revealing new insights into the involve-
ment of different APOBEC3 family members in immune
and/or tumourigenic (proliferative) processes.

We report a comprehensive pan-tissue, pan-cancer survey
of RNA-seq tumour data from The Cancer Genome At-
las (TCGA), compared against data from cancer cell lines
and normal tissues. The analysis defines distinct gene ex-
pression patterns of the APOBEC3 family members in can-
cer, and uses estimates of the proportion of tumour cells and
infiltrated immune cells in tumours to interpret these differ-
ences. We have devised a bioinformatics pipeline called RE-
SPECTEx (REconstituting SPecific Cell-Type Expression)
which take estimated cell type levels in tumours further and
deconvolute cell-type specific expression for a given cohort
of tumours. We also analyse gene co-expression, i.e. genes
that correlate, in expression terms, with each APOBEC3
member. By using both public databases and expert-curated
gene sets to annotate these gene co-expression, we suggest
functional pathways specific to or shared between partic-
ular APOBEC3 genes. We have created a way of visualiz-
ing functional annotations, which we term ‘functional bar-
codes’, and use these to compare functions of APOBEC3
co-expressing genes. Surprisingly, these analyses highlight
a diversification, consistent across cancer and tissue types,
in the roles of APOBEC3 family members with respect
to immune-related and cell cycle/DNA-repair-related func-
tions in both cancer and non-cancer samples. Accordingly,
these analyses have extracted a wealth of gene expression
correlations for the biological community to mine and de-
sign targeted experiments for validating and probing A3B’s
involvement in cancer mutagenesis. We have made avail-
able the data generated in these analyses in the Supplemen-
tary Data of this paper, and an applet accessible on http:
//fraternalilab.kcl.ac.uk/apobec-barcodes/, where users can
interactively browse functional barcodes for any APOBEC3
gene in the different cohorts we have examined.

MATERIALS AND METHODS

Data sources

Bulk RNA-seq transcript quantification data. All data
analysed in this study are publicly and freely available.
RNA-seq data from three publicly available datasets were
collected from online sources. For cancer tissues, TCGA ex-
pression data (RSEM v2 version normalized by gene) of
25 cancer types, as detailed in Supplementary Table S1,
were downloaded from the Broad GDAC Firehose database
(https://gdac.broadinstitute.org/, 28 January 2016 run). For
cancer cell lines, RNA-seq data of CCLE (Transcript
per Million [TPM] values) were downloaded from the
CTD2 data portal (https://ocg.cancer.gov/programs/ctd2/
data-portal) on 3 February 2017. For normal tissues, GTEx
RNA-seq data (v6p) (Reads per Kilobase per Million Reads
[RPKM]) were downloaded from the GTEx data por-
tal (https://gtexportal.org/home/). Each cancer/tissue type
was quantile-normalized and log2-transformed indepen-
dently. Matching of cancer cell lines against TCGA can-
cer types was manually curated against the annotation by
CCLE and data from the COSMIC database. All cohorts of
TCGA were matched with cell lines in our CCLE dataset,
except Adrenocortical carcinoma (ACC), Pheochromocy-
toma and Paraganglioma (PCPG) and Testicular Germ Cell
Tumours (TGCT). Owing to the differences in the process-
ing and transcript quantification for the three databases,
all expression comparisons across the three types of sam-
ples (e.g. Figure 1) were made after normalizing expres-
sion values to GAPDH. This was not a concern to the co-
expression analysis, which were calculated independently
per cancer/tissue type per cohort. For calculating correla-
tions, only cohorts with n > 3 were included; for this rea-
son, there were no cell line co-expression analysis for Uter-
ine Corpus Endometrial Carcinoma (UCEC) and Uterine
Carcinosarcoma (UCS) (Supplementary Table S1). Gene
names were mapped to Human Genome Organization Gene
Nomenclature Committee (HGNC) symbols wherever pos-
sible; symbols provided the original data were retained oth-
erwise. All abbreviations of cancer types are given in Sup-
plementary Table S1.

Single-cell RNA-seq transcript quantification data. Two
single-cell RNA-seq datasets were downloaded from the
NCBI Gene Expression Omnibus (GEO) database: (i) A
dataset of 11 primary breast tumours with two lymph
node metastasis samples (20) (Accession GSE75688), and
(ii) a dataset of two lung adenocarcinoma patient-derived
xenografts (PDX) and 1 lung cancer cell line (H358) con-
trol (21) (Accession GSE69405). Dataset (ii) was enriched
for tumour cells while dataset (i) was not. For dataset (i),
the original publication (20) described blacklisting a sub-
set of single cells for reasons of data quality; these black-
listed cells were excluded in this analysis here. For both
datasets the matrices of TPM across the transcriptome were
quantile-normalized and log2-transformed. Visualization
was produced after normalizing expression of selected genes
(Figure 4C) against GAPDH expression level in each cell.
Dataset (i) (the breast cancer dataset) was further utilized
in testing the RESPECTEx pipeline (see section ‘The RE-
SPECTEx pipeline’).
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Figure 1. APOBEC3 gene expression in tumours, cancer cell lines and
normal tissues of different organs. The median expression value of each
APOBEC3 gene in each cohort was normalized against the GAPDH gene.
In the heatmap, cancer/tissue-types are organized by rows and APOBEC3
(A3) genes by columns. The nature of a cohort (tumour/cancer cell-
line/normal) is indicated by the vertical colour-coded bar: red, tumour;
black, normal tissues; turquoise, cancer cell lines.

Tumour purity estimates. We obtained estimates of purity
for each TCGA sample from the work of Aran et al. (22),
who compiled for each sample a composite purity estimates
(CPE), by integrating purity information gathered form sev-
eral approaches, including clinicopathological tumour pu-
rity assessments based on immunohistochemistry (IHC),
and results from several tumour purity algorithms includ-
ing ESTIMATE (23). Here the CPE, ESTIMATE and IHC-
based tumour content data were taken and independently
examined. To perform the correlation analyses of purity
against APOBEC3 expression in the GTEx samples as a
control, an estimate of ‘normal purity’ (defined as the pro-
portion of non-immune cells in GTEx samples) was also
calculated, by using the ESTIMATE algorithm (23) and fol-
lowing procedures detailed in Aran et al. (22). Briefly, ES-
TIMATE outputs three scores for each sample: an immune

score, a stromal score and an ESTIMATE score (which is
a composite score summarizing the former two scores), all
of which are demonstrated to be inversely proportional to
tumour purity according to the authors (23). The CPE es-
timates and immune scores for the TCGA samples were
taken together and their relationships determined by fitting
a smooth spline using the loess.smooth function in R. The
‘normal purity’ of GTEx samples were then predicted with
its immune score using this fitted spline. For consistency, all
analyses related to tumour/normal purity estimates in the
main article were produced with results from ESTIMATE
unless otherwise stated. Analyses on the TCGA samples
with the CPE and/or IHC-based estimates were included
in Supplementary Figures S2 and S3.

Gene sets. GO Cell Cycle and Immune Response gene
sets were downloaded from the MSigDB database (24,25)
(v5.2). Curated gene sets of DNA damage repair genes were
taken from the publication by Pearl et al. (26). Gene sets of
immune cell populations were taken from the work of An-
gelova et al. (27). Sets of genes expressed specifically in each
cell cycle phase were curated from a meta-analysis by Fis-
cher and colleagues (28). For each cell cycle phase, genes
that were classified to be expressed at that phase in ≥3 stud-
ies were included. These gene sets generally have little over-
lap with each other (Supplementary Figure S10). Two addi-
tional gene sets were curated from mass-spectrometry pro-
teome studies of lysine acetylation (29) and SUMOylation
(30) respectively. For the lysine acetylation dataset, all genes
whose products contain a mapped peptide with acetylated
lysine were extracted to form the gene set. For the SUMOy-
lation dataset, all genes whose products contain a mapped
and SUMOylated peptide (‘SUMO target score’ defined by
the authors (30) ≥30) were included in the gene set.

Deconvolution of immune cell subpopulations with CIBER-
SORT

The CIBERSORT (31) R source code (v1.04) was down-
loaded with the authors’ permission. CIBERSORT in-
ferred, using the gene expression data for each sample, the
proportion of each immune cell subpopulation as defined
an expression matrix of marker genes in each cell type to be
examined. The LM22 matrix of marker genes representative
of 22 immune subpopulations curated by the authors (31)
were used, except that the APOBEC3 genes were removed
from the matrix prior to the inference (A3A and A3G were
found in the original matrix). The algorithm estimated a P-
value of the inference for each sample. Only samples with a
significant P-value (P < 0.05) in CIBERSORT results were
considered. The number of samples available for analysis in
each cohort after such filtering is included in Supplemen-
tary Table S1. The Spearman correlation between the in-
ferred level of each immune cell type with the expression
level of each APOBEC3 gene was calculated for each co-
hort.

The RESPECTEx pipeline

We created a pipeline called RESPECTEx (REconstituting
SPecific Cell-Type Expression) which took tumour and im-
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mune cell type proportion estimates further, and deconvo-
luted the observed gene expression level by means of a lin-
ear regression approach. We reasoned that in each sample,
each cell type present contributed a variable level of gene
expression to the observed value, the contribution of each
cell type weighted by the proportion of the cell type present.
Therefore, by regressing the observed gene expression level
against the proportions of each cell type in the cell mixture,
the resulting set of coefficients represented the mean expres-
sion level in each of the cell types. Mathematically, this is
represented as follows (Equation 1):

Yg,s = [
βg,1 βg,2 βg,3 . . . βg,c

]

⎡
⎢⎢⎢⎢⎣

x1,s
x2,s
x3,s

...
xc,s

⎤
⎥⎥⎥⎥⎦

(1)

where Yg,s = observed gene expression value for gene g in
sample s, βg,1, βg,2 . . . βg,c = the mean expression value
for gene g in a pure population of each of the c cell types,
and, x1,s, x2,s . . . xc,s = the proportion of each of the c cell
types in sample s.

For the TCGA samples we took these values from the
proportion of tumour cells (22) (the tumour purity, corre-
sponding to cell type #1) and the 22 inferred immune sub-
populations (cell types #2 to #23; i.e. c = 23) using CIBER-
SORT (31) as discussed. For each case the size of the im-
mune component is defined as (1 – tumour purity) and the
proportion of each immune subpopulation was adjusted by
multiplying this value.

Hence, the β corresponding to the cell type of interest is
the desired quantity. In particular, βg,1 was taken as the es-
timated expression level corresponding to the tumour cell
component. We repeated these procedures on the GTEx
samples, taking the ‘normal purity’ (see above) instead to
adjust the infiltrated component. Here βg,1 represents the
expression level contributed by the non-immune (and thus
the tissue-specific cell type according to our definition) cells
in the sample. In contrast the sum of βg,n (where n �= 1) rep-
resent the total contribution by the immune component.

The cell-type proportion matrix was constructed by con-
catenating the estimated cell-type proportions (i.e. tumour
plus the 22 immune cell types inferred in CIBERSORT) for
each case. This was taken as the feature matrix on which
the linear regression was performed. The coefficients in the
regression model were constrained ≥0 (such that the esti-
mated mean expression levels were non-negative) by using
non-negative least squares regression implemented in the
nnls package (https://CRAN.R-project.org/package=nnls)
(v1.4) in R. The coefficient corresponding to each cell type
was taken and weighted by the median sample proportion
for the respective cell type to reflect the realistic expression
level in tissue/tumour samples. For this analysis, the gene
expression levels of the seven APOBEC3 genes were decon-
voluted and quantified as described in the Results section.

To test the performance of RESPECTEx we utilized the
breast cancer dataset (20) described in section ‘Single-cell
RNA-seq transcript quantification data’ in ‘Data sources’,
in which the authors also generated RNA-seq data on
pooled single cells from each tumour as validation of scR-

NAseq data quality. Of note, the lung cancer dataset (21)
was not used in validating RESPECTEx, because an en-
richment step to capture tumour cells was performed in
that study. Therefore it was expected that little immune
cells would have left in the sample sequenced, which would
impact on the performance of immune deconvolution. We
treat these pooled cell data as tumour admixtures, and esti-
mate the tumour purity with ESTIMATE (23) (using iden-
tical procedures when we processed GTEx data) and im-
mune cell proportion estimation with CIBERSORT (31).
The quantile-normalized, log2-transformed pooled RNA-
seq data and these cell type proportion estimates were sub-
jected to the RESPECTEx pipeline, and mean expression in
each cell type for each gene were reconstituted. These values
were compared with single-cell data, in which we extracted
single cells expressing certain gene markers, calculated their
mean expression per gene, and visualized and computed
their correlations (Figure 4D; Supplementary Figure S9).

Gene co-expression analysis and functional barcoding

To extract co-expressing genes, we calculated the Spearman
correlation of the expression value of itself against each
APOBEC3 gene for each gene in the expression matrix.
Here all expression values were taken from tumour bulk,
without adjustment by the RESPECTEx pipeline. From the
correlation values, we constructed an expression correla-
tion network for each cancer/tissue type in each dataset
(Figure 5A). For each APOBEC3, genes that correlated
with the expression of the APOBEC3 gene with an abso-
lute standard score ≥2 were defined as co-expressing genes
of the APOBEC3 gene. Correlations were calculated per
cancer/tissue type. The extraction of co-expressing genes
is dependent on the distribution of correlation values: the
number of co-expressed genes extracted for each APOBEC3
gene in each cancer/tissue type varies (Supplementary Ta-
ble S10), and could be 0 if no genes satisfy the criterion
of the standard score stated above. This ensures that co-
expressing genes extracted in this pipeline are genes that
show significantly stronger associations with the APOBEC3
gene in question, relative to other genes. We devised for
this analysis a visualization pipeline to plot these gene co-
expression data and display their functional annotations.
This consists of two visualizations: first, a Circos plot to dis-
play gene co-expression and highlight co-expressing genes
common to multiple APOBEC3 genes; second, a functional
barcoding method to display functional annotation of the
co-expressing gene.

For displaying co-expressing genes, initially we visual-
ized the gene co-expression network with conventional hair-
ball visualizations, but found it challenging to compare net-
works derived across different cohorts. We therefore devised
a Circos plot to show this (Figure 5A), fixing the positions
of all APOBEC3 genes and their co-expressing genes along
the circular axis. Here the circle was divided into seven seg-
ments, each corresponding to each APOBEC3 gene. Co-
expressing genes of each APOBEC3 gene are listed along
the axis in the respective segment, sorted numerically by
their correlation coefficients with the APOBEC3 gene in
question. Shared co-expressing genes were listed only once
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in the plot, in the segment corresponding to the APOBEC3
gene with which the gene correlated the most strongly.

For the functional barcodes, mapping and annotation of
the co-expressing genes to gene sets was described in the Re-
sults section (Figure 5B). Functional barcodes are a visual-
ization means which allows for qualitative comparisons; for
quantitative assessment, the enrichment of co-expressing
genes in different gene sets was assessed by ranking each
list based on their correlation coefficients, and tested statis-
tically with the standard GSEA method using the R fgsea
(v0.99.6) package (bioRxiv, https://doi.org/10.1101/060012)
and the GSEA java application (v2.0) from MSigDB (24).
For GO BP gene sets, only those of size within the default
cut-offs in the GSEA MSigDB java application (between 15
and 500) were considered.

Extraction of distinguishing genes

We divided the TCGA cancer types into two groups, one
group with a reported, widespread APOBEC3-mediated
mutational signature (4) versus those tumour types with-
out such report. For each APOBEC3 gene, we assessed, for
each co-expressing gene, the difference between the Spear-
man correlation (with the particular APOBEC3 gene) in
the two groups of cancer types. Those genes with a sig-
nificant (P < 0.05) difference (Wilcoxon test) were termed
‘distinguishing genes’. Tumour types with a widespread
APOBEC3-mediated mutational signature were defined as
the six cohorts identified in Roberts and colleagues’ analy-
sis (4) of TCGA data: breast invasive carcinoma (BRCA),
lung adenocarcinoma (LUAD), lung squamous cell carci-
noma (LUSC), bladder urothelial carcinoma (BLCA), cer-
vical and endocervical cancers (CESC) and head and neck
squamous cell carcinoma (HNSC). The same procedure
was taken to analyse the correlation data for the GTEx sam-
ples; here a set of four tissue types matching the cancer types
mentioned above (breast, bladder, cervix uteri and lung) are
compared against the rest (Supplementary Table S1).

Sampling controls

Sampling controls for the following analyses were described
in this section:

i. Correlation analysis between APOBEC3 gene expression
and tumour purity (Figure 2);

ii. Correlation analysis between APOBEC3 gene expression
and immune cell proportions (Figure 3);

iii. Expression deconvolution analysis (Figure 4);
iv. APOBEC3 co-expression analysis (Figure 6).

For (i) and (ii), the case labels for the cell type proportion
data were randomized for 100 times, the correlation of gene
expression with the randomized cell type proportion was
calculated in each randomization. The median from these
randomized correlations were taken to represent each co-
hort. These randomized controls gave random correlations
as expected (Supplementary Figures S3, S5; Supplementary
Tables S2 and S5). For (iii), the case labels for the feature
matrix were randomized for 100 times and the regression
procedure (see above) was performed on each randomized

matrix. The resulting coefficients from each iteration were
independently analysed and the tumour/tissue-specific ra-
tio (Figure 4B) for each iteration, before taking the median
to represent each cohort. Additionally, a randomized gene
control was taken to monitor the dependence of these analy-
ses on the gene identity, in which for each case-randomizing
iteration the gene labels were also randomized before the ex-
traction of deconvoluted expression values (Supplementary
Figure S7; Supplementary Table S7). For (iv), to monitor
the extraction of co-expression partners, correlation calcu-
lations were also calculated for a randomly sampled popu-
lation, in which for each cancer/tissue type 10% of the cases
or 10 cases, whichever more, were randomly sampled for
100 times. The correlation of expression with the APOBEC3
genes was examined in each iteration. Cohorts with n < 10
were not considered in this randomization approach. Each
sampling population typically has low (∼10–30%) overlap
in terms of the co-expression partners extracted in compari-
son to those extracted based on correlations calculated over
the entire cancer/tissue type (Supplementary Table S11).
Co-expression partners were also extracted over the me-
dian correlation across this set of subpopulations. Using
this approach, the co-expression network and functional
barcodes are very comparable to that extracted over the en-
tire cancer/tissue type without bootstrapping (cf. Figure 6
and Supplementary Figures S13–S17).

Statistics and data visualization

All analyses were performed in the R statistical program-
ming environment. Normalization of expression matrices
was performed using the normalize.quantile function in the
preprocessCore R package (https://github.com/bmbolstad/
preprocessCore). Spearman correlations were calculated
and assessed with two-way tests with the cor.test func-
tion in R wherever indicated. Two-way statistical signifi-
cance (P or q < 0.05) was evaluated either with Wilcoxon
(pairwise comparisons) or Kruskal–Wallis rank sum (one-
way group comparisons) tests and corrected using Storey’s
method for multiple testing (32) or the method by Ben-
jamini and Hochberg (33) as stated in the relevant descrip-
tion. Trend lines in scatter plots were fitted with the lm func-
tion in R unless otherwise stated. t-Distributed Stochas-
tic Neighbour Embedding (t-SNE) was performed using
the Rtsne package (v.0.13), using parameters max iter =
1000. Values were centred and scaled by cohort before per-
forming this procedure on a list of perplexity values: [2,
5, 10, 20, 30, 40, 50, 100]. For each perplexity value in
the list, unless it is large enough to invoke error messages
from the algorithm, 100 fittings were performed, and the fit-
ting which gave the lowest Kullback–Leibler divergence was
taken and analysed. A representative t-SNE visualization
was selected and included in the Results section. Visualiza-
tions under other perplexity values were included in Sup-
plementary Figure S6. Heatmaps were produced with the
heatmap.2 function in the gplots package (https://CRAN.
R-project.org/package=gplots) (v.3.0.1), in which cluster-
ing, wherever shown, was performed with hierarchical clus-
tering (function hclust) using default parameters in R. Net-
works were visualized using the Circos package (34) (v.0.69-
6) in Perl. All other plots were produced with plotting utili-
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ties in base R. A standard colour code is adopted through-
out the manuscript: (1) sample type (TCGA/GTEx/CCLE,
see Figure 1); (2) APOBEC3 gene (see e.g. Figures 3, 6 and
7); (3) Gene sets (Figures 6 and 7). All scripts for data anal-
ysis and visualization are available upon request.

RESULTS

This analysis considered transcriptomic data from 25 can-
cer types, including 8,951 TCGA tumours, 786 cancer cell
lines (from the Cancer Cell-line Encyclopaedia [CCLE]), as
well as 6,119 tissue samples from nominally healthy indi-
viduals in the Genotype-Tissue Expression (GTEx) project
(Supplementary Table S1). The aims were to compare the
expression patterns of the APOBEC3 genes in tumours,
cancer cell lines and normal samples, and extract functional
pathways under which each APOBEC3 gene is expressed,
by annotating gene co-expression data (Supplementary Fig-
ure S1). Throughout these analyses, we use the following

colour code in our figures: blue, A3A gene; pink, A3B; or-
ange, APOBEC3C (A3C); black, APOBEC3D (A3D); dark
grey, APOBEC3F (A3F); light grey, A3G; purple, A3H.

Cell-type composition of tumours influence APOBEC3 gene
expression

The expression levels of APOBEC3 genes in tumours, can-
cer cell lines and normal tissues are visualized in a heatmap
(Figure 1). This provides an initial classification for the dif-
ferent roles played by the seven APOBEC3 genes: (i) in
normal healthy tissues the expression levels of APOBEC3
genes are distinct from one another. Typically, A3A, A3B
and A3H levels are low in most tissues, while A3C and,
to a lesser extent, A3G, are highly expressed in general.
On the other hand, A3A appears to be very tissue-specific,
and shows high expression in healthy lung and blood sam-
ples, as previously reported (10,35). (ii) A3B and A3C are
highly expressed in most cancer cell lines. Of note, A3B is the

Figure 2. Relationship between APOBEC3 gene expression and cell type composition of samples. (A) The relationship between APOBEC3 (A3) gene
expression in tumours with the proportion of tumour cells and infiltrated immune cells. If the expression of an A3 gene is negatively associated with tumour
purity (that is, the level of tumour cells within the sample), but positively associated with immune cell level, the gene is likely to be immune-related. (B) A3G
expression, but not A3B, is negatively associated with tumour purity. Here we plot the relationship between tumour purity (ESTIMATE algorithm) and
APOBEC3 gene expression (normalized against GAPDH expression) for TCGA breast invasive carcinoma (BRCA) and lung adenocarcinoma (LUAD)
cohorts. Spearman correlation values are shown and color-coded by statistical significance (red indicates P < 0.05; blue otherwise). See Supplementary
Figure S2 and Supplementary Table S2 for the correlation analysis using other tumour content measurements/estimates. (C) Over all TCGA cohorts
the expression of all APOBEC3 genes, except A3B, are anti-correlated with tumour purity levels. Spearman correlation coefficients calculated as in (B)
but for all TCGA cohorts examined. On the left the distributions of Spearman correlation values for each APOBEC3 gene are displayed as boxplots;
each data point represents one TCGA cohort. Pairwise tests of differences of these distributions (Dunn’s test) are displayed on the right. ****Benjamini–
Hochberg (BH)-adjusted P-value < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05; ns, not significant. See Supplementary Figure S3 for the correlation
analysis using other tumour content measurements/estimates, and results from the respective randomized controls. The exact adjusted p-values are given
in Supplementary Table S3.
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Figure 3. Differential association of APOBEC3 genes with an activated immune environment. (A) Schematic to illustrate correlation calculations and tests
of differences of the distributions of correlation coefficients for each APOBEC3 gene with an immune cell type. (B) Immune cell types whose levels show
different correlations with different APOBEC3 genes in TCGA and GTEx cohorts. P-values were obtained via the test of difference as illustrated in panel (A)
using a Kruskal-Wallis test, and corrected using the Benjamini-Hochberg method. Only cell types with a significant difference across APOBEC3 are shown.
See Supplementary Table S4 for the complete tables of these results. (C) Correlation between CD8+ T cell level and APOBEC3 gene expression in TCGA and
GTEx cohorts. Each boxplot represents the distribution of Spearman correlation values (individual data points represent individual cancer/tissue-types).
Pairwise test and statistical significance was evaluated identical to Figure 2C. See Supplementary Figure S4 for results for other immune cell types shown in
panel (B), and Supplementary Table S6 for the p-values depicted in the grids. (D) tSNE dimensionality reduction of APOBEC3-immune correlation data.
One data point corresponds to the correlation data of immune cell levels with the respective APOBEC3 gene in one cancer/tissue type. The segregation
of A3B (pink) and A3G (light grey) data points are clear especially for TCGA. See Supplementary Figure S6 for t-SNE results over a range of parameters
(Methods).

only APOBEC3 gene to be upregulated, across cancer types,
in cancer cell lines versus normal samples. The ubiquitous
overexpression of A3B in cancer samples supports the ar-
gument (5,10) for this family member being the APOBEC3
deaminase that most likely causes mutational signatures in
cancers. (iii) The levels of all seven APOBEC3 mRNAs are
high in tumours, in contrast to the specific expression pat-
terns observed in cancer cell lines (Figure 1). The speci-
ficity of A3A, as observed in the normal tissues, is lost in
tumours, where it is upregulated to varying degrees across
cancer types.

We reasoned that for the analysis of bulk samples, es-
pecially the tumour samples, the expression data may be
heavily influenced by infiltrating cells, which include im-
mune cells that can contribute APOBEC3 mRNAs to the
overall transcript counts. To address this, we asked how the
cell type composition of a sample influences the observed
APOBEC3 gene expression levels (Figure 2A). While non-
immune cells (e.g. cancer-associated fibroblasts (36)) are

also present in the stromal component of tumours, here we
focus on deconvolving immune cell populations of tumour
cell admixtures to delineate APOBEC3 gene expression in
a cancer context from their transcripts in immune cells in
which they are known to be expressed (18,19). We collected
estimates and measurements of tumour purity (22,23) (in
the case of normal healthy tissues, estimates of the propor-
tion of the non-immune component in a sample, see Meth-
ods), and examined the correlation between these quanti-
ties and APOBEC3 gene expression. If the expression of
an APOBEC3 gene is negatively correlated with tumour (or
non-immune) purity but positively correlated with the level
of immune populations, the expression is likely to be at-
tributed to infiltrating immune cells (Figure 2A). From this
analysis, we observe that the expression of all APOBEC3
genes, particularly A3G, negatively correlates with tumour
purity in multiple cancer types. The only exception is A3B,
whose expression exhibits either no or weakly positive cor-
relations with tumour purity (Figures 2B-C; Supplemen-
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Figure 4. Deconvolution of cell-type-specific APOBEC3 gene expression. (A) Schematic of the RESPECTEx pipeline to deconvolute cell-type-specific gene
expression, by regressing the observed gene expression level in a sample (the cell mixture) against the proportions of cell types. See main text and Methods
for details. (B) Distributions of tumour/nonimmune-specific ratio calculated using RESPECTEx-reconstituted expression values, for each APOBEC3
gene in TCGA and GTEx cohorts. Each data point represents one individual cancer/tissue type. Pairwise tests of differences and statistical significance as
evaluated identical to Figures 2C and 3C. (C) A representative case (sample BC03) of single-cell RNA sequencing (scRNAseq) data from a breast tumour
cohort (data from GSE75688). Relative transcript per million (TPM) values (normalized against GAPDH) were plotted. Marker genes for respective
cell types (see annotations) are shown alongside expression of the APOBEC3 genes. The column corresponding to A3B is highlighted with a pink arrow.
Expression heatmaps of scRNAseq data from other cases examined can be found in Supplementary Figure S8. (D) Comparison of RESPECTEx-attributed
specific gene expression for tumour cells and CD8+ T cells, with expression profiles collated from marker gene (MKI67 for tumour cells; CD8A for CD8+
T cells) positive single cells from the breast tumour cohort GSE75688 visualized in panel C and Supplementary Figure S8. Here, the RESPECTEx-inferred
TPM values were plotted against the mean TPM from marker gene-positive single cells. Each data point represents one gene. Spearman correlation values
were stated in the plot titles. See Supplementary Figure S9 for similar plots for other marker genes displayed in panel C.

tary Figures S2 and S3; Supplementary Tables S2 and
S3). Interestingly, A3F and A3A correlate with tumour pu-
rity less negatively than other APOBEC3 genes aside from
A3B. Moreover, the distinction between APOBEC3 genes is
much weaker in GTEx samples (Supplementary Figure S3).
We observe that the differences amongst APOBEC3 genes
are weaker when we consider calculations using immuno-
histochemistry (IHC) based tumour purity estimates, prob-
ably reflecting the nature of such qualitative assessments
in estimating tumour purity, in comparison with the other
methods (22,23) that we considered which utilize measure-
ments of tumour-specific genomic aberrations (Supplemen-
tary Figure S2 and S3). We next examined the association of
APOBEC3 gene expression with the immune component of

tumour tissues. We performed immune cell deconvolution
using CIBERSORT (31), extracted immune cell types which
show different extents of correlation with expression levels
of the APOBEC3 genes, and statistically evaluated these dif-
ferences (see Methods, and Figures 3A and B; Supplemen-
tary Table S3). The expression of A3G and A3H correlate
with levels of CD8+ T cell and other immune cell types more
strongly than A3B, which generally exhibits no such corre-
lation (Figure 3C; Supplementary Table S5). We evaluated
also the correlations with APOBEC3 gene expression for
other immune cell types (Supplementary Figures S4 and S5;
Supplementary Table S5). By using t-Distributed Stochas-
tic Neighbour Embedding (t-SNE) (37), we projected these
correlation data onto a 2-dimensional plot. When we con-
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sider TCGA tumours, the correlation of APOBEC3 gene
expression and immune cell levels are distributed across a
spectrum, with the correlations involving A3B and A3G
occupying the two ends (Figure 3D; Supplementary Fig-
ure S6). Data on specific APOBEC3 gene tends to be clus-
tered, with the exception of A3C, whose data points are
dispersed across the spectrum. For GTEx, distinctions be-
tween APOBEC3 genes are much weaker. Of note, fewer
GTEx samples were successful for immune cell deconvolu-
tion (Supplementary Table S1), possibly due to the nature
of the samples such that they are typically devoid of im-
mune infiltration. Taken together, these results reveal that
APOBEC3 expression patterns vary with the cell type com-
position of a tumour. A3G, a cytidine deaminase extensively
studied in antiviral responses (1,38–40), shows immune-
related transcription profiles in the tumour mixture. Impor-
tantly, not all APOBEC3 genes have the same correlation
patterns: in particular, for all immune cell types listed in Fig-
ure 3B, no correlation is found between their levels and the
expression of A3B, the cancer mutagen.

A pipeline to deconvolute cell-type specific gene expression
patterns of APOBEC3 members

Realizing the differential contribution of infiltrated immune
cell populations to APOBEC3 expression in tumours, we
sought to deconvolute cell-type-specific expression levels
by making further use of the tumour purity and CIBER-
SORT immune cell proportion estimates. While the estima-
tion of the levels of various cell types, tumour, stromal or
immune, has become routine in many cancer bioinformat-
ics analyses, few algorithms exist to infer, from gene expres-
sion levels in the bulk tumour, contribution from each cell
type, and they vary in performance (41) (bioRxiv, https:
//doi.org/10.1101/437533). Existing software packages re-
quire, along with tumour bulk expression profiles, normal
(matched or unmatched) RNA-seq samples (42,43), which
could be problematic since far fewer normal samples were
sequenced in RNA-seq profiling generated from large can-
cer cohorts. Here we devised a pipeline called RESPECTEx
(pronounced ‘Respect-X’, ‘REconstituting SPecific Cell-
Type Expression’), which use data of the levels of different
cell type in a given sample (extracted from CIBERSORT
(31)) to estimate the contribution from each cell type to
the bulk gene expression level. This is achieved by using
a linear regression approach, treating the cell-type propor-
tion estimates as covariates when modelling the bulk gene
expression levels (Figure 4A; see Materials and Methods).
Hence, we obtain for each cohort the mean estimated ex-
pression levels specific to each cell type, which are a straight-
forward, simple statistic for comparisons across cohorts.
RESPECTEx also allows downstream analyses specific to
our purposes: we can quantify whether the expression of
an APOBEC3 gene is immune or tumour (non-immune)
specific, by calculating the ratio of the expression in non-
immune cells to that in the immune component. A high
value indicates that the gene tends to be expressed more
by the non-immune, but less by the immune component of
the cell mixture (Figure 4A). A comparison of this mea-
sure indicates that A3B expression is more specific to tu-
mour cells but less so to normal cells for the GTEx normals

(Figure 4B; Supplementary Figure S7; Supplementary Ta-
ble S7). To validate these comparisons on experimental data
and to obtain further insights into the cell-type specificity
of APOBEC3 gene expression in cancer, we also acquired
single-cell RNA-seq (scRNAseq) data from two studies, one
from breast tumours (20) and the other from lung can-
cer xenograft models (21), and produced heatmap visual-
izations of the expression levels of the APOBEC3 genes,
alongside with a panel of marker genes of different cell
populations (Figure 4C). In many single cells the expres-
sion pattern of the APOBEC3 genes resemble more closely
the cancer cell lines in comparison to the uncorrected tu-
mour expression values. In the scRNAseq data, cells with
high expression of the T cell marker CD3D often have high
A3G and A3C mRNA expression, while A3B mRNA ex-
pression is almost exclusive to cells in which proliferative
markers are highly expressed (Figure 4C; Supplementary
Figure S8). Since RNA-seq data from pooled single cells for
each tumour were also available for the breast cancer cohort
(20), we decided to test the performance of RESPECTEx
on these pooled samples and see whether RESPECTEx-
reconstituted gene expression of specific cell-types recapit-
ulate marker gene-positive single-cell samples. We success-
fully obtained estimates of tumour and various immune cell
types (see Methods) for n = 8 tumour samples. The ex-
pression specific for tumour cells and CD8+ T cells esti-
mated using RESPECTEx were in broad agreement with
mean expression levels in MKI67+ single cells (for tumour)
and CD8A+ single cells (for CD8+ T cells) (Figure 4D),
confirming the validity of inferences by the RESPECTEx
pipeline. Results vary from one cell type to another (Sup-
plementary Figure S9): the inference is most accurate in es-
timating expression specific to tumour cells (at least ∼ 60%
in this dataset), but works less well for cell types which are
estimated to be very rare in the tumour admixtures (e.g.
monocytes, which in all our cases represent <1% of the
tumour cell admixtures, see Supplementary Table S9 and
Supplementary Figure S9). Larger cohorts with improved
cell type proportion estimation methods could enhance the
precision. We envisage that larger datasets on both single-
and pooled-cells could verify the accuracy of RESPECTEx-
inferred expression.

Altogether, RESPECTEx extends beyond existing tools
(31) which are routinely used to obtain cell type propor-
tions in tumour cell mixtures. It can be integrated into ana-
lytic pipelines to quantify and compare gene expression lev-
els in tumour and different immune cell types. We demon-
strate the distinct expression levels and patterns of the seven
APOBEC3 genes in cancer, contrast the immune-related
background of A3G and other APOBEC3s with the absence
of such involvement for A3B, and highlight the importance
of differentiating signals from immunotypic cells in the ob-
served bulk gene expression data.

Functional barcoding of gene communities co-expressed with
APOBEC3 genes

The results of the expression analysis could imply that each
APOBEC3 member is co-expressed with distinct genes,
and thus specialises in different biological functions. There-
fore, we sought to extract and analyse genes co-expressed

https://doi.org/10.1101/437533
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Figure 5. A schematic on extracting and annotating APOBEC3 gene co-
expression. (A) Co-expressing genes with each APOBEC3 gene were de-
fined as genes that have a stronger correlation with the APOBEC3 gene in
question (absolute correlation Z-score > 2) than the others. We visualized
this co-expression network by fixing the seven APOBEC3 genes on a cir-
cular axis and constructing a circular visualization (‘Circos plot’). The co-
expressing genes were aligned along the circular axis and connected to the
relevant APOBEC3 genes. The extent of shared co-expression networks
is illustrated by the number of edges which cross the centre of the Cir-
cos plot. (B) For functional annotation of the co-expressing genes we used
Gene Ontology (GO) gene set collections and other gene sets curated from
publications. Overlap of a co-expressing gene with a gene set is indicated
with a stroke, eventually generating a ‘functional barcode’.

with APOBEC3 genes and study their functional anno-
tation. We analysed bulk transcriptomic data, and com-
pared the correlations of the expression values of each gene
with that of each APOBEC3 gene. We extracted strong co-
expressing genes (normalized z-score > 2 or < –2, see Ma-
terials and Methods) with each of the APOBEC3 mem-
bers (Figure 5; Supplementary Figure S10; Supplemen-
tary Table S10). Some genes are found to co-express with
multiple APOBEC3 genes, while others are unique to one
APOBEC3 gene. To aid the comparison of such gene co-
expression patterns across cohorts, we have developed a
framework to visualize these gene co-expression data. We
first deployed a circular representation (Figure 5A; see Ma-
terials and Methods), where overlap in the co-expressing
genes of APOBEC3 family members are denoted using
colour-coded edges which cross over the centre of the plot

(Supplementary Figure S13). We then carried out exten-
sive gene set analyses, to characterize functions of these co-
expressing genes, by integrating gene sets from databases
(e.g. Gene Ontology [GO] Biological Processes), manually-
curated gene sets representative of different DNA Dam-
age Response (DDR) pathways (26), and different immune
cell populations (27). Gene sets representative of each cell
cycle phase were also analysed: these were derived from
a recent meta-analysis of genes that showed cell cycle
phase-specific expression (28) (Supplementary Figure S11).
To represent these annotations, we devise ‘functional bar-
codes’: the co-expressing genes were first sorted according
to their correlation with the APOBEC3 gene in question,
and then annotated by considering whether each gene over-
laps with our collected gene sets: such mapping was repre-
sented by strokes drawn next to the co-expressing gene (Fig-
ure 5B). Eventually this constructed ‘functional barcodes’
that summarized the functional enrichment of the gene co-
expression of each APOBEC3 gene (Supplementary Figure
S12). This is akin to electrophoretic methods in molecular
biology, where molecules are resolved on a gel by means of
their sizes and generates unique visual patterns: here the
co-expressing genes are ‘resolved’ by the correlations they
exhibit with APOBEC3 genes, and unique ‘barcodes’ are
generated based on their functional annotation. Such stroke
annotations have been routinely featured in visualizing sta-
tistical evaluation of biological pathway enrichment (24);
here we take extensive use of them to compare co-expression
functional enrichments across APOBEC3 genes, and iden-
tify similarities (and/or differences) in their functional in-
volvement.

The functional barcodes for co-expressing genes in all
examined cohorts can be browsed interactively on http:
//fraternalilab.kcl.ac.uk/apobec-barcodes/. By querying the
online applet (created using R shiny), users can browse the
barcodes interactively to look in detail at the annotation of
each gene depicted, and download the underlying data for
their own further analyses. Users can also go into finer gran-
ularity, and browse on the applet functional barcodes gen-
erated for gene set signature for a specific immune cell type
(say, CD8+ T cells). Here, as an example, an APOBEC3
gene co-expression network for TCGA breast tumours can
be found in Figure 6A. We observe differences between
APOBEC3 members in the co-expression data. A striking
feature is the isolation of the A3B co-expressing genes: only
a few connections with those of other APOBEC3s are ob-
served. We then compared the functional barcodes of these
co-expressing genes: A3B co-expressing genes are typically
related to cell cycle and DDR pathways; in contrast, A3G
and A3H have co-expressing genes that are strongly en-
riched in immune processes, and in adaptive and innate im-
mune cell populations (Figure 6B). All other APOBEC3
genes have similar immune-related gene co-expression part-
ners as in the cases of A3G and A3H; the only exception
is A3A, which has additional cell cycle/DDR related co-
expressing genes (Supplementary Figure S12). A statisti-
cal Gene Set Enrichment Analysis (GSEA) procedure re-
inforces this observation; here we subject these data to a
Principle Component Analysis (PCA) and present it in a
bi-plot (Figure 6C). It shows that the loadings which rep-
resent co-expressing genes of A3A and A3B are orthogo-

http://fraternalilab.kcl.ac.uk/apobec-barcodes/
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Figure 6. APOBEC3 genes have different co-expression partners. Data from the TCGA breast invasive carcinoma (BRCA) cohort is shown as an example.
(A) Circos plot representation of the gene co-expression network. (B) Functional barcodes of co-expression partners of the seven APOBEC3 genes. For
each of the APOBEC3 gene, its co-expressing genes were sorted from left to right by decreasing correlation values. (C) Gene set enrichment analysis
(GSEA) of the co-expression partners. The normalized enrichment scores of the GSEA tests over our curated gene sets for co-expression partners of all
seven APOBEC3 gene were projected onto the first two principle components in a Principle Component Analysis (PCA). One dot represents one gene
set (color-coded as per classes of gene sets, see figure legend). Factor loadings (indicated in arrows) show the distinction in pathway enrichment for the
co-expression partners of different APOBEC3 genes. Some data points were labelled in the plot; see Supplementary Figure S15 for a completely labelled
version. MDSC, myeloid-derived suppressor cells; NK, natural killer cells.

nal to other APOBEC3 genes in terms of functional path-
way enrichment. The co-expression partners of the former
are enriched in cell cycle and DDR gene sets, while co-
expression partners of the other APOBEC3s are, in con-
trast, characterized by enrichment in different adaptive (e.g.
T cells) and innate immunity (e.g. myeloid-derived suppres-
sor cells [MDSC], natural killer cells) populations (Figure
6C; Supplementary Figure S15). The distinct co-expression
of A3B is consistent across different cancer types and sam-
ple types (tumour/cancer cell line/normal, Supplementary
Figure S13) from which co-expressed genes could be suc-
cessfully extracted. In our quantification of the overlap
of co-expressing genes from different APOBEC3 across

each cohort, the genes that are co-expressed with A3C,
A3D, A3F, A3G or A3H overlap extensively, especially in
the tumours (Supplementary Figure S17). Data from can-
cer cell lines typically display weaker distinctions among
APOBEC3 genes (Supplementary Figure S12; possibly re-
lated to the extensive variations inherent to gene expression
data collected from this type of samples, see Discussion), in
TCGA and GTEx cohorts we observe consistently the dis-
tinctiveness in terms of the functional annotation of A3B-
coexpressing genes. Many genes which co-express with A3B
amongst most tumour types are known to be involved in
processes such as cell cycle regulation (CDC25C, FOXM1),
DNA replication (CDC6, CDC45) and the maintenance of
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the mitotic spindle (AURKB, CDCA5, CDCA8), while the
examination of some immune markers shows clear corre-
lation of their expression with that of A3G and A3H, but
not with A3B (Supplementary Figure S18). Here, our anal-
yses provide a perspective of the functional consequence of
such transcriptomic phenomena: the difference in gene co-
expression amongst APOBEC3 family members is consis-
tent across different cohorts, and reflective of their diversity
in terms of the biological processes in which they function
and the cell types in which they are expressed. Importantly,
the functional diversification of APOBEC3 genes is not ex-
clusive to cancers, and specifically those cancer types with
reported APOBEC3 mutagenesis (4).

Annotating genes which distinguish APOBEC3 activation
and mutational signature

Considering APOBEC3-associated mutagenesis has been
observed in some but not all cancer types (e.g. breast,
lung etc., see Introduction), and that the co-expression
analysis did not discriminate across cancer types (Figure
6B; Supplementary Figures S13–S17), we decide to fur-
ther investigate this. We focus on those cancer types for
which a widespread APOBEC3-mediated mutational sig-
nature has been reported (4), and extract the co-expressing
genes which display significantly different correlations with
an APOBEC3 gene, when compared to those cancer types
without such reported signatures (Figure 7A). Next, we an-
notate the functions of these ‘distinguishing genes’. When
we consider the A3B distinguishing genes, we observe
an over-representation of genes involved in SUMOylation
and lysine modification (Figures 7B and C). This includes
SUMO2, the SENP genes (SENP2 and SENP5, which
encode peptidases activating SUMO), and PIAS2 (whose
product is a E3 SUMO ligase). Functional barcodes of these
A3B distinguishing genes reveal the enrichment of proteins
that have been found SUMOylated (30) or lysine-acetylated
(29) in cancers (Figure 7D). The same is also observed for
A3A distinguishing genes. Importantly, such enrichment is
absent in the control where we analysed GTEx healthy sam-
ples (Supplementary Figure S20; these visualizations can
also be browsed interactively on our online applet). This
analysis suggests that in tumour types where an APOBEC3-
mediated mutational signature has been documented, the
co-expressing genes of some APOBEC3s are distinguish-
able from analogous gene co-expression networks found
in tumour types which lack such a signature. While A3B
was not detected to harbour these post-translational modi-
fications (PTMs) in the mass-spectrometry profiling exper-
iments from which the gene sets were derived (29,30), the
PTM signature of A3B distinguishing genes reflects a pos-
sible connection of the A3B enzyme with regulation of acti-
vated processes in these cancers, such as DDR and the cell
cycle. In fact, A3B is phosphorylated in the G1 phase ac-
cording to a mass-spectrometry phosphoproteomics study
(44), which might represent one possible mechanism of reg-
ulation. More broadly, this analysis of the ‘distinguishing
genes’ lead us to conclude that APOBEC3 genes are clearly
different from one another in terms of the biological con-
texts where they are likely to be activated. This analysis also
complements the expression deconvolution analysis (Fig-

ures 2 and 4) in detailing the distinct roles these play in dif-
ferent cell types in a tumour. In general, our in-depth gene
co-expression analyses and ‘functional barcoding’ frame-
work can be exploited in prioritizing genes for experimental
investigations in dissecting the involvement of APOBEC3
genes in both cell proliferation and immunity in tumours.

DISCUSSION

APOBEC3 genes have been characterized as important
inhibitors of retroviral infections and retrotranspositions
(1,38–40,45–51), and transcription of these genes are acti-
vated in response to immune signals e.g. interferon-alpha
(IFN�) stimulation (19). Little is understood about the
mechanism of APOBEC3 activation in cancer, except that
a few signalling pathways (e.g. NF-�B and Protein Kinase
C (PKC) (52)) and driver events (e.g. ERBB2 amplification,
PTEN loss (53)) have been suggested to be associated with
A3B expression and/or the APOBEC3 mutational signa-
tures. Cescon and colleagues (54) sought to analyse A3B
co-expression in breast cancer, yet a systematic and ex-
tensive analysis to uncover functional differences among
all APOBEC3 genes in large datasets is lacking. Here we
present a pan-cancer, pan-tissue analysis capitalizing on
large repositories of gene expression data, and show that
the seven APOBEC3 genes can be distinguished both by
their expression patterns and their co-expression with other
genes (Figure 8). Our ‘functional barcodes’ effectively high-
light the striking functional differences of the APOBEC3
genes. We have made these available online as a R shiny ap-
plication, where users can browse interactively the gene an-
notation data, and download the underlying data tables for
further analyses (via http://fraternalilab.kcl.ac.uk/apobec-
barcodes/).

The major finding of this study is that not all the
APOBEC3 genes associate with immune cells and immune-
related functions in the same way, but instead correlate in
varying degrees with both immune and proliferative pro-
cesses in cancer (Figures 3 and 6). This is surprising, con-
sidering the close homology of the APOBEC3 deaminases
(13,55). All seven APOBEC3 members are capable of hy-
permutating cytosine bases on single-stranded DNA, and
even bind to the same DNA sequence (except for A3G,
where the substrate preference is only slightly different at
the 5’ end) (14–17). The transcriptional diversification of
the human APOBEC3 family which we demonstrate here
suggests that although the multiple APOBEC3 genes en-
code very similar enzymes, it is their expression and co-
expression patterns that differentiate their role in immune
versus proliferative processes. This finding is made possi-
ble by our RESPECTEx pipeline, which integrates tumour
purity estimates in attributing cell-type-specific gene expres-
sion levels. Tumour heterogeneity has been shown to be an
important factor to consider in the detection of differential
gene expression (56), the discovery of expression quantita-
tive trait loci (eQTL) (57), and gene network mining (58)
in cancer. We believe RESPECTEx can be integrated into
the routine assessments of tumour purity in cancer RNA-
seq analyses, thereby helping derive new biological insights
from the analysis of such transcriptomic datasets.

http://fraternalilab.kcl.ac.uk/apobec-barcodes/
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Figure 7. Distinct molecular signatures of genes that distinguish cancer types with widespread APOBEC3-mediated mutational signatures. (A) An example
of a ‘distinguishing gene’. The correlation of SUMO2 with A3B expression in all TCGA cohorts is plotted. The difference in median between the two groups,
here denoted ‘DM’, was taken to rank the gene list for the generation of functional barcodes and GSEA. (B) GSEA result for the A3B distinguishing genes in
the GO PEPTIDYL LYSINE MODIFICATION gene set is shown. This is the only GO biological process with q < 0.05 in the GSEA analysis. (C) Results
from Reactome pathway analysis of A3B distinguishing genes. q-values for the top 5 pathways are shown. (D) Functional barcodes of the distinguishing
genes for A3A and A3B. q-values from the GSEA analyses of these six gene sets with the ranked gene lists are given and colour-coded (red: q < 0.05
and blue otherwise). Genes mentioned in the text are labelled. See Supplementary Figure S19 for distinguishing gene barcodes extracted from the TCGA
cohorts for other APOBEC3 genes, and Supplementary Figure S20 for those extracted from the GTEx normals.

Another observation we have made, which is consistent
across datasets, is that A3B is associated with different bi-
ological processes than the other APOBEC3 genes. In all
our analyses A3B consistently demonstrates its associa-
tion with proliferative cells and processes, in contrast to
other APOBEC3s, especially A3G and A3H, which are re-
vealed in our analysis as more immune cell related (Figure
6), congruent with knowledge about their expression pat-
terns in these cells (18,19). Taken as a whole, these find-
ings suggest a unique role of A3B in cancer through an
inherent involvement in the cell cycle and DDR processes,
and reinforce previous reports which implicate A3B as the
causative agent for mutations in cancers (5,10,59,60). Our
analysis adds to this by providing insights into the molecu-
lar mechanism, by extracting genes and pathways that may
functionally cooperate to cause A3B mutagenesis in can-
cer. A comprehensive mapping of transcription factor bind-
ing sites of the APOBEC3 genes and their co-expressing
genes could further our understanding towards the mech-
anistic bases of such gene co-expression that we have ob-
served. It has been shown that the transcription of the
APOBEC3 family is controlled by p53 (61), and that the re-
cruitment of the DREAM complex downstream of p53 to

the A3B gene promoter controls its expression and explains
its cell-cycle-dependent expression pattern (62). However,
other APOBEC3s which can enter the nucleus, e.g. A3A
(63), might also contribute to mutagenesis in the cancer
genome. IFN� is known to potently activate APOBEC3
gene expression, particularly A3A (19). In tumours, where
interferon signalling is deregulated and modulatory to the
growth and survival of cancer cells (64–66), the relevance
of IFN� to APOBEC3 expression in tumour tissues awaits
further studies. It has been shown that p53 modulates the
effect of type-I interferon on APOBEC3 expression (61).
This suggests one way in which the expression of APOBEC3
genes could possibly be altered in cancer, where both TP53
mutations and inflammation are common. A possible exam-
ple is A3H: it has been identified as p53-responsive (28,67–
69). Here we observed immune-related gene co-expression
(Figure 6) for A3H, but it was correlated more with cell
cycle/DDR genes in the affected tumour types with ele-
vated APOBEC3-signature mutations (Supplementary Fig-
ure S19). The dual perspective of analysing gene expression
and co-expression suggests highlights distinctive character-
istics of A3C, which is expressed highly across tissue and
cancer types (Figure 1). A3C, however, is evidently immune-
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Figure 8. Summary of analyses. (A) This work incorporates gene expres-
sion and co-expression data, presents bioinformatics analyses of the data
(deconvolution of expression and gene set annotation respectively), and in-
fers functional diversification of the APOBEC3 genes in cancer and non-
cancer samples. (B) A schematic of gene expression analyses in this paper.
Data from breast tissues/cells are shown here as illustration. The com-
parison between data from cancer cell lines, normal tissues (cf Figure 1),
and RESPECTEx-reconstituted expression levels in the cancer and im-
mune components of tumours (cf Figure 4) displays substantial differ-
ences in the expression patterns of APOBEC3 genes across various cell
types. Data shown here are identical to that in Figures 1 (for normal
and cancer cell lines) and 4 (for the RESPECTEx-reconstituted cell pop-
ulations in tumours). See Supplementary Figures S22 (for all examined
cohorts) and S23 (RESPECTEx-reconstituted expression profiles for im-
mune and non-immune component of TCGA tumours and GTEx nor-
mal tissues) for similar bar-plots. (C) A schematic of Gene Set Enrichment
Analysis (GSEA) of APOBEC3 co-expressing genes. Here data on TCGA
Breast Tumours were depicted. The enrichment of two GO gene sets, Cell
Cycle and Immune Response, were shown, and the Normalized Enrich-
ment Score (NES) of these gene sets for the co-expressing genes of each
APOBEC3 are plotted. Positive NES denotes an enrichment in the gene
set; negative denotes depletion. See Supplementary Figure S24 for similar
bar-plots visualized for all examined cohorts.

related when we analysed the association of the change of
its expression with respect to cell type composition (Figures
2 and 3), which is confirmed by the immune-response func-
tional barcodes (Figure 7B and C; Supplementary Figure
S12) we observe across tissue/cancer types. A more holis-
tic understanding of the regulation of APOBEC3 expres-
sion will explain the multifaceted roles of this gene family
in both proliferative and antiviral contexts, and the relation-
ships between APOBEC3-mediated mutational signatures,
immune infiltration and tumour progression (70,71).

Our analyses have been partially limited by the nature
of the data and the samples. Firstly, the interpretation of
the cancer cell line data has been challenging, as the co-
expression data on cancer cell line cohorts are not reflective
of the TCGA datasets (Supplementary Figures S13–S17).
We examined the variations in mRNA expression levels of
genes, classified by their functions in cancer cell lines and
tumours, and found extensive differences in terms of the ex-
tent of such variations between these two types of samples
(Supplementary Figure S21). This could impact on the ex-

traction of expression correlations. Nevertheless, the single-
cell RNA-seq data of tumours (Figure 4C; Supplementary
Figure S8) reveals that different cell types, immune or prolif-
erative, express different sets of APOBEC3 genes. Secondly,
some of our analyses were limited by the size of cohorts.
For instance, the accuracy of reconstituted expression ob-
tained from the RESPECTEx pipeline, when applied to a
small cohort (e.g. in Figure 4D where we applied to the
breast cancer cohort (20) with n = 8 tumours), appears to
vary from one cell type to the other (Supplementary Fig-
ure S9). We suggest that the RESPECTEx deconvolution
reflects the expression landscape of the seven APOBEC3
genes in the tumour cell admixture, as when taken together
with our correlation analysis of tumour bulk gene expres-
sion with estimates of tumour purity (Figure 2) and immune
cell levels (Figure 3), they all support the same trend of di-
versification in terms of their cell-type specificity of expres-
sion. This shows the importance of interpreting these re-
sults together with other analyses. Thirdly, one might ques-
tion whether the cell cycle/DDR functional enrichment of
A3B co-expressing genes that we describe is the cause or the
consequence of its activation. While the cross-sectional na-
ture of our RNA-seq data poses limitations for this type
of analysis, our results suggest a G2/M-enriched gene co-
expression signature for A3B in tumours (Figure 6B; Sup-
plementary Figures S12, S15). This is consistent with a re-
cent report on the effects of A3B overexpression in a cancer
cell line (59), where an extensive G2/M arrest of the cells
was observed. Further experimental and theoretical inves-
tigations could be directed to verify whether the A3B pro-
tein is activated in specific phase(s) of the cell cycle, and the
mechanism behind the role of this enzyme in targeting of
genomic regions to perform mutagenesis.

To conclude, we have presented results using our pan-
cancer analysis pipeline to delineate cell type specificity of
APOBEC3 gene expression in a tumour cell mixture, by ex-
amining gene expression and co-expression data and their
correlations with inferred cell type composition of tumour
samples. This analysis deeply annotates an additional level
of biological information, the transcriptome, adding to our
functional understanding of the APOBEC3 family. By esti-
mating immune cell proportions using CIBERSORT (31)
coupled with RESPECTEx, we have addressed the well-
recognized issue of tumours as admixtures of cancerous and
infiltrated cells, and attributed cell-type-specific expression
to different cell populations in tumours. Using curated gene
sets and annotating gene co-expression, we developed anal-
yses and visualization tools to functionally ‘barcode’ gene
co-expression data. The approach developed here can be ap-
plied more broadly to the analysis of cell-type-specific gene
expression and gene function, and such an approach can as-
sist cancer biologists in prioritizing gene targets to be inves-
tigated, in a biological context appropriate to the cell types
in which these genes are likely to be expressed.

DATA AVAILABILITY

All data generated from these analyses are included in the
Supplementary Data accompanying this paper. The code
for RESPECTEx, along with test input and expected out-
put (based on the GSE75688 breast cancer cohort, cf.
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Figure 4), is available on http://github.com/fraternalilab/
RESPECTEx. We have produced an applet using R shiny
(http://shiny.rstudio.com) (v1.0.5), specifically designed to
visualize the functional barcode visualizations, for both the
co-expressing gene analysis (Figure 6B) and the distinguish-
ing gene analysis (Figure 7D). This is accessible via http:
//fraternalilab.kcl.ac.uk/apobec-barcodes/. Users can view
these visualizations, hover over the barcodes to view inter-
actively the genes annotated in the barcodes for each gene
set and each data cohort we have examined, and download
the underlying data tables for their own further investiga-
tions.
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