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Abstract: Chronic wounds develop when the orderly process of cutaneous wound healing is delayed
or disrupted. Development of a chronic wound is associated with significant morbidity and financial
burden to the individual and health-care system. Therefore, new therapeutic modalities are needed
to address this serious condition. Mesenchymal stem cells (MSCs) promote skin repair, but their
clinical use has been limited due to technical challenges. Extracellular vesicles (EVs) are particles
released by cells that carry bioactive molecules (lipids, proteins, and nucleic acids) and regulate
intercellular communication. EVs (exosomes, microvesicles, and apoptotic bodies) mediate key
therapeutic effects of MSCs. In this review we examine the experimental data establishing a role
for EVs in wound healing. Then, we explore techniques for designing EVs to function as a targeted
drug delivery system and how EVs can be incorporated into biomaterials to produce a personalized
wound dressing. Finally, we discuss the status of clinically deploying EVs as a therapeutic agent in
wound care.

Keywords: chronic wound; extracellular vesicles; mesenchymal stem cell; wound healing; drug
delivery; biomaterial

1. Introduction

Cutaneous wound healing is complex, consisting of overlapping processes: hemosta-
sis/coagulation, inflammation, proliferation, and remodeling [1]. This requires intercel-
lular communication among resident cells and entering immune cells through soluble,
membrane-bound, and extracellular matrix (ECM) molecules [1,2]. Wounds that fail to heal
in a timely process are called chronic wounds [3]. A 2004 meta-analysis found that in the
United States skin ulcers and wounds were associated with USD 9.7 billion in annual direct
medical costs [4]. For patients, chronic wounds cause pain, loss of productivity, a profound
impact on quality of life, and increased mortality [4–6]. Risk factors for the development
of chronic wounds include advanced age, diabetes mellitus with associated peripheral
vascular disease and peripheral neuropathy, as well as chronic kidney disease and immo-
bility [5,7]. The societal burden of chronic wounds will increase as the population ages
and the prevalence of co-morbid chronic conditions continues to rise. Current advanced
therapies, including topical application of growth factors [8], extracellular matrix prod-
ucts [9], and skin substitutes [10], are not always effective [11]. Therefore, it is imperative
that cutting-edge therapeutics be identified to treat chronic wounds.

The goals of this review are as follows: (1) briefly discuss the benefits and limitations
of mesenchymal stem cell (MSC) therapy for treating chronic wounds and how MSC
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derived extracellular vesicles (EVs) overcome many of these limitations; (2) examine in
detail the effects of MSC-EVs on each stage of the wound healing process; (3) explore
techniques for modifying MSC-EVs; and (4) highlight the safety and regulatory aspects
of using MSC-EVs as a therapeutic agent in wound care. We provide new perspectives
regarding how MSC-EVs can be engineered to further enhance their therapeutic efficacy by
synthesizing our understanding of chronic wound pathophysiology and the mechanism of
action of MSC-EVs.

2. From Mesenchymal Stem Cells to Extracellular Vesicles
2.1. Lessons Learned from Mesenchymal Stem Cells

Stem cells provide promise in the field of regenerative medicine. They possess the
capacity for self-renewal and differentiation into multiple cell types. Ideally, stem cells
could improve the quantity and quality of healing by accelerating the rate of wound
healing, transforming non-healing wounds into actively healing wounds, reducing scarring,
and regenerating skin appendages [12]. Multiple stem cell sources exist, with distinct
advantages and disadvantages to each, and are reviewed elsewhere [12,13].

Amongst the stem cell populations, mesenchymal stem cells (MSCs) have received the
most attention in wound healing research [14]. MSCs are distributed throughout the body
and are believed to play important roles in tissue homeostasis, repair, and regeneration [15].
The primary sources of MSCs for clinical research are the bone marrow (BM-MSCs), adipose
tissue (AD-MSCs), and umbilical cord (UC-MSCs) [16]. A particular advantage of MSCs
is they are relatively easy to harvest from adult tissue or tissue that would be otherwise
discarded, limiting ethical concerns regarding their use. MSCs are defined as plastic
adherent cells that express CD73, CD90, and CD105, while not expressing hematopoietic
lineage markers CD14, CD34, CD45, and HLA-DR, and having the capacity to differentiate
into osteoblasts, chondroblasts, and lipoblasts [17].

Given their immune-privileged/immune-modulatory nature, BM-MSCs can be used
in unmatched recipients without the need for typing [18,19]. The clinical utility of BM-MSCs
is enhanced by the ability to use allogeneic cells. MSCs exert an array of beneficial effects
through each phase of the wound healing process [20,21]. Clinical trials have demonstrated
that autologous and allogeneic MSC therapy aids in chronic wound closure [22–30]. To
date, there have been well over 1000 clinical trials using MSCs [31,32]. Thus far, no
significant adverse events have been reported related to the administration of these cells
in humans [33]. The substantial therapeutic benefits offered by MSCs however do not
exist without potential drawbacks. The need to maintain cell viability imposes technical
challenges on cell generation, storage, transportation, and clinical administration. Murine
studies have raised concerns for pulmonary vascular congestion due to cells accumulating
in the pulmonary microvasculature [34] and ectopic tissue formation [35]. While MSCs are
considered less carcinogenic than other stem cell sources, this important caveat warrants
consideration. Critically, no evidence of tumor formation has been reported to date [32,36],
but continued surveillance is warranted. Concern for acquiring chromosome abnormalities
may limit the rate at which and the number of passages cells can be expanded in vitro [36].
Genetic modification of MSCs may allow for more precise targeting of specific biologic
problems and increase therapeutic efficacy [13]. Importantly, the tumorgenicity of any
stable genetic alteration needs to be considered prior to the delivery of modified cells to
a patient.

Despite the potential for MSCs to differentiate into multiple cell lineages, only a small
number of transplanted MSCs are incorporated into repaired tissue [37,38]. Instead, MSCs
are envisioned as a source of growth factors that promote tissue repair and potent immune
modulators [13,20,39,40]. For example, BM-MSC conditioned media (CM) can accelerate
wound healing and promote the recruitment of macrophages and endothelial cells [41].
Furthermore, it is recognized that many of the beneficial effects of MSCs in cutaneous
wound healing are mediated through the secretion of extracellular vesicles [42–47].
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2.2. Extracellular Vesicles

Extracellular vesicles (EVs) are lipid bilayer vesicles that can be secreted by all cell
types [48]. The term “extracellular vesicle” is generic, referring to any lipid bilayer secreted
vesicle. EVs are a heterogeneous population consisting of exosomes, microvesicles, and
apoptotic bodies (Figure 1a). They differ in size, morphology, density, cargo, biogenesis,
and biologic activity. Given the heterogeneity and challenges distinctly classifying these
populations, we will use the term EV throughout the paper to refer to all classes of vesicle.

Figure 1. Mesenchymal stem cell (MSC) extracellular vesicle (EV) formation and messaging. (a) Exosome formation
begins with membrane endocytosis of the early endosome (EE) to form intraluminal vesicles (ILV). ILVs are contained
within a multivesicular endosome (MVE). Exosomes are released following fusion of the MVE with the plasma membrane.
Microvesicles are released by ectocytosis and budding from the plasma membrane. Apoptotic bodies form from cells
undergoing apoptosis and may contain fragmented organelles. (b) Depiction of select EV contents that contribute to wound
healing. Additional EV contents are discussed in the main text and Table 1. (c) Released EVs interact with a recipient cell
through membrane receptors thereby initiating intracellular signaling. EVs can also deliver their cargo to the recipient cell
following endocytosis and back fusion within an MVE or by direct fusion with the plasma membrane. Lysis of EVs in the
extracellular space releases contents that then act on the recipient cells.

Exosomes are secreted intraluminal vesicles (ILV). Inward budding of the endosomal
membrane results in the formation of ILVs in a multivesicular endosome (MVE). Exosomes
are released by fusion of the MVE with the plasma membrane [49]. Microvesicles form
as outward protrusions (ectocytosis) of the plasma membrane [50]. A cell undergoing
apoptosis breaks down its cellular components and organelles and packages them into
apoptotic bodies [51,52].

EVs carry an array of bioactive molecules that regulate intercellular communica-
tion [53,54] and promote wound healing (Figure 1b) [42–47]. Additionally, EVs can deliver
functional mitochondria to recipient cells [55]. The content of EVs is highly heterogenous
and is influenced by the cell of origin, microenvironment, active signals within a cell, and
isolation procedures [56,57].
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Functional messenger RNAs (mRNA) are transferred between cells by EVs [58]. Mi-
croRNAs (miRNA) are selectively enriched in EVs and regulate gene expression in recipient
cells [59–61]. Further studies have identified that EVs contain genomic DNA, mitochon-
drial DNA (mtDNA), ribosomal RNA (rRNA), transfer RNA (tRNA), long noncoding RNA
(lncRNA), circular RNA (circRNA), and picoRNA (piRNA) [56,62–65].

Tetraspanin proteins are enriched in the membrane of EVs and regulate membrane
structure, trafficking, and fusion with recipient cells [66]. EVs also contain adhesion
molecules, ESCRT proteins, heat-shock proteins, cytoskeletal proteins, enzymes, and
proteins involved in antigen presentation, membrane trafficking, and signal transduc-
tion [48,53]. Additionally, proteins such as Wnt3a are associated with the exterior of
EVs [67].

EV membranes are enriched with cholesterol, sphingomyelin, phosphatidic acid, and
ceramides. EVs have also been shown to transport bioactive lipids such as prostaglandins,
leukotrienes, and fatty acids [68]. Online databases have been created to catalogue EV
cargos, namely EXOCARTA (exocarta.org, accessed on 16 September 2021) and Vesiclepedia
2019 (microvesicles.org, accessed on 16 September 2021) [69,70].

The biodistribution of EVs is dependent on their cell of origin and expression of
surface molecules [56]. Their half-life in circulation ranges from minutes to hours [71–73].
Clearance by the reticuloendothelial system can be prolonged by the expression of anti-
phagocytic surface proteins: CD47, THBS-1, and SIRPα [74]. Upon reaching a target EVs
may bind surface receptors initiating intracellular signaling or deliver their contents by
endocytosis or fusion with the plasma membrane (Figure 1c) [48]. Additionally, the lysis of
EVs releases their cargo into the extracellular space [75,76].

3. Role for MSC Extracellular Vesicles in Wound Healing

There is accumulating pre-clinical evidence that MSC-EVs are beneficial in cutaneous
wound healing (Table 1). In this section, we will discuss how MSC-EVs can influence key
components of the wound healing process.

Table 1. Studies that evaluated an in vivo role for MSC-EVs in wound healing.

Study EV Source Model Findings

Fang et al.
2016 [77]

Human
UC-MSC

Mouse skin wound
-Local injection

EVs reduced scar formation and myofibroblast
accumulation.

In vitro dermal fibroblasts

EVs suppressed TGF-β induced myofibroblast formation.
EVs were enriched in miR-21, miR-23a, miR-125b, and
miR-145. miRNA delivery reduced TGF-β/SMAD2
signaling in fibroblasts.

Hu et al. 2016
[78]

Human
AD-MSC

Mouse skin wound
-Local injection

EVs improved rate of wound healing, increased Col1 and
Col3 mRNA on Day 3 and Day 5 post wounding, and
decreased Col1 and Col3 mRNA on Days 7 and 14.

Mouse skin wound
-Intravenous injection

EVs migrated to wound site (Days 5–14) and spleen and
promoted wound healing.

In vitro fibroblasts EVs promoted fibroblast proliferation and migration,
increased mRNA for N-cadherin, COL1, COL3, and elastin.

Zhang et al.
2018 [79]

Human
AD-MSC

Mouse skin wound
-Local injection

EVs improved rate of wound healing, decreased scar size,
and neoangiogenesis.

In vitro fibroblasts

EVs promoted fibroblast proliferation and migration, and
increased mRNA for COL1, COL3, MMP1, FGF2, and
TGF-β1. Fibroblasts had increased p-AKT. Application of
PI3K/AKT inhibitor Ly294002 abrogated the EV-induced
effects on fibroblasts.

He et al. 2019
[80]

Human
BM-MSC

Mouse skin wound
-Intravenous injection

EVs promoted wound healing and polarization of
macrophages to M2 phenotype.

In vitro human
monocytes/macrophages

EVs promoted M2 macrophage polarization in part through
transfer of miR-223.
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Table 1. Cont.

Study EV Source Model Findings

Ren et al.
2019 [81]

Human
AD-MSC

Mouse skin wound
-Local injection

EVs accelerated wound healing, re-epithelialization,
collagen deposition, and neovascularization.

In vitro fibroblasts,
keratinocytes (HaCaT), and
endothelial cells (HUVEC)

EVs promoted proliferation and migration, and stimulated
AKT and ERK signaling.

Cheng et al.
2020 [82]

Human
UC-MSC

Mouse skin wound
-Local injection

EVs accelerated re-epithelialization and promoted collagen
fiber maturation.

In vitro dermal fibroblasts and
keratinocytes (HaCaT)

EVs promoted proliferation and migration. The effect was
blocked by miR-27b inhibitor. Proposed miR-27b acts by
suppressing ITCH, thereby activating JUNB/IRE1α.

Jiang et al.
2020 [83]

Human
BM-MSC

Mouse skin wound
-Local injection

EVs from MSCs with TSG-6 overexpression (TSG-6-EVs)
and knock-down (TSG-6-KD-EVs). EVs reduced scar
formation, reduced production of TGF-β1, Collagen I and
III, and αSMA protein, and suppressed SMAD2/3 signaling.
TSG-6-EVs enhanced the effect of EVs, the effect was lost in
TSG-6-KD-EVs, and when TSG-6 neutralizing antibodies
were present.

Liu et al.
2020 [84]

Mouse
BM-MSC

Mouse skin wound
-Topical in Pluronic F127
hydrogel

Topical EVs accelerated wound healing, limited
inflammatory infiltrate, and decreased scar size.

In vitro mouse macrophages
EVs polarized macrophages towards M2 phenotype.
Conditioned media from EV treated macrophages promoted
fibroblast proliferation and migration.

Qiu et al.
2020 [85]

Mouse
BM-MSC

Mouse skin wound
-Local injection

EVs from MSCs treated with EVs from neonatal serum and
adult serum. MSC-EVs accelerated wound healing and
promoted neoangiogenesis. Neonatal serum stimulated
MSC-EVs showed more robust effect.

In vitro endothelial cells
(HUVECs)

MSC-EVs promoted HUVEC proliferation, migration, and
tube formation, and increased p-AKT and p-eNOS.
Neonatal serum stimulated MSC-EVs showed more robust
effect.

Zhang et al.
2020 [86]

Human
AD-MSC

Mouse skin wound
-Local injection

EVs promoted mouse wound healing, proposed to occur in
AKT/HIF-1α dependent fashion.

In vitro HaCaT Keratinocytes EVs promoted HaCaT keratinocyte proliferation.

Zhao et al.
2020 [87]

Human
UC-MSC

Mouse skin wound
-Local injection EVs enhanced re-epithelialization and neoangiogenesis.

In vitro keratinocytes
(HaCaT)

EVs stimulated keratinocyte proliferation, migration, and
suppressed ROS induced apoptosis. Proposed effect was
through suppression of AIF nuclear translocation and
PARP-1 activation.

Li et al. 2021
[88]

Human
AD-MSC

In vitro human hypertrophic
scar fibroblasts

EVs decreased collagen deposition, trans-differentiation of
fibroblasts-to-myofibroblasts, and formation of
hypertrophic scar. EVs were noted to express miR-192-5p,
which can suppress IL-17RA/SMAD axis.

Diabetic wounds:

Wang et al.
2019 [89]

Mouse
AD-MSC

Mouse diabetic wound
-Topical in complex hydrogel
(Pluronic F127, oxidative
hyaluronic acid, and
Poly-L-lysine)

EVs improved wound healing and neovascularization. The
effect was improved when EVs were loaded in complex
hydrogel.
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Table 1. Cont.

Study EV Source Model Findings

Li et al. 2020
[90]

Mouse
BM-MSC

Mouse diabetic wound
-Local injection

EVs from MSCs overexpressing lncRNA H19 (H19-EVs).
Only H19-EVs promoted wound healing, decreased
inflammatory infiltrate, and increased granulation tissue
formation.

In vitro human fibroblasts
from diabetic foot ulcers and
health control

H19-EVs reduced miR-152-3p expression in fibroblasts from
diabetics and increased PTEN expression.

Shi et al. 2020
[91]

Mouse
AD-MSC

Mouse diabetic wound
-Local injection

EVs accelerated wound healing, increased angiogenesis,
suppressed apoptosis, and increased autophagy markers
SIRT1 and LC3. The effects were further enhanced with EVs
from mmu_circ_0000250 overexpressing MSCs.

In vitro endothelial cells
(HUVECs)

EVs promoted HUVEC survival under high glucose
conditions and increased autophagy. This was enhanced by
loading with mmu_circ_0000250, which was shown to
increase SIRT1 mediated autophagy.

Yang et al.
2020 [92]

Human
UC-MSC

Mouse diabetic wound
-Topical in Pluronic F127
hydrogel

EVs accelerated wound healing and angiogenesis, increased
expression of VEGF and TGF-β1.

Pomatto et al.
2021 [93]

Human
BM-MSC
AD-MSC

Mouse diabetic wound
-Topical in
carboxymethylcellulose

AD-MSC-EVs, but not BM-MSC-EVs, promoted the rate of
wound healing. Comparative in vivo analysis of scar and
angiogenesis was not performed.

In vitro fibroblasts,
keratinocytes, and endothelial
cells

BM-MSC-EVs promoted proliferation of keratinocytes and
endothelial cells, and promoted viability of fibroblasts,
keratinocytes, and endothelial cells. AD-MSC-EVs
promoted only the proliferation of endothelial cells. Protein
and miRNA analysis indicated BM-MSC-EVs are enriched
for proliferative factors, whereas AD-MSC-EVs are enriched
in proangiogenic factors.

Ti et al. 2015
[94]

Human
UC-MSC

Rat diabetic wound
-Local injection

EVs from LPS preconditioned MSCs (LPS Pre-EVs)
decreased inflammatory cell infiltration and polarized
macrophages towards M2.

In vitro human monocytes
(THP-1)

LPS Pre-EVs induced M2 polarization. EVs transferred
Let-7b, reducing TLR-4 expression and NF-kB activation.

Li et al. 2018
[95]

Human
AD-MSC

Rat diabetic wound

EVs from MSCs overexpressing NRF2
(NRF2-EVs).Endothelial progenitor cells (EPC) + NRF2-EVs
promoted wound healing better than EPC + AD-MSC-EVs,
and both were better than EPC alone or control.

In vitro human epithelial
progenitor cells (EPC)

EVs decreased EPC senescence under high glucose
conditions. NRF2-EVs inhibited inflammatory cytokines
and ROS.

Ding et al.
2019 [96]

Human
BM-MSC

Rat diabetic wound
-Local injection

EVs from deferoxamine stimulated MSCs (DFO-EVs). EVs
promoted wound healing and neoangiogenesis, and
DFO-EVs were more effective.

In vitro endothelial cells
(HUVECs)

DFO-EVs were more potent stimulators of HUVEC
proliferation and tube formation than EVs. DFO-EVs
proposed to transfer miR-126 to HUVECs, which suppresses
PTEN, and thereby activates AKT signaling.

Liu et al.
2020 [97]

Human
BM-MSC

Rat diabetic wound
-Local injection

EVs from MSCs treated with melatonin (MT-EVs). EVs
promoted wound closure, Collagen I and III expression, and
M2 macrophage polarization; MT-EVs enhanced the effect
of EVs.

In vitro mouse macrophages
(RAW264.7)

MT-EVs were more potent than EVs at polarizing
macrophages to M2 phenotype.
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Table 1. Cont.

Study EV Source Model Findings

Yu et al. 2020
[98]

Human
BM-MSC

Rat diabetic wound
-Local injection

EVs from MSCs treated with atorvastatin (ATV-EVs). EVs
promoted wound healing and angiogenesis. ATV-EVs were
more effective.

In vitro endothelial cells
(HUVECs)

EVs promoted proliferation, migration, and tube formation,
increased VEGF secretion, and activated AKT/eNOS
signaling. ATV-EVs produce a larger magnitude effect
compared to standard EVs. ATV-EVs proposed to work by
upregulating miR-221-3p in endothelial cells.

Burn wounds:

Shafei et al.
2020 [99]

Human
AD-MSC

Mouse burn wound
-Topical in alginate hydrogel

EVs accelerated wound closure, increased epithelial
thickness, collagen deposition, and neovascularization.

Zhang et al.
2015 [100]

Human
iPSC-MSC

Rat burn wound
-Local injection

EVs accelerated re-epithelialization, reduced scar width,
promoted collagen maturation, and stimulated
neoangiogenesis. Effects depended on EV transfer of Wnt4.

In vitro fibroblasts and
endothelial cells (HUVECs)

EVs stimulated proliferation and migration, stimulated
Collagen I and III, and elastin secretion, and promoted tube
formation.

Li et al. 2016
[101]

Human
UC-MSC

Rat burn wound
-Intravenous injection

EVs reduce inflammation following burn wounds. EVs
transfer miR-181c and reduce TLR4 signaling.

In vitro mouse macrophages
(RAW264.7) EVs suppress LPS induced macrophage inflammation.

3.1. Inflammation

Wound healing is initiated immediately following tissue injury. Vascular injury and
serum-derived factors promote clot formation and hemostasis at the site of trauma. There
is rapid local production of pro-inflammatory cytokines (e.g., IL-1, IL-2, IL-6, IL-8, TNF-
α, interferons (IFNs), and prostaglandins) and growth factors (TGF-β, EGF, PDGF, and
FGF) [102]. These factors promote the migration of inflammatory cells into the wound
environment.

Neutrophils are the first inflammatory cell recruited. They are critical for controlling
the invasion of bacteria through the compromised cutaneous barrier (Figure 2). Neutrophils
remove bacterial seeding by phagocytosis, producing reactive oxygen species (ROS), and
releasing cytotoxic molecules [103]. The molecules released by neutrophils also promote
the breakdown and clearance of cellular debris. Dysfunctional neutrophils may contribute
to the formation of chronic wounds. Neutrophils from patients with diabetes mellitus (DM)
have an impaired respiratory burst, a weaker chemotactic response, and are more prone to
apoptosis [104,105]. The function of genetically defective neutrophils can be improved with
EV treatment [106]. In this context EVs may be able to restore impaired neutrophil function
associated with diabetes, potentially resulting in the recruitment of fewer neutrophils
during the wound healing process. Additionally, excessive neutrophil recruitment is also
found in chronic wounds [107]. MSC-EVs can inhibit the infiltration of neutrophils into
corneal wounds [108]. It remains to be determined if inhibition of neutrophil infiltration is
due to EVs acting on neutrophils, or if it is a response to reduced inflammatory cytokine
secretion into the wound environment. The effects of MSC-EVs on neutrophils, and other
cells to be discussed, may seem contradictory. But it is important to consider that like
MSCs, MSC-EVs are likely working to restore tissue homeostasis and do not act on any
one cell in isolation.



Pharmaceutics 2021, 13, 1543 8 of 25

Figure 2. Diagram of key cellular components of the (a) inflammatory phase and (b) proliferative phase of wound healing.
Panels depict cell function in the acute wound setting (left), changes that occur in chronic wounds (bottom), and how
extracellular vesicles (EVs) can influence cell function (right). Arrows depict how a stated cell function is increased or
decreased in the setting of chronic wounds relative to acute wounds, and then how EVs can increase or decrease the function
relative to chronic wounds. ECM—extracellular matrix.

Macrophages play a dual role in wound healing. Murine studies suggest that macrophages
initially assume the M1 pro-inflammatory phenotype. M1 macrophages release pro-
inflammatory cytokines and phagocytose bacteria, ECM, and apoptotic cells. After dam-
aged tissues have been cleared, the wound progresses into the proliferative phase. For
this transition to appropriately occur, macrophages must also transition from their pro-
inflammatory M1 phenotype to their anti-inflammatory M2 phenotype. M2 macrophages
act to resolve inflammation through the secretion of anti-inflammatory cytokines such as
IL-10 and IL-1RA. M2 polarized macrophages are a key source of growth factors (EGF,
TGF-β, IGF-1) that regulate the proliferative phase and promote fibrosis. Importantly,
inappropriate macrophage activation has been linked to scarring and the development of
chronic wounds [109].

Numerous studies have investigated the influence of EVs on macrophages, reviewed
elsewhere [110]. In the context of wound healing and tissue repair, EVs promote polariza-
tion to the M2 macrophage phenotype [80,84,94,97,101]. Acquisition of the M2 phenotype
is associated with reduced expression of pro-inflammatory cytokines (TNF-α, IL-1, IFN-γ)
and increased expression of anti-inflammatory cytokines (IL-4, IL-10). He et al. found
intravenously (IV) injected BM-MSCs home to the wound site, promote M2 macrophage
polarization, and improve wound healing [80]. These BM-MSCs failed to promote wound
healing if macrophages were depleted, or if the BM-MSCs were unable to secrete EVs. Fi-
nally, they proposed that the effect was due to the transfer of miR-223 to macrophages [80].
EVs may also promote M2 polarization through the transfer of miR-let7 [94,111], miR-
181c [101], and miR-182 [112].
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Apoptosis of transplanted MSCs can inhibit inflammation and hypertrophic scar-
ring [113]. It is increasingly recognized that apoptosis of MSCs is a critical component of
their therapeutic efficacy [114]. Direct application of apoptotic bodies derived from MSCs
promotes wound healing and M2 macrophage polarization [84]. Additionally, macrophages
preconditioned with MSC apoptotic bodies secrete paracrine factors that promote fibroblast
migration and proliferation [84].

Toll-like receptors (TLRs) are a key component of the innate immune system that recog-
nizes pathogen-associated molecules. While TLRs are important in the acute phase for the
clearance of pathogens, their sustained activity can be maladaptive [115]. Chronic venous
leg ulcers have higher levels of TLR-2 and TLR-4 [116]. MSC-EVs can modulate macrophage
reactivity to LPS (TLR-4 ligand) by transfer of miR-let7b [94] and miR-181c [101], result-
ing in attenuated TNF-α and IL-1β production and stimulating the production of anti-
inflammatory TGF-β and IL-10 [94,101].

Progressive mitochondrial dysfunction is associated with aging and chronic inflamma-
tion [117], which contributes to chronic wound formation [118]. An intriguing additional
mechanism for promoting M2 polarization is through the transfer of mitochondria [119].
Inflammatory M1 macrophages rely on glycolysis, whereas the anti-inflammatory M2
phenotype is more dependent on mitochondrial oxidative phosphorylation [120]. Addi-
tionally, in a murine model of acute oxidative stress, MSC-EVs can reduce ROS-associated
skin inflammation in response to ultraviolet irradiation and protect mitochondria from
oxidative stress [121].

T-lymphocyte recruitment occurs late in the inflammatory phase. Regulatory T-
cells (Tregs) function to limit inflammation, thereby protecting viable cells from immune-
mediated damage. Tregs promote neutrophils secretion of anti-inflammatory molecules
and promote neutrophil apoptosis. They also can polarize macrophages towards the M2
phenotype [122]. Amphiregulin is an EGF-like growth factor that can induce the local
release of bio-active TGF-β. Tissue resident Tregs have been proposed to maintain an envi-
ronment conducive for proper wound healing through this localized amphiregulin/TGF-β
cascade [123]. Tissue resident γδT-cells secrete keratinocyte growth factors and IGF-1
to promote keratinocyte proliferation and survival [124]. Mice deficient in B-cells and
T-cells have been shown to have scar-free healing [125]. Furthermore, depletion of T-cells
impairs collagen deposition and decreases wound strength [126]. These findings indicate
an important role for T-cells in the proliferation and remodeling phases.

Dendritic cells (DCs) are the primary antigen presenting cell of the immune system
and are a key link between the innate and adaptive immune responses. MSC-EVs impair
DC antigen uptake and expression of co-stimulatory molecules [127]. DC treatment with
MSC-EVs reduced the secretion of IL-6 and IL-12p70 inflammatory cytokines, reduced
the expression of CCR7 chemokine receptor, and increased secretion of anti-inflammatory
TGF-β. These effects were attributed to EV-mediated transfer of miRNAs, in particular miR-
21-5p [127]. Through their action on DCs, MSC-EVs are able to attenuate the production
of inflammatory T-cells and shift production towards FOXP3+ regulatory T-cells [128,129].
MSC-EVs were also shown to inhibit inflammatory T-cell differentiation, proliferation,
activation, and IFN-γ production [130].

The inflammatory response in cutaneous wound healing must remain in homeostasis.
The initial burst of inflammation is critical for clearing pathogens and debris. Then the
inflammation must resolve to make way for the next phases of the healing process. An
excessive inflammatory response will damage surrounding healthy tissues and a prolonged
response will delay wound closure. MSC-EVs display promising immunomodulatory
effects for promoting an inflammatory environment conducive to effective wound healing.

3.2. Proliferation

The proliferative phase involves creating a new foundation upon which the epithe-
lial barrier will rest. In the dermis, this involves angiogenesis, fibroblast proliferation,
and provisional ECM deposition to create granulation tissue. The wound environment is



Pharmaceutics 2021, 13, 1543 10 of 25

metabolically active and requires new blood vessel formation to supply these demands.
Failure to supply adequate metabolic nutrients can delay or disrupt the healing pro-
cess [131]. Additionally, the high glucose environment of diabetes mellitus can inhibit
endothelial cell and fibroblast proliferation and promotes their apoptosis [132] (Figure 2b).

MSC-EVs stimulate the expression of repair associated growth factors that promote
neoangiogenesis in murine wound models (Table 1). In vitro, MSC-EVs can promote en-
dothelial cell proliferation, migration, tube formation, and secretion of VEGF [81,98,100]. It
was demonstrated that MSC-EVs stimulate the AKT/eNOS pathway to promote angio-
genesis, in part through the transfer of miR-221-3p [98]. Transfer of miR-31, miR-125a,
miR-126, and circRNA mmu_circ_0000250 have also be shown to support endothelial cell
proliferation and tube formation [91,96,133,134]. Endothelial progenitor cells cultured in
high glucose conditions undergo premature senescence. MSC-EVs can protect endothelial
progenitor cells from senescence by inhibiting the expression of inflammatory cytokines
and limiting ROS production [95].

MSC-EVs also stimulate fibroblast proliferation, migration, and ECM production
in vivo (Table 1). MSC-EVs have been shown to carry EGF, FGF2, Wnt3a, and Wnt4,
which can be delivered to dermal fibroblasts, stimulating their migration and collagen
synthesis [67,135–137]. Cultured fibroblasts treated with MSC-EVs increase the expression
of growth factors (EGF, FGF2, VEGF, PDGF) and ECM molecules (Fibronectin, Collagen
1, Collagen III, Elastin) [81,138]. The function of fibroblasts derived from chronic wounds
can be enhanced by treatment with MSC-EVs in a dose-dependent manner, which may
be mediated by EV transfer of STAT3 [139]. MSC-EVs can also stimulate AKT and ERK
signaling in fibroblasts which have been correlated with enhanced repair functions [79,81].

Finally, MSC-EVs accelerate wound re-epithelialization (Table 1). Keratinocytes treated
with MSC-EVs in vitro display enhanced proliferation and migration [138], accompanied
by increased expression of VEGF, fibronectin, c-MYC, and MMP-9 [81]. MSC-EVs were
shown to accelerate re-epithelialization via transfer of miR-27b, leading to activation of
JUNB/IRE1α signaling [82]. Additionally, MSC-EVs can promote re-epithelialization and
keratinocyte proliferation through AKT/HIF-1α signaling [86]. MSC-EVs can also protect
keratinocytes from oxidative stress-induced apoptosis by inhibiting nuclear translocation
of AIF and suppressing activation of PARP1 [87].

MSC-EVs may also promote repair through stimulation of tissue resident stem cells,
though less is known if this occurs in cutaneous wound healing. MSC-EVs can increase the
stemness of human dermal fibroblasts through the transfer of OCT4 and NANOG [140].
BM-MSCs and MSC-EVs undergo an age-related decline in reparative capacities [141].
It was shown that MSCs from aged rats expressed lower levels of pluripotency mark-
ers OCT4 and NANOG [142]. Incubation of old MSCs with MSC-EVs from young rats
increased expression of OCT4 and NANOG and decreased expression the senescence
marker Vinculin [142]. Additionally, it was shown that EVs from young MSCs can de-
lay premature senescence, improve stemness, and stimulate glycolytic metabolism in old
MSCs [143]. Finally, MSC-EVs can promote tendon repair by suppressing apoptosis of
tendon stem cells [144]. Additional studies will be needed to determine how MSC-EVs
influence cutaneous stem cell populations.

3.3. Remodeling

The remodeling phase is critical for strengthening the repaired wound. In this phase
the provisional ECM is replaced with thicker and more organized collagen bundles, re-
sulting in an increase in tensile strength over a period of months [102]. The wound will
also contract, which is mediated by myofibroblasts. If any phase of the healing process is
disrupted, atrophic scars, hypertrophic scars, keloids, and chronic wounds can result.

MSC-EVs can decrease fibroblast collagen deposition, the trans-differentiation of
fibroblasts to myofibroblasts, and the formation of hypertrophic scars [88]. MSC-EVs were
found to express miR-192-5p, which suppresses the pro-fibrotic IL-17RA/SMAD axis [88].
TSG-6 is a secreted glycoprotein with anti-inflammatory effects and is noticeably reduced
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in keloid scars [145]. MSC-EVs contain TSG-6 protein and in an in vivo model MSC-EVs
limited scar formation in a TSG-6 dependent fashion [83]. TSG-6 delivery resulted in
reduced expression of TGF-β1, Collagen I/III, and phosphorylated-SMAD2/3 [83]. MSC-
EVs are also enriched in several miRNAs (miR-21, -23a, -125b, and -145) that can inhibit
TGF-β/SMAD2 signaling and suppress myofibroblast formation [77].

The effect of MSC-EVs on fibroblasts has been reported to either increase or decrease
function between studies or within a study at different time points. One potential expla-
nation for how this paradoxical effect may occur is through the generation of regulatory
macrophages. Regulatory macrophages are anti-inflammatory and anti-fibrotic, whereas
M2 macrophages are pro-fibrotic [146]. While MSC-EVs can enhance the anti-inflammatory
phenotype of regulatory polarized macrophages [147], it is unknown if MSC-EVs enhance
the anti-fibrotic effects.

4. Tailoring EVs to Heal Chronic Wounds

Pre-clinical work has demonstrated great promise for the use of MSC-EVs for treating
chronic wounds. Numerous studies have found ways to further enhance the wound
healing efficacy of EVs, which will be discussed in the following sections. As we learn
more about the pathophysiology of chronic wounds, it can be envisioned that MSC-EVs
can be personalized to an individual patient based on wound etiology, co-morbidities, and
any underlying biological defect in the wound healing process.

4.1. Extracellular Vesicles: Source

As previously noted, MSCs are known to be a highly heterogeneous population, and
unsurprising, EVs derived from MSCs also show significant variability. EV production
is influenced by the source cell, passage number, growth media, atmosphere, culture
substrate, and collection conditions. Successful clinical implementation of EVs will also
require a means to produce enough EVs. Fortunately, MSCs are one of the most active
producers of EVs [148]. EV production can be enhanced by various stimuli, such as
hypoxia [149], low pH [150], 3D cell culture [151], acoustic-, electrical-, and mechanical-
stimulation [152–155]. Methods for enhancing intrinsic MSC production of EVs have been
reviewed elsewhere [156]. Given the prevalence of chronic wounds, economical large-
scale production methods will be needed to generate MSC-EVs for this to be a broadly
applicable therapy. Standard cell culture vessels are inefficient for large-scale MSC-EV
production. Bioreactor systems provide a scalable system for generating large quantities of
clinical-grade EVs [157,158].

MSC-EV cargo and downstream effects vary depending on where MSCs are harvested
from. With regard to wound healing, Hoang et al. evaluated how MSC source influences EV
function. They found that BM-MSC-EVs contained the highest levels of FGF2 and PDGF-BB
and displayed the strongest effect on fibroblasts. Whereas, UC-MSCs contained the highest
levels of TGF-β and produced the greatest effect on keratinocytes [135]. Comparative
analysis of BM-MSC-EV and AD-MSC-EV content revealed that both types are enriched
in miRNAs targeting EGF, PI3K/AKT, TGF-β signaling pathways [93]. AD-MSC-EVs are
enriched in proangiogenic miRNAs that target HIF-1 and other angiogenic proteins (TGF-β,
FGF, PDGFR, TNF, ANGPT1). BM-MSC-EVs contained more abundant proteins linked to
integrin and cadherin signaling and metabolic processes [93].

Production of EVs by MSCs is also age-dependent. MSCs from older individuals and
late-passage cultures produce more EVs [159,160]. Importantly, these EVs have different
cargos and may not produce the desired therapeutic effects [161,162]. Qui et al. showed
that adult BM-MSCs pre-treated with neonatal serum EVs have enhanced wound healing
potential. Furthermore, these “rejuvenated” BM-MSCs secreted EVs that are superior
at promoting wound healing, inducing endothelial cell proliferation, and stimulating
AKT/eNOS signaling [85]. Comparison of MSC-EVs from young and aged mice identified
enrichment of miR-126 in young MSC-EVs [163]. Overexpression of miR-126 in aged MSCs,
results in the production of EVs with potent angiogenic potential, equivalent to EVs from
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young MSCs [163]. These findings have implications when designing therapies for chronic
wounds. MSCs would ideally be harvested from younger donors and MSCs would not
be expanded beyond an early number of passages. When this is not feasible, it may be
possible to use young MSC-EVs or molecules to “rejuvenate” sub-optimal MSCs to produce
EVs with better biologic activity.

Environmental stimuli also influence MSC-EV characteristics. Growing MSCs in a
hypoxic atmosphere or the use of hypoxia-mimetic molecules increases EV yield and
increases the angiogenic potential of isolated EVs [164–168]. Hypoxia increases VEGF, EGF,
FGF, VEGF-R2, VEGF-R3, MCP-2, and MCP-4 in AD-MSC-EVs, which correlates with more
robust angiogenic potential [167]. EVs from MSCs treated with dimethyloxaloylglycine
stimulate angiogenesis by activating AKT/mTOR signaling [168]. The hypoxia-mimetic
deferoxamine when added to BM-MSCs results in the production of EVs with increased
wound healing and pro-angiogenic properties [96]. It was shown that in part this was
through EV delivery of miR-126 to recipient cells, resulting in PTEN suppression [96].

Inflammation stimulates MSCs to generate immunosuppressive EVs [169]. EVs from
MSCs stimulated with TNF-α and IFN-γ promote M2 macrophage polarization, potentially
through changes in miRNA content, resulting in IRAK1 inhibition [170]. Additionally,
MSCs preconditioned with TNF-α and IFN-γ generate EVs with elevated COX2, lead-
ing to the generation of anti-inflammatory PGE2 [171]. Ti et al. showed, in a diabetic
wound model, that EVs from LPS preconditioned MSCs decreased inflammatory cell in-
filtration into the wound and polarized macrophages towards the M2 phenotype. LPS
preconditioned MSC-EVs were enriched with let-7b, miR-1180, miR-183, miR-550b, and
miR-133a. Transfer of let-7b to macrophages leads to M2 polarization through inhibition of
TLR4/NF-kB and stimulation of STAT3 and AKT signaling [94].

The culture substrate is another modifiable factor when generating tailored MSC-
EVs [172]. MSCs grown on a fibrous scaffold or as spheroids enhance their secretion
of paracrine mediators that promote wound healing [173,174]. Growing MSCs in 3D
culture enhances the secretion of galectin-1, promoting the proliferation and migration of
keratinocytes and fibroblasts [175]. The role of EVs in these studies was not specifically
addressed, but EVs would have been present in the MSC conditioned media based on the
methods reported. A recent study found that 3D culture of UC-MSCs generates EVs that
promote fibroblast proliferation and migration [176].

Based on the preceding findings, when MSCs are stimulated by factors found in the
chronic wound environment they produce EVs with more potent wound healing potential.
When MSCs are exposed to hypoxia, they generate EVs that promote angiogenesis, and
when they are exposed to inflammatory molecules, they produce immunomodulatory
EVs. These observations are congruent with MSCs, and by extension with MSC-EVs,
being critical regulators of tissue homeostasis. It should be explored if a combination of
environmental factors can further enhance the bioactivity of MSC-EVs for chronic wound
applications.

The cargo of MSC-EVs can also be influenced by targeting MSC receptors. Melatonin
promotes MSCs to produce EVs with enhanced anti-inflammatory and wound healing
activity [97]. Melatonin MSC-EVs enhance wound closure, Collagen I and III expression,
and M2 macrophage polarization compared to untreated MSC-EVs. Melatonin MSC-EVs
attenuate inflammation by suppressing AKT signaling [97]. EVs collected from atorvastatin
treated MSCs display enhanced angiogenic effects, mediated by miR-221-3p upregulation
and AKT/eNOS activation in endothelial cells [98]. It is intriguing to note that MSCs
express light-sensing proteins that are typically expressed by retinal photoreceptors. MSCs
stimulated with blue (455 nm) light released EVs with more potent angiogenic poten-
tial [177]. Blue light stimulation was noted to increase miR-135b and miR-499a packaging
into EVs [177].

Multiple techniques exist for isolating EVs including ultracentrifugation (differential,
density-gradient, and sucrose cushion), size-exclusion chromatography, immunoaffinity,
microfluidics, and others [178]. The advantages and disadvantages of each technique
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have been reviewed elsewhere [179,180]. For example, Wnt3a is bound to the exterior
of BM-MSC-EVs. Traditional ultracentrifugation dislodges Wnt3a, but a combination of
polyethylene-glycol enrichment with sucrose cushion ultracentrifugation allows for the
recovery of EVs with bound Wnt3a [67]. The type of isolation method employed must
consider cost, safety, and the quantity, quality, and biologic-activity of recovered EVs.

4.2. Extracellular Vesicles: Engineering

There is tremendous interest in selectively engineering EVs to maximize their delivery
of bioactive molecules and to target them to specific cell populations [181–187]. The surface
of EVs can be modified for display of therapeutic molecules or modulate cell targeting.
MSCs can be genetically engineered to display peptide sequences, proteins, and antibody
fragments fused to the extracellular domain of EV transmembrane proteins. The exterior
can be further modified post-isolation by conjugating molecules to surface proteins (e.g.,
“click” chemistry) and insertion of amphipathic molecules into the lipid bilayer [187].
Modification of the EV surface has been largely unexplored in wound healing research, but
it has the potential for substantial therapeutic benefit. For example, it may be possible to
insert palmitoylated proteins such as Wnt proteins into isolated EVs.

The most frequently employed method for enriching EV cargo is to overexpress the
coding DNA sequence in the EV source cells. This technique has been successfully utilized
in wound healing studies. The transcription factor NRF2 provides protection against
oxidative stress in diabetic models. EVs derived from NRF2 overexpressing AD-MSCs,
compared to standard AD-MSC-EVs, promote faster wound healing in vivo and protect
cultured endothelial progenitors from senescence by inhibiting ROS and inflammatory
cytokines [95]. MSC-EVs loaded with lncRNA H19 can modulate the miR-152-3p/PTEN
axis in fibroblasts grown from diabetic foot ulcers [90]. These H19 loaded MSC-EVs
promoted wound healing in a mouse diabetic wound model, suppressed inflammation,
and decreased apoptosis [90]. MSC-EVs enriched with TSG-6 showed superior ability to
reduce scar formation compared to standard MSC-EVs [83].

Other methods have been developed to target proteins to EVs that are not normally
loaded into EVs. The ‘exosomes for protein loading via optically reversible protein–protein
interactions’ (EXPLORs) technique uses a light reversible linker to attach proteins to CD9,
an EV associated tetraspanin molecule [188]. Another technique proposed is to capture
proteins in self-assembling structures such as ‘enveloped protein nanocages’ [189].

Additional methods have been proposed to induce EV formation while bypassing
active cargo sorting mechanisms, thereby producing EVs with a sampling of all cytoplasmic
molecules. EVs generated by these means are also referred to as extracellular vesicle
mimetics or cell-engineered nanovesicles [190,191]. Vesicle production can be induced
by subjecting cells to hypotonic solution followed by osmotic vesiculation buffer [192].
Cytochalasin B is a pharmacologic agent that disorganizes the actin cytoskeleton. When
cytochalasin B treated MSCs are then subjected to shearing stress (vortexing) they produce
immunomodulatory and angiogenic EVs [193,194]. EVs can also be generated by extruding
cells through 1 µm- or 2 µm-pore polymer filters [195], or by ultrasonication [196].

Isolated EVs can be passively loaded with drugs that can pass through the lipid bilayer,
whereas other molecules need additional assistance to enter EVs. Active methods such as
electroporation, sonification, freeze/thaw, extrusion, saponin, and transfection reagents
can allow additional cargos into EVs [183]. Most methods discussed are inefficient at
incorporating large molecules into EVs. Engineered lipid nanoparticles can be loaded with
high concentrations of therapeutic molecules, but have inferior biocompatibility compared
to EVs [197]. Hybrid exosome-liposome vesicles can be generated through co-incubation,
freeze-thaw, and sonication [197]. These hybrid vesicles possess the membrane proteins
important for EV biodistribution and targeting while incorporating large molecules into
the vesicle [198].
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4.3. Extracellular Vesicles: Quality Control

Rigorous quality control metrics must be established prior to the clinical application
of EVs [199]. Each batch of EVs needs to be assessed for its identity, purity, and potency to
ensure safety and therapeutic efficacy. Multiple assays will be necessary to fully evaluate
EVs given their complex biology. The identity and purity of a batch can be evaluated by
measuring the ratio of MSC to non-MSC EV surface antigens and size distribution [199].
The quantity of any specific therapeutic molecules should also be assessed between batches.

One of the challenges with a clinical translation of EVs is optimal dosing. Many
studies do not include a dose–response curve to optimize the proper concentration for
efficacy. The question remains to be determined if higher dosing results in better/faster
healing or if there is a plateau or negative effect from overdosing. MSC-CM and MSC-EVs
have been shown to stimulate wound healing responses in a dose-dependent manner,
though there is a ceiling to their effect [139,200].

Furthermore, the potency of an EV preparation must be determined to provide a
consistent therapeutic dose. Most studies report EV dose as either the number of vesicles
or protein content delivered. It would be more appropriate to calculate dose as biologically
active “units” based on functional assays. Potency testing for wound healing could involve
any combination of in vivo wound healing assays in model species, or in vitro assays to
measure their effect on keratinocytes, fibroblasts, endothelial cells, and immune cells. An
in depth discussion of functional assays for EVs can be found elsewhere [201].

4.4. Extracellular Vesicles: Delivery

Cutaneous wounds provide multiple options for MSC-EV delivery. Most murine
studies injected EVs locally near the wound (Table 1). This method is not ideal clinically as
it could cause significant pain and distress to the patient. Intravenous injection provides
an alternative if the patient has multiple wounds, or a large body surface area is involved.
Intravenous (IV) injection of MSC-EVs tagged with iron oxide nanoparticles can be directed
to an injury site with a magnet [202]. Hu et al., demonstrated that IV injection of fluores-
cently tagged MSC-EVs in a mouse wound model showed fluorescence in the wound site
on days 5–14 following injury and MSC-EV injection [78]. Their study showed that initially
the MSC-EV fluorescence signal was restricted to the spleen on day 1 and then fluorescence
accumulated in the injury site days later [78]. When considering the short circulatory
half-life of EVs (minutes to hours, see Section 2.2), it is difficult to explain how EVs remain
in circulation long enough to correlate with these findings. It may be that EVs rapidly
accumulate in the spleen and then are slowly released back into circulation. Alternatively,
EVs may act on splenic cells that are then released in response to inflammatory cues [203].
Further work will be needed to evaluate which cells in the wound environment are targets
of MSC-EVs. This question could be addressed by identifying which cells in the wound
accumulate tracer carried by EVs, though the signal may not reach the limit of detection
with this method. An alternative would be to use EVs loaded with molecules capable of
inducing stable changes in recipient cells (Cre recombinase or CRISPR/Cas9) [204].

Topical application is appealing because it minimizes patient discomfort, enables a
high dose of EVs to be delivered directly to the wound, and allows EVs to be delivered as
biomatrices to further enhance wound healing. Topical application of MSC-EVs loaded
into carboxymethylcellulose, alginate, or Pluronic F127 hydrogels promote wound healing
and neoangiogenesis [89,93,99]. EVs can also be loaded onto hydrogels designed with
anti-microbial and adhesive properties suited for the wound environment [89]. Work done
in our laboratories has shown that EVs can be stabilized in a collagen scaffold without
diminution in efficacy for anti-inflammatory therapies in an osteoarthritis model as well
as provide sustained release up to one week in vitro [205](and unpublished observations,
D.A.G.). Wang et al., demonstrated that a complex hydrogel system (FHE—Pluronic F127,
hyaluronic acid, and poly-ε-L-lysine) could provide pH-responsive sustained EV release
and promote skin repair in a diabetic wound healing model [89].
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5. Clinical Perspectives

Stem cell products including EVs are regulated and require FDA approval. Currently,
the only stem cell products that are FDA-approved for use in the United States consist
of hematopoietic progenitor cells that are derived from umbilical cord blood for use in
patients with disorders that affect the production of blood.

There are currently no FDA-approved EV products (https://www.fda.gov/vaccines-blood-
biologics/consumers-biologics/consumer-alert-regenerative-medicine-products-including-stem-
cells-and-exosomes, accessed on 16 September 2021). At the time of this publication, clini-
caltrials.gov (accessed on 16 September 2021) listed three trials using EVs to treat chronic
wounds. Two clinical trials will evaluate if serum derived EVs can induce a change in
wound size and associated pain (NCT02565264 and NCT04652531).

One clinical trial (NCT04173650) will evaluate MSC-EV dose-limiting toxicity and
wound size in dystrophic epidermolysis bullosa. Recessive dystrophic epidermolysis bul-
losa is an inherited skin fragility disorder, due to mutations in the COL7A1 gene, resulting
in defective anchoring of the epidermis to the dermis [206]. Affected children suffer from
generalized skin blistering, ulceration, and scarring, for which there is no definitive cure.
BM transplant and MSC treatment can increase Collagen VII in the skin [207–209]. Work
done in our laboratories demonstrated that MSC-EVs are capable of transferring Collagen
VII mRNA and protein to fibroblasts [210]. Additionally, EVs may provide an ability to
rejuvenate skin cell damage [211].

MSC-EVs can also be considered for an adjuvant role to other modalities. Skin flaps
and grafts are part of the clinical toolkit for treating wounds, but flap/graft failure is a major
clinic challenge and can prolong the course of a chronic wound. In an in vivo model of flap
ischemia-reperfusion injury, EVs increased the rate of flap survival, reduced inflammatory
cell infiltrate, and induced neoangiogenesis [164]. Additionally, MSCs were shown to delay
the rejection of MHC-mismatched skin grafts in immunocompetent baboons [212]. These
findings indicate that MSC-EVs could be an adjuvant therapy when using allografts to
reduce immune-mediated graft rejection.

MSC-EVs provide many benefits relative to their parent cell. MSC-EVs are more
stable than MSCs. Unlike MSCs, experiments monitoring EV biodistribution have not
reported significant pulmonary accumulation. Transplantation of genetically engineered
MSCs carries a risk for tumorigenesis and ectopic tissue formation should they become
stably incorporated into the host. EVs carry a finite quantity of bioactive molecules; thus,
mitigating the risk. A wide array of modifications can be applied to EVs to enhance
their intended therapeutic purpose. Limitations to MSC-EV therapeutics include scarcity
of the source cell should BM-MSCs be used, limited yield of EVs per production batch,
heterogeneity among EVs, and lack of standardized quality control and potency assays.
All cell-based therapies have the potential to transmit infectious diseases. While most
infectious diseases can be screened for, no approved method for detecting prions has been
approved. Human platelet lysate appears to be an alternative to bovine serum in MSC
culture, with MSC-EVs showing comparable immunomodulatory effects [213].

The International Society of Extracellular Vesicles has published a position paper
outlining important considerations regarding the application of EVs in clinical trials [214].
The clinical application of MSC-EVs in wound healing will require the development of man-
ufacturing strategies compliant with good manufacturing practices (GMP). Additionally,
robust quality control and potency testing will be needed to fulfill regulatory requirements.

6. Conclusions

Pre-clinical data indicate that MSC-EVs can accelerate wound healing by modu-
lating the immune response and by promoting angiogenesis, fibroblast function, and
re-epithelialization. There are numerous methods available to modify the cargo of EVs,
making them a versatile drug delivery system. MSC-EVs can be delivered intravenously,
injected into the wound site, or applied topically to treat chronic wounds. This flexibility

https://www.fda.gov/vaccines-blood-biologics/consumers-biologics/consumer-alert-regenerative-medicine-products-including-stem-cells-and-exosomes
https://www.fda.gov/vaccines-blood-biologics/consumers-biologics/consumer-alert-regenerative-medicine-products-including-stem-cells-and-exosomes
https://www.fda.gov/vaccines-blood-biologics/consumers-biologics/consumer-alert-regenerative-medicine-products-including-stem-cells-and-exosomes
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in the design and delivery of MSC-EVs opens the doors for creating personalized therapies
for chronic wounds.
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Abbreviations

AIF Apoptosis-inducing factor
CCR7 C-C motif chemokine receptor 7
COL7A1 Collagen VII alpha 1 chain
CM Conditioned media
DC Dendritic cell
ECM Extracellular matrix
EGF Epithelial growth factor
eNOS Endothelial NOS
ESCRT Endosomal sorting complex required for transport
EV Extracellular vesicle
FHE Pluronic F127, hyaluronic acid, and poly-[epsilon]-L-lysine
FGF Fibroblast growth factor
FOXP3 Forkhead box P3
HIF-1α Hypoxia inducible factor-1-alpha
IL Interleukin
IL-1RA Interleukin 1 receptor antagonist
IL-17RA Interleukin 17 receptor A
IFN Interferon
IGF-1 Insulin-like growth factor 1
IRE1α Inositol requiring enzyme-1-alpha
IV Intravenous
kDa kilodalton
LPS Lipopolysaccharide
MMP-9 Matrix metalloproteinase 9
NRF2 Nuclear factor erythroid 2 like 2
OCT4 Octamer-binding protein 4
PARP1 Poly (ADP-ribose) polymerase-1
PDGF Platelet-derived growth factor
PTEN Phosphate and Tensin homolog
ROS Reactive oxygen species
STAT3 Signal transducer and activator of transcription 3
SIRPα Signal regulatory protein alpha
TGF-β Tissue growth factor beta
THBS1 Thrombospondin 1
TLR Toll-like receptor
TNF-α Tumor necrosis factor alpha
Tregs Regulatory T lymphocyte
TSG-6 Tumor necrosis factor-stimulated gene-6
VEGF Vascular endothelial growth factor
MSC Mesenchymal stem cell
BM-MSC Bone marrow MSC
AD-MSC Adipose tissue MSC
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UC-MSC Umbilical cord MSC
mRNA Messenger RNA
mtDNA Mitochondrial DNA
rRNA Ribosomal RNA
tRNA Transfer RNA
lncRNA Long noncoding RNA
circRNA Circular RNA
piRNA picoRNA
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